CN111524891B - 一种铁电柔性逻辑运算器件及其制造方法 - Google Patents

一种铁电柔性逻辑运算器件及其制造方法 Download PDF

Info

Publication number
CN111524891B
CN111524891B CN202010201958.2A CN202010201958A CN111524891B CN 111524891 B CN111524891 B CN 111524891B CN 202010201958 A CN202010201958 A CN 202010201958A CN 111524891 B CN111524891 B CN 111524891B
Authority
CN
China
Prior art keywords
ferroelectric
logic
flexible
truth table
logic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010201958.2A
Other languages
English (en)
Other versions
CN111524891A (zh
Inventor
沈群东
刘佳豪
陈昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202010201958.2A priority Critical patent/CN111524891B/zh
Publication of CN111524891A publication Critical patent/CN111524891A/zh
Application granted granted Critical
Publication of CN111524891B publication Critical patent/CN111524891B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors

Abstract

本发明提供了一种铁电柔性逻辑运算器件及其制造方法,铁电柔性逻辑运算器件包括运算器本体,运算器本体包括柔性铁电薄膜。柔性铁电薄膜由铁电高分子材料制成。制造铁电柔性逻辑运算器件时,首先构建铁电逻辑门,形成运算真值表;再根据运算真值表,采用铁电高分子材料选择不同的极化方式进行运算。本发明提供的铁电柔性逻辑运算器件制备过程简易,成本低廉,有效简化电路、减少误码率、增加运算效率。除此之外,本发明在非二进制逻辑中(三进制逻辑、混沌逻辑等)仍保留普通的双目运算很难实现的搭建完整逻辑体系的可能性。

Description

一种铁电柔性逻辑运算器件及其制造方法
技术领域
本发明属于铁电器件技术领域,涉及铁电运算器件,具体涉及一种铁电柔性逻辑运算器件及其制造方法。
背景技术
如果一种晶体在没有外加电场的情况下仍然存在自发的极化强度,并且自发极化强度的方向能被外加电场改变而重新取向,这样的晶体就具有铁电性,这样的晶体称为铁电体。偏氟乙烯(VDF)基铁电高分子作为一种多能量耦合的功能材料,以其优异的介电性能,已经被报道应用于能量存储、换能执行、电制冷、信息存储、生物传感等器件中。(可参考文献(Chen X,Han X,Shen Q D.PVDF-Based Ferroelectric Polymers inModernFlexible Electronics.Adv.Elec.Mater.,20171600460.)基于铁电高分子器件的发展在新一代的科技浪潮的面前机遇与挑战并存。如何站在更加现代化的角度去开发基于铁电高分子的器件在新场景下的新功能成为了亟待解决的重要问题。随着电子器件科技的发展,人们对其方方面面的功能性提出了越来越高的要求。其中最令人关注的,则是在已处于瓶颈的电子计算机领域的新突破。
随着科学家不断的探索,电子设备和机器人在当今社会中承担着越来越多的任务。人工智能作为人们对电子产品的最高期望,是指像人类一样学习和思考的能力。为了进一步发展人工智能,科学家开始研究脑神经元,以了解人脑如何深入工作。将人工智能和神经科学相结合,有望为这两个领域带来益处。脑神经元工作的物理机制是神经元极性的改变与传递。因此,建立基于仿生极化信号的逻辑计算系统有助于进一步探索和发展模拟大脑思维的人工智能。
近年来,由于柔性电子产品的耐磨性和便携性而引起了人们的极大兴趣。铁电聚合物已被开发为一种具有适当残留极化的柔性材料,可以通过仿生极化信号与神经元细胞进行通信。由铁电聚合物构成的计算设备,即使在分子尺度上也能保持极化,这将为智能电子设备的灵活性和小型化提供一种新方法。
基于铁电聚合物,在计算机存储领域已有一些相关研究。例如,申请人前期申请的专利号为ZL201310115261.3,名称为“一种压电力显微镜探针实现的高密度铁电数据存储方法”的中国专利,提供了一种在铁电高分子薄膜上进行数据存储的方法。申请号为CN201480034917.1,名称为“铁电存储器设备”的中国专利,亦提供了一种可行的铁电存储器设备方案。但目前,铁电聚合物尚未在计算中进行相关结合与应用。
计算是产生复杂的、状态响应电路的基本功能。发展用于现代计算的基于晶体管的集成电路是一个巨大的成功。但是,通过连续小型化来提高计算性能的方法正接近物理极限,如散热、量子不确定性、微加工技术的瓶颈。一个可选的方案是考虑可重新配置的逻辑元件,以克服当前逻辑计算硬件系统的严格体系结构。逻辑元件的重新分配使智能硬件系统具有更高的计算效率。可以相对于任何计算机应用容易地优化这种功能灵活的处理器。在传统处理器中,逻辑计算模块总是很繁重,因为它们是由仅一种逻辑元素(通常是“与非门”,NAND)反复重组产生的。这通常会导致某些简单的计算操作需要组装太多的逻辑门。例如,用于确定输入是否相等的等价门(也称为NXOR,记为⊙)始终需要执行5个NAND门,这会浪费计算时间和空间。因此,如果基本逻辑门可以以智能的方式进行重组,则将提高计算性能。而现有技术,尚无相应解决方案。
发明内容
为解决上述问题,本发明提供了一种铁电柔性逻辑运算器件及其制造方法。
为了达到上述目的,本发明提供如下技术方案:
一种铁电柔性逻辑运算器件,包括运算器本体,所述运算器本体包括柔性铁电薄膜。
进一步的,所述柔性铁电薄膜由铁电高分子材料制成。
进一步的,所述柔性铁电薄膜包括以下物质中一种或其中若干种混合的复合材料:PVDF、P(VDF-X)或P(VDF-X-Y),其中X、Y为含氟或含氯的有机烯烃。
进一步的,所述含氟或含氯的有机烯烃包括以下物质中的一种或若干种的混合物:三氟乙烯、三氟氯乙烯、四氟乙烯、六氟丙烯、二氟氯乙烯、1,1-氟氯乙烯。
进一步的,所述柔性铁电薄膜上通过电极化形成运算逻辑。
一种铁电柔性逻辑运算器件的制造方法,包括如下步骤:
步骤1,构建铁电逻辑门,形成运算真值表;
步骤2,根据运算真值表,采用铁电高分子材料选择不同的极化方式进行运算。
进一步的,所述步骤1包括如下过程:
1)列举在离散逻辑模式下所有单目运算真值表;
2)列举在步骤1)的逻辑模式中所有或常用双目运算真值表;
3)将步骤2)列举的双目运算中任一输入替换成在步骤1)逻辑模式下所有合法输入并列出真值表;
4)在步骤1)列举的单目运算真值表中找到与步骤3)列出的真值表中相符合的单目运算;
5)列出步骤2)中双目运算与若干步骤1)中单目运算间对应关系。
进一步的,所述步骤1)中逻辑模式包括布尔逻辑、三进制逻辑。
进一步的,所述步骤2中铁电高分子材料具有普通铁电体的双稳态性质,还包含双稳态之间的介稳的中间极化状态。
进一步的,所述步骤2利用铁电高分子不同极化状态之间的叠加过程来实现运算。
与现有技术相比,本发明具有如下优点和有益效果:
本发明提供的铁电柔性逻辑运算器件制备过程简易,成本低廉,有效简化电路、减少误码率、增加运算效率。除此之外,本发明在非二进制逻辑中(三进制逻辑、混沌逻辑等)仍保留普通的双目运算很难实现的搭建完整逻辑体系的可能性。
附图说明
并入本文并形成说明书一部分的说明书附图图解说明了本发明的实施例,并且与说明书一起进一步用于解释本发明的原理并使得本领域技术人员能够使用本发明。在附图中,为了清楚说明,区域的尺寸可能被夸大。
图1为本发明提供的铁电柔性逻辑运算器件示意图。
图1中:1.背景区域、2.数据区域、3.逻辑操作区域、4.运算结果区域。
图2为实施例一中铁电柔性逻辑运算器件逻辑计算TRUE门示意图。
图2中:1.数据0的背景区域,2.数据1的背景区域,3.数据0,4.数据1,5.TRUE操作,6.数据0经TRUE操作后结果,7.数据1经TRUE操作后结果。
图3为实施例二中铁电柔性逻辑运算器件逻辑计算NOT门示意图。
图3中:1.数据0的背景区域,2.数据1的背景区域,3.数据0,4.数据1,5.NOT操作,6.数据0经NOT操作后结果,7.数据1经NOT操作后结果。
图4为实施例三中铁电柔性逻辑运算器件逻辑计算“+0”示意图。
图4中:1.数据0的背景区域,2.数据1的背景区域,3.数据0,4.数据1,5.进位操作,6.个位操作,7.数据0经“+0”操作后进位结果,8.数据1经“+0”操作后进位结果,9.数据0经“+0”操作后个位结果,10.数据1经“+0”操作后个位结果。
具体实施方式
以下将结合具体实施例对本发明提供的技术方案进行详细说明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
本发明提供的铁电柔性逻辑运算器件,采用柔性铁电薄膜形成运算器件本体。形成柔性铁电薄膜的物质包括但不限于以下结构通式代表的物质:PVDF或P(VDF-X)或P(VDF-X-Y)或它们的若干种混合物或其它具有铁电性的高分子,其中X、Y为含氟或含氯的有机烯烃。
其中,含氟或含氯的有机烯烃包括但不限于三氟乙烯、三氟氯乙烯、四氟乙烯、六氟丙烯、二氟氯乙烯、1,1-氟氯乙烯中的任意一种或若干种。
本发明还提供了铁电柔性逻辑运算器件的构建方法:
步骤1,首先构建铁电逻辑门,形成运算真值表:
对于一种任意的双目运算(假设其为p@q),将对于其中任一输入(假设为q)的所有取值可能进行展开(即p@0和p@1),然后将双目运算与所有可能取值合并成为单目运算(将p@0=@0p,p@1=@1p,其中@0、@1为合并后的单目运算)。
具体的说,包括如下步骤:
1)列举在离散逻辑模式的逻辑模式下所有单目运算真值表;其中,逻辑模式包括但不限于布尔逻辑、三进制逻辑。
2)列举在步骤1)的逻辑模式中所有或常用双目运算真值表;
3)将步骤2)列举的双目运算中任一输入替换成在步骤1)逻辑模式下所有合法输入并列出真值表;
4)在步骤1)列举的单目运算真值表中找到与步骤3)列出的真值表中相符合的单目运算;
5)列出步骤2)中双目运算与若干步骤1)中单目运算间对应关系;
本发明以二进制为例,在二进制中,单目运算只有4个(FALSE,EQUAL,NOT,TRUE),这意味着所有双目运算的转化结果必然是其四种之一。而这四种单目门在各种体系中均比较容易实现。
二进制中4种单目运算的真值表如表1所示:
表1二进制单目运算的真值表
由所有16种双目运算转化成为4种单目运算的具体结果及其真值表如表2所示:
表2二进制双目运算转化成单目运算的方法
本发明利用其极化程度的强弱来代表0和1,以此形成铁电柔性逻辑运算器件的操作方式。
步骤2,根据所列的真值表,以铁电高分子为材料选择不同的极化方式来实现数据操作。
基于压电力显微镜利用探针施加的电场在铁电高分子上极化,并利用铁电高分子不同极化状态之间的叠加过程来实现运算。
本发明所指的铁电高分子除了拥有普通铁电体的双稳态性质,还包含双稳态之间的介稳的中间极化状态。
形成的铁电柔性逻辑运算器件如图1所示,包括背景区域1、数据区域2、逻辑操作区域3、运算结果区域4。
通过原子力显微镜可读取结果。
本发明的数据操作和读取均以包括但不限于原子力显微镜以及其它可以读取实现电极化的手段实现。
实施例一:
本例提供了一种铁电柔性逻辑运算器件的具体实现方式。本例提供的铁电柔性逻辑运算器件,包括运算器本体。运算器本体包括柔性铁电薄膜。形成柔性铁电薄膜所用的铁电高分子材料为P(VDF-TrFE)。
基于前述文字提供的真值表,本例提供了逻辑计算TRUE门的实施例,形成的铁电柔性逻辑运算器件如图2所示,区域1为数据0的背景区域,区域2为数据1的背景区域,线3为数据0,线4为数据1,线5为TRUE操作,交点6为数据0经TRUE操作后结果,交点7为数据1经TRUE操作后结果。
具体的极化和读取过程如下:
(1)如图2所示,区域1用-10V的电压进行预极化形成数据0的背景区域。其余部分区域2为数据1的背景区域。
(2)分别用5V和-10V的电压在区域1和区域2进行极化形成线3和线4。线3和线4即分别代表输入数据0和1(规定暗区域为0,亮区域为1,表示极化程度)。
(3)用-10V进行极化形成与线3和线4分别相交的线5。线5表示TRUE操作。
(4)线3和线4分别与线5交于点6和点7。点6和点7即演示0和1分别经过TRUE运算的结果。
(5)读取结果。点6和点7的极化程度分别表示的数据为1和1,代表TRUE(0)和TRUE(1)的运算结果。
实施例二:
本例提供了一种铁电柔性逻辑运算器件的具体实现方式。本例提供的铁电柔性逻辑运算器件,包括运算器本体。运算器本体包括柔性铁电薄膜。形成柔性铁电薄膜所用的铁电高分子材料为P(VDF-HFP)和P(VDF-TrFE-CFE)的复合物。本例中,P(VDF-HFP)和P(VDF-TrFE-CFE)的复合物的形成过程为:将两种物质用溶剂溶解混合,然后挥发溶剂即得。也可以通过固体熔融方式将上述两种铁电高分子材料结合在一起。
基于前述文字提供的真值表,本例提供了逻辑计算NOT门的实施例,形成的铁电柔性逻辑运算器件如图3所示,区域1为数据0的背景区域,区域2为数据1的背景区域,线3为数据0,线4为数据1,线5为NOT操作,交点6为数据0经NOT操作后结果,交点7为数据1经NOT操作后结果。
具体的极化和读取过程如下:
(1)如图3所示,区域1用-10V的电压进行预极化形成数据0的背景区域。其余部分区域2为数据1的背景区域。
(2)分别用5V和-10V的电压在区域1和区域2进行极化形成线3和线4。线3和线4即分别代表输入数据0和1(规定暗区域为0,亮区域为1,表示极化程度)。
(3)用8V电压进行极化形成与线3和线4分别相交的线5。线5表示NOT操作。
(4)线3和线4分别与线5交于点6和点7。点6和点7即演示0和1分别经过NOT运算的结果。
(5)读取结果。点6和点7的极化程度分别表示的数据为1和0,代表NOT(0)和NOT(1)的运算结果。
实施例三:
本例提供了一种铁电柔性逻辑运算器件的具体实现方式。本例提供的铁电柔性逻辑运算器件,包括运算器本体。运算器本体包括柔性铁电薄膜。形成柔性铁电薄膜所用的铁电高分子材料为PVDF和P(VDF-TrFE-CTFE)的复合物。本例中,PVDF和P(VDF-TrFE-CTFE)的复合物的形成过程为:将两种物质用溶剂溶解混合,然后挥发溶剂即得。也可以通过固体熔融方式将上述两种铁电高分子材料结合在一起。
基于前述文字提供的真值表,本例提供了逻辑计算“+0”的实施例,形成的铁电柔性逻辑运算器件如图4所示,区域1为数据0的背景区域,区域2为数据1的背景区域,线3为数据0,线4为数据1,线5为进位操作,线6为个位操作,点7为数据0经“+0”操作后进位结果,点8为数据1经“+0”操作后进位结果,点9为数据0经“+0”操作后个位结果,点10为数据1经“+0”操作后个位结果。
具体的极化和读取过程如下:
(1)如图4所示,区域1用-10V的电压进行预极化形成数据0的背景区域。其余部分区域2为数据1的背景区域。
(2)分别用5V和-10V的电压在区域1和区域2进行极化形成线3和线4。线3和线4即分别代表输入数据0和1(规定暗区域为0,亮区域为1,表示极化程度)。
(3)用5V电压极化形成与线3和线4分别相交的线5,-1V电压极化形成与线3和线4分别相交的线6。线5和线6分别表示进位和个位操作(分别对应单目运算FALSE和EQUAL)。在该实施例中由于线6操作在图4中表现为不可见,故用虚线区域表示线6。
(4)线3和线4分别与线5和线6交于点7-点10。点7-点10即演示数据0和1分别+0的结果。
(5)读取结果。点7和点8的极化程度分别表示的数据为0和0,代表0+0=00的双目运算过程。点9和点10的计划程度分别表示的数据为0和1,代表0+1=01的双目运算过程。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (9)

1.一种铁电柔性逻辑运算器件,包括运算器本体,其特征在于:所述运算器本体包括柔性铁电薄膜;通过如下方法制造:
步骤1,构建铁电逻辑门,形成运算真值表;具体包括以下过程:
1)列举在离散逻辑模式下所有单目运算真值表;
2)列举在步骤1)的逻辑模式中所有或常用双目运算真值表;
3)将步骤2)列举的双目运算中任一输入替换成在步骤1)逻辑模式下所有合法输入并列出真值表;
4)在步骤1)列举的单目运算真值表中找到与步骤3)列出的真值表中相符合的单目运算;
5)列出步骤2)中双目运算与若干步骤1)中单目运算间对应关系;
步骤2,根据运算真值表,采用铁电高分子材料选择不同的极化方式进行运算。
2.根据权利要求1所述的铁电柔性逻辑运算器件,其特征在于:所述柔性铁电薄膜由铁电高分子材料制成。
3.根据权利要求1所述的铁电柔性逻辑运算器件,其特征在于:所述柔性铁电薄膜包括以下物质中一种或其中若干种混合的复合材料:PVDF、P(VDF-X)或P(VDF-X-Y),其中X、Y为含氟或含氯的有机烯烃。
4.根据权利要求3所述的铁电柔性逻辑运算器件,其特征在于:所述含氟或含氯的有机烯烃包括以下物质中的一种或若干种的混合物:三氟乙烯、三氟氯乙烯、四氟乙烯、六氟丙烯、二氟氯乙烯、1,1-氟氯乙烯。
5.根据权利要求1所述的铁电柔性逻辑运算器件,其特征在于:所述柔性铁电薄膜上通过电极化形成运算逻辑。
6.一种铁电柔性逻辑运算器件的制造方法,其特征在于,包括如下步骤:
步骤1,构建铁电逻辑门,形成运算真值表;包括如下过程:
1)列举在离散逻辑模式下所有单目运算真值表;
2)列举在步骤1)的逻辑模式中所有或常用双目运算真值表;
3)将步骤2)列举的双目运算中任一输入替换成在步骤1)逻辑模式下所有合法输入并列出真值表;
4)在步骤1)列举的单目运算真值表中找到与步骤3)列出的真值表中相符合的单目运算;
5)列出步骤2)中双目运算与若干步骤1)中单目运算间对应关系;
步骤2,根据运算真值表,采用铁电高分子材料选择不同的极化方式进行运算。
7.根据权利要求6所述的铁电柔性逻辑运算器件的制造方法,其特征在于,所述步骤1)中逻辑模式包括布尔逻辑,三进制逻辑。
8.根据权利要求6所述的铁电柔性逻辑运算器件的制造方法,其特征在于,所述步骤2中铁电高分子材料具有普通铁电体的双稳态性质,还包含双稳态之间的介稳的中间极化状态。
9.根据权利要求6所述的铁电柔性逻辑运算器件的制造方法,其特征在于,所述步骤2利用铁电高分子不同极化状态之间的叠加过程来实现运算。
CN202010201958.2A 2020-03-20 2020-03-20 一种铁电柔性逻辑运算器件及其制造方法 Active CN111524891B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010201958.2A CN111524891B (zh) 2020-03-20 2020-03-20 一种铁电柔性逻辑运算器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010201958.2A CN111524891B (zh) 2020-03-20 2020-03-20 一种铁电柔性逻辑运算器件及其制造方法

Publications (2)

Publication Number Publication Date
CN111524891A CN111524891A (zh) 2020-08-11
CN111524891B true CN111524891B (zh) 2023-12-12

Family

ID=71901189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010201958.2A Active CN111524891B (zh) 2020-03-20 2020-03-20 一种铁电柔性逻辑运算器件及其制造方法

Country Status (1)

Country Link
CN (1) CN111524891B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114223B (zh) * 2021-04-13 2021-08-31 清华大学 一种流体驱动柔性“非”、“或”、“与”逻辑门

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276905A (zh) * 1997-08-15 2000-12-13 薄膜电子有限公司 一种铁电体数据处理器件
CN110880349A (zh) * 2019-11-20 2020-03-13 中国科学院物理研究所 逻辑器件及其逻辑控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276905A (zh) * 1997-08-15 2000-12-13 薄膜电子有限公司 一种铁电体数据处理器件
CN110880349A (zh) * 2019-11-20 2020-03-13 中国科学院物理研究所 逻辑器件及其逻辑控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Xin Chen等.PVDF-Based Ferroelectric Polymers in Modern Flexible Electronics.Adv. Electron. Mater..2017,2-4. *
刘佳豪等.铁电纳米CPU系统.中国化学会2017全国高分子学术论文报告会摘要集——主题H:光电功能高分子.2017,1. *

Also Published As

Publication number Publication date
CN111524891A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
Christensen et al. 2022 roadmap on neuromorphic computing and engineering
Jeong et al. Memristor devices for neural networks
Chen et al. Ultra-low power Hf 0.5 Zr 0.5 O 2 based ferroelectric tunnel junction synapses for hardware neural network applications
Wang et al. Global synchronization of fuzzy memristive neural networks with discrete and distributed delays
Di Ventra et al. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently
Linn et al. Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations
Schuller et al. Neuromorphic computing–from materials research to systems architecture roundtable
Roget et al. Grover search as a naturally occurring phenomenon
Cao et al. Memristor-based neural networks: a bridge from device to artificial intelligence
CN111524891B (zh) 一种铁电柔性逻辑运算器件及其制造方法
Hassan et al. Voltage-driven building block for hardware belief networks
Dong et al. Memristor-based hierarchical attention network for multimodal affective computing in mental health monitoring
Malach et al. A provably correct algorithm for deep learning that actually works
Zou et al. Spiking hyperdimensional network: Neuromorphic models integrated with memory-inspired framework
Wang et al. Integrated design of actuation and mechanism of dielectric elastomers using topology optimization based on fat Bezier curves
Lacoste et al. Uncertainty in multitask transfer learning
Nowicki et al. Flexible kernel memory
Yan et al. Celia: A device and architecture co-design framework for stt-mram-based deep learning acceleration
Zhu et al. CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review
Bennett et al. Semi-supervised learning and inference in domain-wall magnetic tunnel junction (DW-MTJ) neural networks
Chakraborty et al. Input-aware flow-based computing on memristor crossbars with applications to edge detection
Xu et al. Reconfigurable Neuromorphic Computing: Materials, Devices, and Integration
Krause et al. Approximation properties of DBNs with binary hidden units and real-valued visible units
Li et al. Neuro-inspired computing with emerging memories: where device physics meets learning algorithms
Slavova et al. Mathematical analysis of memristor CNN

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant