CN111517311B - Preparation method of large-size biomass graphene and application of large-size biomass graphene in energy storage device - Google Patents
Preparation method of large-size biomass graphene and application of large-size biomass graphene in energy storage device Download PDFInfo
- Publication number
- CN111517311B CN111517311B CN202010389417.7A CN202010389417A CN111517311B CN 111517311 B CN111517311 B CN 111517311B CN 202010389417 A CN202010389417 A CN 202010389417A CN 111517311 B CN111517311 B CN 111517311B
- Authority
- CN
- China
- Prior art keywords
- graphene
- preparation
- biomass
- biomass graphene
- size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 43
- 239000002028 Biomass Substances 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 238000004146 energy storage Methods 0.000 title abstract description 13
- 239000000126 substance Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 239000003960 organic solvent Substances 0.000 claims abstract description 11
- 238000003763 carbonization Methods 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims description 18
- 238000009210 therapy by ultrasound Methods 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 12
- 238000002791 soaking Methods 0.000 claims description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 8
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 claims description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 238000004321 preservation Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 229960002903 benzyl benzoate Drugs 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 239000002002 slurry Substances 0.000 abstract description 3
- 238000010923 batch production Methods 0.000 abstract description 2
- 239000006258 conductive agent Substances 0.000 description 7
- 239000007772 electrode material Substances 0.000 description 7
- 239000010902 straw Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 241000209072 Sorghum Species 0.000 description 3
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
- C01B32/19—Preparation by exfoliation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/20—Graphene characterized by its properties
- C01B2204/32—Size or surface area
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The invention discloses a preparation method of large-size biomass graphene. The loose and porous biomass graphene with the sheet diameter of more than 100 mu m can be prepared by using natural biomass as a raw material and utilizing a special micro-cavity structure in the raw material through mechanical crushing, chemical stripping, carbonization and organic solvent ultrasonic processes. Compared with the prior art, the preparation method of the graphene takes natural biomass as a raw material, large-size loose and porous biomass graphene is prepared, a certain amount of organic solvent is reserved in the preparation process, and graphene slurry is obtained, so that the preparation method of the graphene is beneficial to application of the graphene slurry in an energy storage device. The preparation method of the graphene adopted by the invention has the advantages of simple process, easy operation, low equipment requirement, low production cost and the like, can realize large-scale batch production, and has good application prospect.
Description
Technical Field
The invention belongs to the technical field of biomass graphene, and relates to a method for preparing large-size graphene by using a natural biomass material.
Background
(1) With the exhaustion of fossil energy and the serious problem of environmental pollution, the development and utilization of renewable clean energy sources are increased. The solar energy, the wind energy, the ocean energy and other new energy resources are rich in reserves, clean and renewable, but the new energy resources have the natural characteristics of changeability and instability, so that the power generation output power is not stable and is not easy to adjust, and great challenges are brought to the operation of a power grid. The application of energy storage devices is particularly important in order to enable the intermittent and diversified new energy products to be integrated into the power grid. In addition, with the rapid development of new energy industries represented by electric vehicles and the increasing popularization of portable electronic products, unprecedented opportunities are provided for the wide application of energy storage devices, and higher requirements are also put forward on the performance of the energy storage devices. Lithium ion batteries and supercapacitors are two of the most mature energy storage devices currently commercialized. Common conductive agents of the energy storage device are carbon black, carbon nanofiber, carbon nanotube and the like; carbon-based materials such as activated carbon are commonly used as electrode materials.
(2) Graphene is a carbon atom sp2Two-dimensional carbon-based material composed of six-membered rings formed by hybridization. Due to the excellent conductivity, the ultra-fast two-dimensional plane transfer characteristic and the very small stacking density, the effect of a large amount of traditional conductive agents can be achieved by only adding a very small amount of graphene, so that the proportion of the conductive agents is reduced, and the proportion of electrode materials and the energy density of devices are improved. In addition, due to the ultra-large specific surface area, high chemical stability and high electrical conductivity, the graphene has great application possibility in the electrode material of the supercapacitor. Therefore, the graphene is expected to be applied to energy storage devices as a conductive agent and an electrode material.
(3) Currently, the most studied graphene preparation methods include a physical stripping method, a chemical vapor deposition method, an oxidation-reduction method, and the like. The graphene produced by the physical stripping method has few defects and high purity, but the production is time-consuming, the yield is low, and the large-scale production difficulty is high; the graphene produced by the chemical vapor deposition method has high quality, but the production condition is harsh and the production cost is high; the oxidation-reduction method can produce graphene on a large scale, but the produced graphene has many defects, poor quality and many influencing factors in the production process.
(4) Some natural biomass materials, such as rape straw cores, sorghum straw cores, light soft wood chips and the like, have special micro-cavity structures inside. The biomass is used as a raw material, and after an extremely thin biological tissue is chemically stripped, carbonization treatment is carried out, so that the large-size biomass graphene material with a micro-cavity structure can be prepared. The invention provides a method for preparing graphene by using a natural biomass material under a mild condition, the preparation method is simple and easy to operate, the production cost is low, and the prepared biomass graphene has excellent performance and can be widely applied to energy storage devices.
Disclosure of Invention
The invention aims to provide a method for preparing a graphene hydrogen storage material by using a natural biomass material. The loose and porous graphene with the sheet diameter larger than 100 mu m is prepared by utilizing a special micro-cavity structure in the raw materials, and is beneficial to stacking of electrode materials in an energy storage device and ion transportation after densification. By adjusting the process parameters, the graphene slurry containing a certain amount of organic solvent can be prepared, which is beneficial to the dispersibility and stability of the graphene conductive agent. The preparation method is simple to operate and mild in process conditions, and can be used for preparing the conductive agent and the electrode material applied to the energy storage device.
The preparation method of the large-size biomass graphene comprises the following steps:
(1) cleaning natural biomass raw materials, mechanically crushing the raw materials into particles, and controlling the particle size to be in the range of 20 meshes to 60 meshes;
(2) adding 1-50 g of crushed raw material particles into the chemical stripping solution A, soaking for 1h, performing ultrasonic treatment at room temperature for 1-24 h, filtering out solid substances, and washing the filtered substances with clear water;
(3) putting the cleaned filter into a tube furnace for carbonization, controlling the temperature rise rate of the tube furnace to be 5-20 ℃/min, raising the temperature to 200-650 ℃, and preserving the temperature for 1-10 h to obtain a carbonized product;
(4) adding 1-30 g of carbonized product into an organic solvent B, soaking for 0.5h, performing ultrasonic treatment at room temperature for 1-12 h, then putting the ultrasonic solid-liquid mixture into an oven, performing heat preservation at 60-140 ℃ for 0.5-10 h, and controlling the solid content to be 50-95% to prepare the biomass graphene with the sheet diameter larger than 100 microns.
The chemical stripping solution A in the step (2) is one or more of concentrated nitric acid, concentrated sulfuric acid, concentrated hydrochloric acid, permanganic acid, perchloric acid, sodium hydroxide and potassium hydroxide; the organic solvent B in the step (4) is one or more of N, N-Dimethylacetamide (DMAC), N-Dimethylformamide (DMF), dimethyl sulfoxide (DMSO), benzyl benzoate (BNBZ), N-methyl-2-pyrrolidone (NMP), gamma-butyrolactone (GBL), isopropanol, N-propanol, acetonitrile, methanol and ethanol.
Compared with the prior art, the method has the following beneficial effects:
(1) the preparation method provided by the invention can prepare the large-size biomass graphene with a special micro-cavity structure and the sheet diameter of more than 100 mu m, and the large-size biomass graphene can be used as a conductive agent and an electrode material of an energy storage device;
(2) the method for preparing the graphene has the advantages of cheap and easily-obtained raw materials, simple and feasible operation, low equipment requirement and low production cost, and is suitable for large-scale batch production.
Drawings
Fig. 1 is a scanning electron microscope image of a large-size biomass graphene prepared in example 1 of the present invention.
Detailed Description
The invention is further illustrated by the following examples, which are intended only for a better understanding of the contents of the invention and do not limit the scope of the invention.
Example 1:
(1) cleaning and mechanically crushing the light cork dust into particles with the particle size of 40 meshes;
(2) 50g of crushed raw material particles are added into a chemical stripping solution A prepared from 50mL of concentrated nitric acid and 50mL of concentrated sulfuric acid to be soaked for 1h, and then ultrasonic treatment is carried out at room temperature for 24h, solid matters are filtered out, and the filtered matters are washed by clear water;
(3) putting the cleaned filter into a tubular furnace for carbonization, controlling the temperature rise rate of the tubular furnace at 10 ℃/min, raising the temperature to 600 ℃, and preserving the temperature for 4 hours to obtain a carbonized product;
(4) and adding 30g of carbonized product into an organic solvent B prepared from 50mL of DMSO and 10mL of isopropanol, soaking for 0.5h, performing ultrasonic treatment at room temperature for 6h, putting the ultrasonic solid-liquid mixture into an oven, performing heat preservation at 80 ℃ for 4h, and controlling the solid content within the range of 75% to obtain the biomass graphene with the sheet diameter larger than 100 microns.
Example 2:
(1) cleaning sorghum straw cores, and then mechanically crushing the sorghum straw cores into particles with the particle size of 20 meshes;
(2) adding 50g of crushed raw material particles into a chemical stripping solution A prepared from 20mL of concentrated hydrochloric acid and 80mL of concentrated nitric acid, soaking for 1h, performing ultrasonic treatment at room temperature for 8h, filtering out solid substances, and washing the filtered substances with clear water;
(3) putting the cleaned filter into a tubular furnace for carbonization, controlling the temperature rise rate of the tubular furnace at 5 ℃/min, raising the temperature to 450 ℃, and preserving the temperature for 6 hours to obtain a carbonized product;
(4) and adding 30g of carbonized product into an organic solvent B prepared from 40mL of DMF and 20mL of n-propanol, soaking for 0.5h, performing ultrasonic treatment at room temperature for 8h, putting the solid-liquid mixture after ultrasonic treatment into an oven, performing heat preservation at 60 ℃ for 6h, and controlling the solid content within the range of 80% to obtain the biomass graphene with the sheet diameter of more than 100 microns.
Example 3:
(1) cleaning and mechanically crushing the corn straw cores into particles with the particle size of 30 meshes;
(2) 50g of crushed raw material particles are added into a chemical stripping solution A prepared from 50mL of concentrated hydrochloric acid and 50mL of concentrated sulfuric acid to be soaked for 1h, and then ultrasonic treatment is carried out at room temperature for 20h, solid matters are filtered out, and the filtered matters are washed by clean water;
(3) putting the cleaned filter into a tubular furnace for carbonization, controlling the temperature rise rate of the tubular furnace at 10 ℃/min, raising the temperature to 650 ℃, and preserving the temperature for 8 hours to obtain a carbonized product;
(4) and adding 30g of carbonized product into an organic solvent B prepared from 30mL of BNBZ and 30mL of NMP, soaking for 0.5h, performing ultrasonic treatment at room temperature for 10h, putting the solid-liquid mixture after ultrasonic treatment into an oven, performing heat preservation at 120 ℃ for 6h, and controlling the solid content within the range of 85% to prepare the biomass graphene with the sheet diameter of more than 100 microns.
Example 4:
(1) cleaning and mechanically crushing the rape straw cores into particles with the particle size of 60 meshes;
(2) adding 50g of crushed raw material particles into a chemical stripping solution A prepared from 40mL of concentrated sulfuric acid and 60mL of permanganic acid, soaking for 1h, performing ultrasonic treatment at room temperature for 10h, filtering out solid substances, and washing the filtered substances with clear water;
(3) putting the cleaned filter into a tubular furnace for carbonization, controlling the temperature rise rate of the tubular furnace at 5 ℃/min, raising the temperature to 500 ℃, and preserving the temperature for 5 hours to obtain a carbonized product;
(4) and adding 30g of carbonized product into an organic solvent B prepared from 20mL of GBL and 40mL of isopropanol, soaking for 0.5h, performing ultrasonic treatment at room temperature for 12h, putting the ultrasonic solid-liquid mixture into an oven, performing heat preservation at 80 ℃ for 4h, and controlling the solid content within a range of 90% to obtain the biomass graphene with the sheet diameter of more than 100 microns.
Claims (2)
1. A preparation method of large-size biomass graphene is characterized by comprising the following steps:
(1) cleaning natural biomass raw materials, mechanically crushing the raw materials into particles, and controlling the particle size to be in the range of 20 meshes to 60 meshes;
(2) adding 1-50 g of crushed raw material particles into the chemical stripping solution A, soaking for 1h, performing ultrasonic treatment at room temperature for 1-24 h, filtering out solid substances, and washing the filtered substances with clear water;
(3) putting the cleaned filter into a tube furnace for carbonization, controlling the temperature rise rate of the tube furnace to be 5-20 ℃/min, raising the temperature to 200-650 ℃, and preserving the temperature for 1-10 h to obtain a carbonized product;
(4) adding 1-30 g of carbonized product into an organic solvent B, soaking for 0.5h, performing ultrasonic treatment at room temperature for 1-12 h, then putting the ultrasonic solid-liquid mixture into an oven, performing heat preservation at 60-140 ℃ for 0.5-10 h, and controlling the solid content to be 50-95% to prepare biomass graphene with the sheet diameter larger than 100 microns;
the chemical stripping solution A is one or more of concentrated nitric acid, concentrated sulfuric acid, concentrated hydrochloric acid, permanganic acid and perchloric acid.
2. The method for preparing biomass graphene with large size according to claim 1, wherein the organic solvent B in the step (4) is one or more of N, N-dimethylacetamide, N-dimethylformamide, dimethyl sulfoxide, benzyl benzoate, N-methyl-2-pyrrolidone, gamma-butyrolactone, isopropanol, N-propanol, acetonitrile, methanol and ethanol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010389417.7A CN111517311B (en) | 2020-05-10 | 2020-05-10 | Preparation method of large-size biomass graphene and application of large-size biomass graphene in energy storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010389417.7A CN111517311B (en) | 2020-05-10 | 2020-05-10 | Preparation method of large-size biomass graphene and application of large-size biomass graphene in energy storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111517311A CN111517311A (en) | 2020-08-11 |
CN111517311B true CN111517311B (en) | 2021-12-07 |
Family
ID=71907384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010389417.7A Active CN111517311B (en) | 2020-05-10 | 2020-05-10 | Preparation method of large-size biomass graphene and application of large-size biomass graphene in energy storage device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111517311B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114835108B (en) * | 2022-05-07 | 2024-08-30 | 浙江大学杭州国际科创中心 | Natural biomass-derived graphene with controllable number of layers and preparation method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104724696A (en) * | 2013-12-24 | 2015-06-24 | 中国科学院宁波材料技术与工程研究所 | Method for preparing graphene by taking biomass as raw material |
CN105060289A (en) * | 2015-09-21 | 2015-11-18 | 中南大学 | Method for preparing fewer-layer graphene on basis of biomass waste |
CN105417534A (en) * | 2015-12-28 | 2016-03-23 | 成都新柯力化工科技有限公司 | Method for preparation of biomass graphene material by screw machine |
TW201615540A (en) * | 2014-10-30 | 2016-05-01 | 中國鋼鐵股份有限公司 | Method of producing carbon material having graphene and application thereof |
CN106744835A (en) * | 2016-11-30 | 2017-05-31 | 温县兴发生物科技有限公司 | A kind of method that utilization maize straw prepares Graphene |
CN106833083A (en) * | 2016-12-21 | 2017-06-13 | 成都新柯力化工科技有限公司 | Compound microplate of a kind of Graphene for electrically-conducting paint and preparation method thereof |
MX2015017398A (en) * | 2015-12-16 | 2017-06-15 | Centro De Investig En Quim Aplicada | Process for producing graphene nanoplatelets from graphite through liquid phase mixing aided by green exfoliants. |
CN107128905A (en) * | 2017-05-17 | 2017-09-05 | 宁波诺丁汉新材料研究院有限公司 | A kind of method for preparing graphene with biomass derivatives based on mechanochemical reaction |
CN107128893A (en) * | 2017-03-08 | 2017-09-05 | 北京化工大学常州先进材料研究院 | A kind of utilization biomass efficient prepares the method and its application of porous nitrogen-doped carbon nanometer sheet |
CN110171818A (en) * | 2019-06-05 | 2019-08-27 | 平凉市佳禾农产品加工有限责任公司 | The extracting method of graphene in a kind of corn stover |
-
2020
- 2020-05-10 CN CN202010389417.7A patent/CN111517311B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104724696A (en) * | 2013-12-24 | 2015-06-24 | 中国科学院宁波材料技术与工程研究所 | Method for preparing graphene by taking biomass as raw material |
TW201615540A (en) * | 2014-10-30 | 2016-05-01 | 中國鋼鐵股份有限公司 | Method of producing carbon material having graphene and application thereof |
CN105060289A (en) * | 2015-09-21 | 2015-11-18 | 中南大学 | Method for preparing fewer-layer graphene on basis of biomass waste |
MX2015017398A (en) * | 2015-12-16 | 2017-06-15 | Centro De Investig En Quim Aplicada | Process for producing graphene nanoplatelets from graphite through liquid phase mixing aided by green exfoliants. |
CN105417534A (en) * | 2015-12-28 | 2016-03-23 | 成都新柯力化工科技有限公司 | Method for preparation of biomass graphene material by screw machine |
CN106744835A (en) * | 2016-11-30 | 2017-05-31 | 温县兴发生物科技有限公司 | A kind of method that utilization maize straw prepares Graphene |
CN106833083A (en) * | 2016-12-21 | 2017-06-13 | 成都新柯力化工科技有限公司 | Compound microplate of a kind of Graphene for electrically-conducting paint and preparation method thereof |
CN107128893A (en) * | 2017-03-08 | 2017-09-05 | 北京化工大学常州先进材料研究院 | A kind of utilization biomass efficient prepares the method and its application of porous nitrogen-doped carbon nanometer sheet |
CN107128905A (en) * | 2017-05-17 | 2017-09-05 | 宁波诺丁汉新材料研究院有限公司 | A kind of method for preparing graphene with biomass derivatives based on mechanochemical reaction |
CN110171818A (en) * | 2019-06-05 | 2019-08-27 | 平凉市佳禾农产品加工有限责任公司 | The extracting method of graphene in a kind of corn stover |
Non-Patent Citations (8)
Title |
---|
Biomass derived hard carbon used as a high performance anode material for sodium ion batteries;Hong, KL et al;《 JOURNAL OF MATERIALS CHEMISTRY A》;20140604;全文 * |
Chemically Exfoliating Biomass into a Graphene-like Porous Active Carbon with Rational Pore Structure, Good Conductivity, and Large Surface Area for High-Performance Supercapacitors;Lu, SY et al;《ADVANCED ENERGY MATERIALS》;20180416;全文 * |
From agrowaste to graphene nanosheets: chemistry and synthesis;Debbarma, J et al;《 FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES》;20190603;全文 * |
Structural study on graphene-based particles prepared from old coconut shell by acid-assisted mechanical exfoliation;Baqiya, MA et al;《ADVANCED POWDER TECHNOLOGY 》;20200313;全文 * |
Synthesis of carbon nanostructures by the pyrolysis of wood sawdust in a tubular reactor;Bernd, MGS et al;《 JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T》;20171231;全文 * |
物质玉米秸秆衍生碳材料的制备及其储钠性能;秦德才 等;《材料导报》;20180525;全文 * |
稻谷壳制备石墨烯纳米片及结构表征;程金生 等;《农业工程学报》;20150623;全文 * |
麦秸秆制备石墨烯改性刹车片的工艺及性能研究;万轶 等;《环境科学与技术》;20190415;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111517311A (en) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | A critical review on the application and recent developments of post-modified biochar in supercapacitors | |
CN108483442B (en) | Preparation method of nitrogen-doped carbon electrode material with high mesoporous rate | |
CN108101051B (en) | Preparation method of seaweed-based activated carbon precursor for supercapacitor | |
CN107298441A (en) | A kind of method that use waste biomass material prepares super capacitor material | |
CN108128773B (en) | Method for preparing electrode carbon material for electrochemical capacitor by using peanut shells | |
CN109019598A (en) | A kind of mixing biomass prepares the method and manufactured three-dimensional porous carbon material and its application of the three-dimensional porous carbon material of high specific capacitance | |
Zhang et al. | Biomass-derived carbon for supercapacitors electrodes–a review of recent advances | |
CN111333068A (en) | Preparation method and application of biomass porous carbon material based on nut shells | |
CN112194132B (en) | Preparation method and application of iron-modified carbon microsphere/carbon nanosheet composite porous carbon based on moso bamboo hydrothermal carbonization | |
CN112420402A (en) | Nitrogen-doped biochar, preparation method and application thereof, electrode and preparation method | |
AU2020101283A4 (en) | Method for Manufacturing Straw-Based Activated Carbon Electrode Material for Super Capacitor with Energy Storage Efficiency Enhanced Through Acid Mine Drainage | |
CN108358203B (en) | Preparation method of biomass porous graphene structure activated carbon | |
CN111710529B (en) | Co/Mn-MOF/nitrogen-doped carbon-based composite material and preparation method and application thereof | |
CN108314037A (en) | A kind of porous carbon materials and the preparation method and application thereof with cell cytoskeleton structure | |
CN113716562A (en) | Method for preparing porous carbon material by treating tobacco waste with molten salt | |
CN116803899A (en) | Biomass-derived hard carbon material, preparation method thereof, sodium ion battery negative electrode plate and sodium ion battery | |
CN111517311B (en) | Preparation method of large-size biomass graphene and application of large-size biomass graphene in energy storage device | |
CN113200544B (en) | Preparation method of biomass charcoal-based supercapacitor electrode material | |
CN107154498B (en) | Preparation method and application of microporous carbon structure electrode material prepared from plant material | |
CN106058254B (en) | A kind of preparation method of anode material of lithium-ion battery biological carbon/carbon nanotube | |
CN110890224B (en) | Molybdenum diselenide/carbon nanotube array composite electrode, preparation method and application | |
THUMKAEW et al. | Sugarcane waste-derived activated carbon for lithium-sulfur batteries with enhanced performance by thiourea doping | |
CN116053047A (en) | Method for preparing biomass porous carbon for super capacitor based on cistanche deserticola and application of biomass porous carbon | |
CN112908716B (en) | Preparation method of zinc oxide-graphene composite electrode material with diatomite as carrier | |
CN113044839B (en) | Preparation method and application of hierarchical porous carbon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |