CN111518863A - 一种测定沉积物全程硝化反应速率及对氨氮去除率的方法 - Google Patents

一种测定沉积物全程硝化反应速率及对氨氮去除率的方法 Download PDF

Info

Publication number
CN111518863A
CN111518863A CN202010249637.XA CN202010249637A CN111518863A CN 111518863 A CN111518863 A CN 111518863A CN 202010249637 A CN202010249637 A CN 202010249637A CN 111518863 A CN111518863 A CN 111518863A
Authority
CN
China
Prior art keywords
rate
whole
sediment
ammonia nitrogen
course
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010249637.XA
Other languages
English (en)
Inventor
王衫允
祝贵兵
王晓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN202010249637.XA priority Critical patent/CN111518863A/zh
Publication of CN111518863A publication Critical patent/CN111518863A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/10Analysis or design of chemical reactions, syntheses or processes

Abstract

本发明公开了一种测定水体沉积物全程硝化反应速率及其对氨氮去除贡献率的方法,属湿地氮污染控制领域。其原理是利用氯酸盐对亚硝酸盐氧化酶和辛炔对氨氧化细菌和古菌的选择性抑制,测定沉积物中全程硝化微生物的反应速率,并计算其对氨氮去除的贡献率。主要步骤包括:(1)待测沉积物的抑制剂处理及培养:①不添加,②添加氯酸钾,③添加氯酸钾和辛炔;(2)测培养过程中沉积物NO3 和NO2 浓度;(3)与培养时间线性回归得全程硝化反应速率;(4)计算全程硝化对氨氧化去除的贡献率。该方法能模拟原位温度、营养元素、含水率等,可精确、高效地测定自然界多种水体沉积物中全程硝化反应速率及其对氨氮去除率的研究,推动全程硝化研究的发展。

Description

一种测定沉积物全程硝化反应速率及对氨氮去除率的方法
技术领域
本发明涉及湿地氮污染控制领域,新型氮循环微生物全程硝化细菌规避了硝化过程限速步骤-氨氧化过程,可实现水生态系统中的氨氮污染物的快速去除,并且避免有毒中间产物亚硝酸盐的产生;同时由于其较传统两步法而言反应电势更低,因此更加广泛的作用于自然环境中氨氮去除,为水环境水生态中氨氮治理提供新思路。
背景技术
氮(N)循环主要由微生物驱动,微生物通过一系列氧化还原反应转化为不同的氮化合物。以不同氧化还原梯度为特征的两相之间的界面往往是生物地球化学N循环的热区。硝化作用是氮循环的限速步骤,是微生物将氨连续氧化成硝酸盐的生物学过程,是生物地球化学氮循环和生物废水处理工艺中的关键过程,也应用在农业的许多方面而发挥重要作用。自19世纪90年代发现以来,一直认为硝化作用由两类不同的化能自养型细菌:氨氧化微生物(氨氧化细菌(ammonium-oxidizing bacteria,AOB)和氨氧化古菌(ammonium-oxidizing Archaea,AOA))和亚硝酸盐氧化细菌(nitrite-oxidizing bacteria,NOB))完成的两步氮循环过程。尽管研究表明氨氧化古菌(ammonium-oxidizing archaea,AOA)在土壤和水生系统的硝化过程中发挥着重要作用,但这并没有改变对硝化作用的传统认识,即氨是由微生物经两步氮循环过程最终被氧化为硝酸盐。随后,厌氧氨氧化(anammox)的发现表明在缺氧和厌氧条件下氨氧化过程的真实存在,其与传统的氨氧化过程完全不同。新的氮循环的过程的不断发现表明,我们对总氮循环的认知还不进完整。Costa等认为,从微生物能量代谢的角度分析,理论上存在完全硝化的细菌,但并没能获得直接的证据。最近,有研究表明,Nitrospira属中的微生物可以独立完成氨氧化成硝酸盐的氮代谢过程,并将这类微生物定义为全程硝化微生物。这一过程的发现使我们对硝化作用有了一个全新的认识和理解。近年来,在人造水生和耕作土壤生态系统中已广泛检测到全程硝化细菌,但全程硝化细菌对自然生态系统中氨氧化过程和总氮循环的贡献仍然不清楚。
发明内容
本发明的目的就是为了解决上述问题,提出了一种双抑制剂法测定沉积物中全程硝化微生物反应速率并计算其对氨氧化贡献率的方法,即利用氯酸盐对亚硝酸盐氧化酶和辛炔对氨氧化细菌和氨氧化古菌的选择性抑制作用,通过在沉积物中添加抑制剂处理培养后,产物
Figure BDA0002435015730000024
Figure BDA0002435015730000023
的变化,测定水/沉积物体系全程硝化反应速率,并通过进一步计算获得全程硝化对氨氮去除贡献率。
本发明通过以下样品处理和数据分析方案来实现:
(1)双抑制剂培养
称取等质量的新鲜沉积物样品到若干60毫升血清瓶中,加盖胶塞和铝盖,密封避光培养。随机挑选血清瓶做三种不同抑制剂处理。处理1-空白组,添加1.5毫升无菌水到每一个血清瓶中;处理2-氯酸盐抑制剂处理组,添加1.5ml 0.13mol/L的氯酸钾到血清瓶中;处理3-氯酸盐+辛炔双抑制剂处理组,添加1.5ml 0.13mol/L的氯酸钾和2kPa的辛炔到血清瓶。每个处理均做3组平行。所有血清瓶放置于恒温摇床在转速150rpm和原位温度进行培养,于培养开始后的第0天、1天、2天和4天分别陆续停止培养。添加20ml 2mol/L的KCl到相应培养时间的血清瓶中,于150rpm摇床震荡15min,将沉积物中的亚硝酸盐和硝酸盐提取到液相中,再经过离心过滤处理,收集上清液待测。
(2)产物分析
全程硝化速率通过
Figure BDA0002435015730000025
(处理1)和
Figure BDA0002435015730000026
(处理2)的累积速率差来计算得出,其中,
Figure BDA0002435015730000027
的积累主要因为亚硝酸氧化过程受抑制;关于AOA和AOB速率,主要是基于处理2中
Figure BDA0002435015730000028
由AOA和AOB而产生,而没有NOB消耗;处理3中AOB和NOB均被抑制,NO2-仅由AOA反应得出。AOA速率是通过计算
Figure BDA0002435015730000029
(处理2)的累积速率得出;AOA加AOB速率是通过
Figure BDA00024350157300000211
在处理2和处理3中的积累速率差来得出;AOB速率同时AOA加AOB速率减去AOA速率得出。
各培养瓶中
Figure BDA00024350157300000210
浓度计算方法,如公式1:
Figure BDA0002435015730000021
各培养瓶中
Figure BDA00024350157300000212
浓度计算方法,如公式2:
Figure BDA0002435015730000022
公式1和公式2中,
Figure BDA0002435015730000031
Figure BDA00024350157300000332
浓度,
Figure BDA0002435015730000032
Figure BDA00024350157300000333
浓度,
Figure BDA0002435015730000033
指亚硝酸盐中氮元素的浓度,
Figure BDA0002435015730000034
指硝酸盐中氮元素的浓度,VKCl指浸提沉积物所添加的KCl溶液体积,
Figure BDA0002435015730000035
指在处理1和处理2的血清瓶沉积物中添加的无菌水或者KClO3溶液体积,Msediment指各血清瓶中新鲜沉积物的质量。在本发明中,VKCl优选设置为20mL,
Figure BDA0002435015730000036
优选设置为1.5mL,Msoil优选设置为5g。
基于前文的三种处理,全程硝化、氨氧化古菌和氨氧化细菌这三种硝化微生物在水体沉积物中的反应速率分别通过
Figure BDA00024350157300000319
Figure BDA00024350157300000320
浓度积累率获得。在本发明中,线性回归系数(R2)要求大于0.80。
(3)回归计算
在处理3中,由于AOB和NOB的活性均被抑制,
Figure BDA00024350157300000322
仅由AOA产生,如公式3。因此,AOA速率可由
Figure BDA00024350157300000321
随时间的积累率而得出,如公式4所示。
Figure BDA0002435015730000037
Figure BDA0002435015730000038
本发明中,
Figure BDA0002435015730000039
Figure BDA00024350157300000323
在处理3中的积累量,
Figure BDA00024350157300000310
代表
Figure BDA00024350157300000324
的积累速率,KAOA代表AOA的反应速率,
Figure BDA00024350157300000311
代表
Figure BDA00024350157300000325
的积累量。
在处理2中,由于NOB的活性被抑制,由AOA和AOB产生的
Figure BDA00024350157300000327
不会再被NOB代谢降解掉,如公式5。因此,
Figure BDA00024350157300000326
的积累率可表示AOA和AOB的反应速率之和,如公式6。
Figure BDA00024350157300000312
Figure BDA00024350157300000313
根据公式4和公式6,可以得出AOB的反应速率,如公式7。
Figure BDA00024350157300000314
本发明中,
Figure BDA00024350157300000315
Figure BDA00024350157300000328
在处理2中的积累量,
Figure BDA00024350157300000316
代表
Figure BDA00024350157300000329
的积累速率,KAOB代表AOB的反应速率。
在处理1中,不添加抑制剂,
Figure BDA00024350157300000330
由AOA和AOB共同产生的,然后作为底物,被NOB继续代谢降解。因此,
Figure BDA00024350157300000331
的积累量是产生量与消耗量的差值,如公式8。
Figure BDA00024350157300000317
与培养时间进行线性回归,可得处理1中
Figure BDA00024350157300000334
的积累速率,如公式9。
Figure BDA00024350157300000318
根据公式6和公式9,可以得出NOB的反应速率,如公式10。
Figure BDA0002435015730000041
本发明中,
Figure BDA0002435015730000042
Figure BDA0002435015730000049
在处理1中的积累量,
Figure BDA0002435015730000043
代表
Figure BDA00024350157300000410
的积累速率,KNOB代表NOB的反应速率。
在处理I中,
Figure BDA00024350157300000411
的来源有两个主要部分,一个是
Figure BDA00024350157300000412
经过NOB的氧化生成,另一部分来自于
Figure BDA00024350157300000413
经过comammox的氧化,由此可得
Figure BDA00024350157300000414
的积累率,如公式11。
Figure BDA0002435015730000044
与培养时间进行线性回归,可得处理I中
Figure BDA00024350157300000415
的积累速率,如公式12。
Figure BDA0002435015730000045
根据公式9和公式12,可以得出comammox的反应速率,如公式13。
Figure BDA0002435015730000046
本发明中,
Figure BDA0002435015730000047
Figure BDA00024350157300000416
在处理1中的积累量,
Figure BDA0002435015730000048
代表
Figure BDA00024350157300000417
的积累速率,Kcomammox代表comammox的反应速率。

Claims (11)

1.一种测定水体沉积物全程硝化反应速率及其对氨氮去除率的方法,包括步骤如下:
(1)双抑制剂培养:将新鲜沉积物样品放置于血清瓶中,加盖胶塞和铝盖,密封避光,对血清瓶分别做不同抑制剂处理,并于原位温度和DO条件培养;
(2)产物分析:提取并测定不同培养时间下,沉积物样品中产物NO3 -和NO2 -的浓度,并计算相应的积累速率;
(3)回归计算:通过三个不同处理之间产物NO3 -和NO2 -的累积速率变化,计算沉积物中全程硝化反应速率及对氨氮去除贡献率。
2.根据权利要求1所述,本方法优选60毫升血清瓶用于双抑制剂培养。
3.根据权利要求1所述,本方法优选添加1.5毫升无菌水到每一个血清瓶,作为处理1-空白组。
4.根据权利要求1所述,本方法优选添加1.5ml 0.13mol/L的氯酸钾到血清瓶中,作为处理2-氯酸盐抑制剂处理组。
5.根据权利要求1所述,本方法优选添加1.5ml 0.13mol/L的氯酸钾和2k Pa的辛炔到血清瓶,作为处理3-氯酸盐+辛炔双抑制剂处理组。
6.根据权利要求1所述,本方法特征要求每个处理均做3组平行。
7.根据权利要求1所述,本方法优选血清瓶放置于恒温摇床在转速150rpm和原位温度进行培养,并于培养开始后的第0天、1天、2天和4天分别陆续停止培养。
8.根据权利要求1所述,本方法优选添加20ml 2mol/L的KCl到相应培养时间的血清瓶中,于150rpm摇床震荡15min,将沉积物中的亚硝酸盐和硝酸盐提取到液相中,再经过离心过滤处理,收集上清液待测。
9.根据权利要求1所述,要求通过NO3 -(处理1)和NO2 -(处理2)的累积速率差来计算得出全程硝化速率。
10.根据权利要求1所述,要求本方法中,线性回归系数(R2)要求大于0.80。
11.根据权利要求1所述,根据AOB和AOA的代谢速率,计算全程硝化对氨氮的去除贡献率。
CN202010249637.XA 2020-04-01 2020-04-01 一种测定沉积物全程硝化反应速率及对氨氮去除率的方法 Pending CN111518863A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010249637.XA CN111518863A (zh) 2020-04-01 2020-04-01 一种测定沉积物全程硝化反应速率及对氨氮去除率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010249637.XA CN111518863A (zh) 2020-04-01 2020-04-01 一种测定沉积物全程硝化反应速率及对氨氮去除率的方法

Publications (1)

Publication Number Publication Date
CN111518863A true CN111518863A (zh) 2020-08-11

Family

ID=71902564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010249637.XA Pending CN111518863A (zh) 2020-04-01 2020-04-01 一种测定沉积物全程硝化反应速率及对氨氮去除率的方法

Country Status (1)

Country Link
CN (1) CN111518863A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116769671A (zh) * 2023-07-19 2023-09-19 华北电力大学 一种富集氨氧化微生物的方法及富集氨氧化微生物制品
CN116769671B (zh) * 2023-07-19 2024-05-10 华北电力大学 一种富集氨氧化微生物的方法及富集氨氧化微生物制品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003259A1 (en) * 1993-07-23 1995-02-02 Idaho Research Foundation, Inc. Biological system for degrading nitroaromatics in water and soils
CN108337951A (zh) * 2018-03-06 2018-07-31 云南农业大学 一种减少坡耕地水土及土壤氮素流失量的方法
CN108985005A (zh) * 2018-07-03 2018-12-11 中国科学院南海海洋研究所 一种基于数学模型同时测定氨氧化速率和亚硝酸盐氧化速率的方法
CN109946368A (zh) * 2019-04-22 2019-06-28 中国科学院地理科学与资源研究所 一种反硝化培养装置及反硝化速率测定的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003259A1 (en) * 1993-07-23 1995-02-02 Idaho Research Foundation, Inc. Biological system for degrading nitroaromatics in water and soils
CN108337951A (zh) * 2018-03-06 2018-07-31 云南农业大学 一种减少坡耕地水土及土壤氮素流失量的方法
CN108985005A (zh) * 2018-07-03 2018-12-11 中国科学院南海海洋研究所 一种基于数学模型同时测定氨氧化速率和亚硝酸盐氧化速率的方法
CN109946368A (zh) * 2019-04-22 2019-06-28 中国科学院地理科学与资源研究所 一种反硝化培养装置及反硝化速率测定的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王若冰等: "海河流域典型重污染河流滏阳河沉积物氨化和硝化速率研究", 《环境科学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116769671A (zh) * 2023-07-19 2023-09-19 华北电力大学 一种富集氨氧化微生物的方法及富集氨氧化微生物制品
CN116769671B (zh) * 2023-07-19 2024-05-10 华北电力大学 一种富集氨氧化微生物的方法及富集氨氧化微生物制品

Similar Documents

Publication Publication Date Title
Li et al. Nitrogen removal and N2O accumulation during hydrogenotrophic denitrification: influence of environmental factors and microbial community characteristics
Zhang et al. Microbial competition among anammox bacteria in nitrite-limited bioreactors
Li et al. Long-term partial nitrification in an intermittently aerated sequencing batch reactor (SBR) treating ammonium-rich wastewater under controlled oxygen-limited conditions
Wang et al. Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River estuary
Li et al. Adaptation of nitrifying community in activated sludge to free ammonia inhibition and inactivation
Zhang et al. Feasibility of in situ enriching anammox bacteria in a sequencing batch biofilm reactor (SBBR) for enhancing nitrogen removal of real domestic wastewater
Zhang et al. Responses of biofilm characteristics to variations in temperature and NH4+-N loading in a moving-bed biofilm reactor treating micro-polluted raw water
Zhang et al. Start-up and bacterial communities of single-stage nitrogen removal using anammox and partial nitritation (SNAP) for treatment of high strength ammonia wastewater
Yang et al. Changes in the nitrogen removal performance and the properties of granular sludge in an Anammox system under oxytetracycline (OTC) stress
Feng et al. A continuous plug-flow anaerobic/aerobic/anoxic/aerobic (AOAO) process treating low COD/TIN domestic sewage: realization of partial nitrification and extremely advanced nitrogen removal
Garcia-de-Lomas et al. Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms
Wang et al. Nitrite accumulation in comammox-dominated nitrification-denitrification reactors: effects of DO concentration and hydroxylamine addition
Zekker et al. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor
Peng et al. The roles of cyanobacterial bloom in nitrogen removal
Song et al. Development and characterization of the partial nitrification aerobic granules in a sequencing batch airlift reactor
Wang et al. Anaerobic ammonium oxidation in constructed wetlands with bio-contact oxidation as pretreatment
Bian et al. Achieving nitritation in a continuous moving bed biofilm reactor at different temperatures through ratio control
Lu et al. Feasibility of achieving advanced nitrogen removal via endogenous denitratation/anammox
Wen et al. Effects of dissolved oxygen on microbial community of single-stage autotrophic nitrogen removal system treating simulating mature landfill leachate
Xu et al. A novel process of salt tolerance partial denitrification and anammox (ST-PDA) for treating saline wastewater
Yao et al. Stoichiometry and kinetics of the anaerobic ammonium oxidation (Anammox) with trace hydrazine addition
Wang et al. N2O micro-profiles in biofilm from a one-stage autotrophic nitrogen removal system by microelectrode
Liu et al. Enhancing biotreatment of incineration leachate by applying an electric potential in a partial nitritation-Anammox system
Li et al. Determination of the response characteristics of anaerobic ammonium oxidation bioreactor disturbed by temperature change with the spectral fingerprint
Yu et al. Natural continuous influent nitrifier immigration effects on nitrification and the microbial community of activated sludge systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200811