CN111510983A - 一种结合信任度的无线传感器网络簇头选举方法 - Google Patents

一种结合信任度的无线传感器网络簇头选举方法 Download PDF

Info

Publication number
CN111510983A
CN111510983A CN202010197622.3A CN202010197622A CN111510983A CN 111510983 A CN111510983 A CN 111510983A CN 202010197622 A CN202010197622 A CN 202010197622A CN 111510983 A CN111510983 A CN 111510983A
Authority
CN
China
Prior art keywords
sensor node
cluster head
sensor
energy
head election
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010197622.3A
Other languages
English (en)
Other versions
CN111510983B (zh
Inventor
李建坡
李世慈
王文婷
王磊
李美霖
王珺
薛鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
State Grid Shandong Electric Power Company Shouguang Power Supply Co
Electric Power Research Institute of State Grid Shandong Electric Power Co Ltd
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Shandong Electric Power Company Shouguang Power Supply Co, Electric Power Research Institute of State Grid Shandong Electric Power Co Ltd, Northeast Dianli University filed Critical State Grid Shandong Electric Power Company Shouguang Power Supply Co
Priority to CN202010197622.3A priority Critical patent/CN111510983B/zh
Publication of CN111510983A publication Critical patent/CN111510983A/zh
Application granted granted Critical
Publication of CN111510983B publication Critical patent/CN111510983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/46Cluster building
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/10Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on available power or energy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种结合信任度的无线传感器网络簇头选举方法,其特点是,在簇头选举阶段,采用加权方法,加权值可根据具体情况进行调整,同时综合考虑传感器节点信任度、距离参数、能量参数对簇头选举的影响,为簇头选举提供了一种新的参考方式,具有科学合理、适用性强、能量利用高且能够保证无线传感器网络安全可靠、稳定运行。

Description

一种结合信任度的无线传感器网络簇头选举方法
技术领域
本发明属于无线传感器网络技术领域,涉及一种结合信任度的无线传感器网络簇头选举方法。
背景技术
簇头选举是无线传感器网络(WSN)分簇路由协议的核心技术之一,对无线传感器网络长期稳定运行具有十分重要的意义。在无线传感器网络分簇路由协议中,簇头负责管理控制簇内成员节点,进行数据融合以及簇间转发等工作,簇头是否安全可靠是保障传感器网络平稳运行的关键因素之一。
大部分无线传感器网络分簇路由协议为了让资源有限的传感器节点担任簇头节点的任务,延长整个网络生命周期,均采用周期性更新簇头的方法,选取簇头方法的不同决定了最终形成的簇的结构、大小、数量。现有的无线传感器网络簇头选举方法存在的主要问题是:
(1)在簇头选举过程中,考虑影响簇头选举的要素较少,这样会造成选举出来的簇头并不是最优的簇头,最终影响整个网络的性能;
(2)在簇头选举过程中,没有考虑到传感器节点是否可信的问题,如果有些受到攻击的传感器节点被选为簇头,就会影响整个簇传输信息的安全性;
(3)在簇头选举过程中,综合考虑各要素对簇头影响时,通常采用固定的加权方式,对于每个因素的加权项并未考虑到其会随时间变化的问题。
发明内容
本发明的目的是,针对现有的无线传感器网络簇头选举方法考虑要素不合理、以及簇头要素计算加权项选择不合理问题,提出一种科学合理、适用性强、能量利用高且能够保证无线传感器网络安全可靠、稳定运行的结合信任度的无线传感器网络簇头选举方法。
本发明的目的是由以下技术方案来实现的:一种结合信任度的无线传感器网络簇头选举方法,其特征是,它包括的内容有:
在簇头选举阶段,根据传感器节点信任度、距离参数、能量参数综合计算传感器节点的簇头选举代价因子;对于传感器节点j的信任度Tj表示为:
Figure BDA0002418182690000011
其中,Sij为传感器节点i与传感器节点j之间成功交互次数,Fij为传感器节点i与传感器节点j之间失败交互次数,n为簇内传感器节点数目;
对于传感器节点j的距离参数Lj表示为:
Figure BDA0002418182690000021
其中,djtoBS为传感器节点j到基站的距离,dmax为所有传感器节点到基站的最远距离,dij为传感器节点i与传感器节点j的之间的距离,n为簇内传感器节点数目,dijmax为传感器节点i与传感器节点j的之间的最远距离;
对于传感器节点j的能量参数Ej表示为:
Figure BDA0002418182690000022
其中,Ejnow为传感器节点j目前剩余能量,Ejmax为传感器节点j的初始能量,Ejnext为传感器节点下一轮剩余能量,Ejpre为传感器节点上一轮剩余能量,Ejlast为传感器节点在簇头选举阶段最后剩余能量;
对于传感器节点j的簇头选举代价因子表示为:
Mj=a×Tj+b×Lj+c×Ej,j=1,2,…,n (4)
其中,a为传感器节点信任度加权值,b为传感器节点距离参数加权值,c为传感器节点能量参数加权值,三个加权值有以下关系:
a+b+c=1 (5)
其中,a、b、c可根据具体情况进行调整,默认情况下,可取
Figure BDA0002418182690000023
对于代价因子高的传感器节点,赋予更大的选举概率。
本发明的一种结合信任度的无线传感器网络簇头选举方法,在簇头选举阶段,采用加权方法,加权值可根据具体情况进行调整,同时综合考虑传感器节点信任度、距离参数、能量参数对簇头选举的影响,为簇头选举提供了一种新的参考方式,具有科学合理、适用性强、能量利用高且能够保证无线传感器网络安全可靠、稳定运行。
附图说明
图1为本发明的一种结合信任度的无线传感器网络簇头选举方法流程图。
具体实施方式
下面利用附图和具体实施方式对本发明作进一步说明。
本发明的一种结合信任度的无线传感器网络簇头选举方法,在簇头选举阶段,综合考虑传感器节点信任度、距离参数、能量参数;
首先,计算传感器节点j的信任度Tj
Figure BDA0002418182690000031
其中,Sij为传感器节点i与传感器节点j之间成功交互次数,Fij为传感器节点i与传感器节点j之间失败交互次数,n为簇内传感器节点数目;
其次,计算传感器节点j的距离参数Lj
Figure BDA0002418182690000032
其中,djtoBS为传感器节点j到基站的距离,dmax为所有传感器节点到基站的最远距离,dij为传感器节点i与传感器节点j的之间的距离,n为簇内传感器节点数目,dijmax为传感器节点i与传感器节点j的之间的最远距离;
然后,计算传感器节点j的能量参数Ej
Figure BDA0002418182690000033
其中,Ejnow为传感器节点j目前剩余能量,Ejmax为传感器节点j的初始能量,Ejnext为传感器节点下一轮剩余能量,Ejpre为传感器节点上一轮剩余能量,Ejlast为传感器节点在簇头选举阶段最后剩余能量;
最后,计算传感器节点j的簇头选举代价因子:
Mj=a×Tj+b×Lj+c×Ej,j=1,2,…,n (4)
其中,a为传感器节点信任度加权值,b为传感器节点距离参数加权值,c为传感器节点能量参数加权值,三个加权值有以下关系:
a+b+c=1 (5)
其中,a、b、c可根据具体情况进行调整,默认情况下,可取
Figure BDA0002418182690000041
对于代价因子高的传感器节点,赋予其更大的选举概率。
本发明的所涉及到软件程序依据自动化、网络和计算机处理技术编制,是本领域技术人员所熟悉的技术。

Claims (1)

1.一种结合信任度的无线传感器网络簇头选举方法,其特征是,它包括的内容有:
在簇头选举阶段,根据传感器节点信任度、距离参数、能量参数综合计算传感器节点的簇头选举代价因子;对于传感器节点j的信任度Tj表示为:
Figure FDA0002418182680000011
其中,Sij为传感器节点i与传感器节点j之间成功交互次数,Fij为传感器节点i与传感器节点j之间失败交互次数,n为簇内传感器节点数目;
对于传感器节点j的距离参数Lj表示为:
Figure FDA0002418182680000012
其中,djtoBS为传感器节点j到基站的距离,dmax为所有传感器节点到基站的最远距离,dij为传感器节点i与传感器节点j的之间的距离,n为簇内传感器节点数目,dijmax为传感器节点i与传感器节点j的之间的最远距离;
对于传感器节点j的能量参数Ej表示为:
Figure FDA0002418182680000013
其中,Ejnow为传感器节点j目前剩余能量,Ejmax为传感器节点j的初始能量,Ejnext为传感器节点下一轮剩余能量,Ejpre为传感器节点上一轮剩余能量,Ejlast为传感器节点在簇头选举阶段最后剩余能量;
对于传感器节点j的簇头选举代价因子表示为:
Mj=a×Tj+b×Lj+c×Ej,j=1,2,…,n (4)
其中,a为传感器节点信任度加权值,b为传感器节点距离参数加权值,c为传感器节点能量参数加权值,三个加权值有以下关系:
a+b+c=1 (5)
其中,a、b、c可根据具体情况进行调整,默认情况下,可取
Figure FDA0002418182680000014
对于代价因子高的传感器节点,赋予更大的选举概率。
CN202010197622.3A 2020-03-19 2020-03-19 一种结合信任度的无线传感器网络簇头选举方法 Active CN111510983B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010197622.3A CN111510983B (zh) 2020-03-19 2020-03-19 一种结合信任度的无线传感器网络簇头选举方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010197622.3A CN111510983B (zh) 2020-03-19 2020-03-19 一种结合信任度的无线传感器网络簇头选举方法

Publications (2)

Publication Number Publication Date
CN111510983A true CN111510983A (zh) 2020-08-07
CN111510983B CN111510983B (zh) 2022-10-28

Family

ID=71872524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010197622.3A Active CN111510983B (zh) 2020-03-19 2020-03-19 一种结合信任度的无线传感器网络簇头选举方法

Country Status (1)

Country Link
CN (1) CN111510983B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746823A (zh) * 2021-08-26 2021-12-03 国网山东省电力公司 分布式电力监控网络分簇路由综合信任管理模型构建方法
CN117062063A (zh) * 2023-09-01 2023-11-14 唐人通信技术服务股份有限公司 无线网络的安全防护方法、装置、设备及介质

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227413A (zh) * 2008-02-22 2008-07-23 北京交通大学 一种应用于无线传感器网络的分簇节能路由算法
US20080247353A1 (en) * 2007-04-03 2008-10-09 Harris Corporation Cluster head election in an ad-hoc network
CN101652959A (zh) * 2007-03-12 2010-02-17 Lm爱立信电话有限公司 涉及网络管理的设备及方法
CN102131193A (zh) * 2010-01-12 2011-07-20 中国人民解放军总参谋部第六十一研究所 无线传感器网与计算机网融合网络的安全路由方法
CN102196420A (zh) * 2011-06-02 2011-09-21 河海大学常州校区 无线传感器网络安全分簇路由管理方法
CN104320823A (zh) * 2014-10-24 2015-01-28 西安电子科技大学 基于Sink信任评估值的无线传感器网络分簇方法
CN105611536A (zh) * 2016-03-03 2016-05-25 中南大学 无线传感器网络中基于主动探测的抵御黑洞攻击的方法
CN105898897A (zh) * 2014-12-15 2016-08-24 江南大学 一种改进蚁群优化传感器网络簇头方法
CN105915545A (zh) * 2016-06-12 2016-08-31 天津理工大学 面向移动物联网应用环境的信任测度方法
CN106488393A (zh) * 2016-09-30 2017-03-08 天津大学 基于演化博弈机制的分簇无线传感器网络簇头选举模型
CN106658641A (zh) * 2016-12-28 2017-05-10 上海海事大学 一种分布式无线传感网络分簇路由方法
CN106817739A (zh) * 2015-12-02 2017-06-09 扬州大学 一种基于移动汇聚节点能量有效的无线传感器网路由协议
CN107450344A (zh) * 2017-09-21 2017-12-08 深圳市鑫汇达机械设计有限公司 一种基于无线传感器网络的智能家居系统
CN109963317A (zh) * 2019-05-14 2019-07-02 中国联合网络通信集团有限公司 一种簇头选举方法、装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652959A (zh) * 2007-03-12 2010-02-17 Lm爱立信电话有限公司 涉及网络管理的设备及方法
US20080247353A1 (en) * 2007-04-03 2008-10-09 Harris Corporation Cluster head election in an ad-hoc network
CN101227413A (zh) * 2008-02-22 2008-07-23 北京交通大学 一种应用于无线传感器网络的分簇节能路由算法
CN102131193A (zh) * 2010-01-12 2011-07-20 中国人民解放军总参谋部第六十一研究所 无线传感器网与计算机网融合网络的安全路由方法
CN102196420A (zh) * 2011-06-02 2011-09-21 河海大学常州校区 无线传感器网络安全分簇路由管理方法
CN104320823A (zh) * 2014-10-24 2015-01-28 西安电子科技大学 基于Sink信任评估值的无线传感器网络分簇方法
CN105898897A (zh) * 2014-12-15 2016-08-24 江南大学 一种改进蚁群优化传感器网络簇头方法
CN106817739A (zh) * 2015-12-02 2017-06-09 扬州大学 一种基于移动汇聚节点能量有效的无线传感器网路由协议
CN105611536A (zh) * 2016-03-03 2016-05-25 中南大学 无线传感器网络中基于主动探测的抵御黑洞攻击的方法
CN105915545A (zh) * 2016-06-12 2016-08-31 天津理工大学 面向移动物联网应用环境的信任测度方法
CN106488393A (zh) * 2016-09-30 2017-03-08 天津大学 基于演化博弈机制的分簇无线传感器网络簇头选举模型
CN106658641A (zh) * 2016-12-28 2017-05-10 上海海事大学 一种分布式无线传感网络分簇路由方法
CN107450344A (zh) * 2017-09-21 2017-12-08 深圳市鑫汇达机械设计有限公司 一种基于无线传感器网络的智能家居系统
CN109963317A (zh) * 2019-05-14 2019-07-02 中国联合网络通信集团有限公司 一种簇头选举方法、装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Z. CHEN AND H. SHEN: "Efficient Data Gathering in Wireless Sensor Networks with Fixed-Group Method", 《2017 18TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES (PDCAT)》 *
潘蕾娜,陶洋,许湘扬,王进: "基于信任与能耗均衡的安全分簇路由协议", 《信息科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746823A (zh) * 2021-08-26 2021-12-03 国网山东省电力公司 分布式电力监控网络分簇路由综合信任管理模型构建方法
CN113746823B (zh) * 2021-08-26 2023-01-24 国网山东省电力公司 分布式电力监控网络分簇路由综合信任管理模型构建方法
CN117062063A (zh) * 2023-09-01 2023-11-14 唐人通信技术服务股份有限公司 无线网络的安全防护方法、装置、设备及介质

Also Published As

Publication number Publication date
CN111510983B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
Liu et al. Deep reinforcement learning for communication flow control in wireless mesh networks
CN111510983B (zh) 一种结合信任度的无线传感器网络簇头选举方法
Liu et al. A new evolutionary multi-objective algorithm to virtual machine placement in virtualized data center
CN106610867B (zh) 一种片上网络任务调度方法及装置
Seo et al. Evolutionary genetic algorithm for efficient clustering of wireless sensor networks
Xie et al. Online algorithms for optimizing age of information in the IoT systems with multi-slot status delivery
Xiao et al. Minimization of Energy Consumption for Routing in High‐Density Wireless Sensor Networks Based on Adaptive Elite Ant Colony Optimization
Zhang et al. Data aggregation in heterogeneous wireless sensor networks by using local tree reconstruction algorithm
Wan et al. Optimization of Wireless Sensor Networks based on Differential Evolution Algorithm.
Xiao et al. A novel QoS routing energy consumption optimization method based on clone adaptive whale optimization algorithm in IWSNs
Wei et al. Multisensor scheduling for remote state estimation over a temporally correlated channel
Liu et al. Sensor duty cycle for prolonging network lifetime using quantum clone grey wolf optimization algorithm in industrial wireless sensor networks
Wang et al. A Cluster‐Head Rotating Election Routing Protocol for Energy Consumption Optimization in Wireless Sensor Networks
Zhang et al. A hybrid differential evolution and tree search algorithm for the job shop scheduling problem
Luo et al. Green job shop scheduling problem with machine at different speeds using a multi-objective grey wolf optimization algorithm
Fang et al. Hierarchical routing protocol in wireless sensor network: a state-of-the-art review
Wang et al. An Improved Data Fusion Algorithm Based on Cluster Head Election and Grey Prediction
Wang et al. How to Minimize the Weighted Sum AoI in Multi-Source Status Update Systems: TDMA or NOMA?
Wang et al. Optimization on information freshness for multi‐access users with energy harvesting cognitive radio networks
Wang Design of minimizing expected energy of multisource wireless cooperative network based on multiobjective optimization
Du et al. Joint time and power control of energy harvesting CRN based on PPO
CN113746823B (zh) 分布式电力监控网络分簇路由综合信任管理模型构建方法
Mao Reliability Analysis and Optimization of Computer Communication Network Based on Differential Evolution Algorithm
Yin et al. Minimum distance clustering algorithm based on an improved differential evolution
Mal et al. MOGR: Multi-task Offloading via Graph Representation in Heterogeneous Computing Network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220527

Address after: 132012, Changchun Road, Jilin, Jilin, 169

Applicant after: NORTHEAST DIANLI University

Address before: 132012, Changchun Road, Jilin, Jilin, 169

Applicant before: NORTHEAST DIANLI University

Applicant before: ELECTRIC POWER RESEARCH INSTITUTE OF STATE GRID SHANDONG ELECTRIC POWER Co.

Applicant before: STATE GRID SHANDONG ELECTRIC POWER COMPANY, SHOUGUANG POWER SUPPLY Co.

GR01 Patent grant
GR01 Patent grant