CN111510319B - 一种基于状态感知的网络切片资源管理方法 - Google Patents
一种基于状态感知的网络切片资源管理方法 Download PDFInfo
- Publication number
- CN111510319B CN111510319B CN202010160444.7A CN202010160444A CN111510319B CN 111510319 B CN111510319 B CN 111510319B CN 202010160444 A CN202010160444 A CN 202010160444A CN 111510319 B CN111510319 B CN 111510319B
- Authority
- CN
- China
- Prior art keywords
- slice
- time
- data
- state
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007726 management method Methods 0.000 title claims abstract description 19
- 230000008447 perception Effects 0.000 title claims abstract description 6
- 230000006870 function Effects 0.000 claims abstract description 30
- 238000013508 migration Methods 0.000 claims abstract description 20
- 230000005012 migration Effects 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 11
- 238000004364 calculation method Methods 0.000 claims abstract description 9
- 230000033001 locomotion Effects 0.000 claims abstract description 6
- 230000008569 process Effects 0.000 claims abstract description 5
- 230000002787 reinforcement Effects 0.000 claims abstract description 3
- 230000007704 transition Effects 0.000 claims abstract description 3
- 230000009471 action Effects 0.000 claims description 34
- 238000013468 resource allocation Methods 0.000 claims description 26
- 230000005540 biological transmission Effects 0.000 claims description 20
- 230000000875 corresponding effect Effects 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 5
- 230000001276 controlling effect Effects 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 230000007774 longterm Effects 0.000 claims description 2
- 238000012549 training Methods 0.000 claims description 2
- 238000010295 mobile communication Methods 0.000 abstract description 2
- 101150031442 sfc1 gene Proteins 0.000 description 6
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000011478 gradient descent method Methods 0.000 description 2
- VMGYQBOEVWSPEO-NSHDSACASA-N (3,3-difluoroazetidin-1-yl)-[(7S)-7-phenyl-6,7-dihydro-5H-pyrrolo[1,2-b][1,2,4]triazol-2-yl]methanone Chemical compound FC1(CN(C1)C(=O)C=1N=C2N(N=1)CC[C@H]2C1=CC=CC=C1)F VMGYQBOEVWSPEO-NSHDSACASA-N 0.000 description 1
- 101100533230 Caenorhabditis elegans ser-2 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0893—Assignment of logical groups to network elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010160444.7A CN111510319B (zh) | 2020-03-06 | 2020-03-06 | 一种基于状态感知的网络切片资源管理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010160444.7A CN111510319B (zh) | 2020-03-06 | 2020-03-06 | 一种基于状态感知的网络切片资源管理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111510319A CN111510319A (zh) | 2020-08-07 |
CN111510319B true CN111510319B (zh) | 2022-07-08 |
Family
ID=71871542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010160444.7A Active CN111510319B (zh) | 2020-03-06 | 2020-03-06 | 一种基于状态感知的网络切片资源管理方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111510319B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113015196B (zh) * | 2021-02-23 | 2022-05-06 | 重庆邮电大学 | 一种基于状态感知的网络切片故障愈合方法 |
CN114726743B (zh) * | 2022-03-04 | 2024-07-23 | 北京北商西电科技有限公司 | 一种基于联邦强化学习的服务功能链部署方法 |
CN116095720B (zh) * | 2023-03-09 | 2023-07-07 | 南京邮电大学 | 基于深度强化学习的网络业务接入和切片资源配置方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106228314A (zh) * | 2016-08-11 | 2016-12-14 | 电子科技大学 | 基于深度增强学习的工作流调度方法 |
CN108989099A (zh) * | 2018-07-02 | 2018-12-11 | 北京邮电大学 | 基于软件定义天地一体化网络的联合资源分配方法和系统 |
CN110505099A (zh) * | 2019-08-28 | 2019-11-26 | 重庆邮电大学 | 一种基于迁移a-c学习的服务功能链部署方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180082213A1 (en) * | 2016-09-18 | 2018-03-22 | Newvoicemedia, Ltd. | System and method for optimizing communication operations using reinforcement learning |
-
2020
- 2020-03-06 CN CN202010160444.7A patent/CN111510319B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106228314A (zh) * | 2016-08-11 | 2016-12-14 | 电子科技大学 | 基于深度增强学习的工作流调度方法 |
CN108989099A (zh) * | 2018-07-02 | 2018-12-11 | 北京邮电大学 | 基于软件定义天地一体化网络的联合资源分配方法和系统 |
CN110505099A (zh) * | 2019-08-28 | 2019-11-26 | 重庆邮电大学 | 一种基于迁移a-c学习的服务功能链部署方法 |
Non-Patent Citations (3)
Title |
---|
Network slicing and softwarization:a Survey on principles,enabling technologies,and solutions;AFOLABI I,TALEB T;《IEEE Communications Surveys&Tutorials》;20181231;第20卷(第3期);全文 * |
The Stochastic-Learning-Based Deployment Scheme for Service Function Chain in Access Network;Youchao Yang,Qianbin Chen;《IEEE Access》;20180917;全文 * |
基于强化学习的网络切片动态资源管理算法研究;杨友超;《中国优秀硕士学位论文数据库》;20190602;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111510319A (zh) | 2020-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111510319B (zh) | 一种基于状态感知的网络切片资源管理方法 | |
CN111130904B (zh) | 一种基于深度确定性策略梯度的虚拟网络功能迁移优化算法 | |
CN111967605B (zh) | 无线电接入网中的机器学习 | |
Khan et al. | Self organizing federated learning over wireless networks: A socially aware clustering approach | |
CN109639760B (zh) | 一种基于深度强化学习的d2d网络中的缓存策略方法 | |
CN105515987B (zh) | 一种基于sdn架构面向虚拟光网络的映射方法 | |
Abouaomar et al. | Federated deep reinforcement learning for open ran slicing in 6g networks | |
CN110784366B (zh) | Sdn中基于immac算法的交换机迁移方法 | |
Wang et al. | Joint resource allocation and power control for D2D communication with deep reinforcement learning in MCC | |
CN113490254A (zh) | 一种基于联邦学习双向gru资源需求预测的vnf迁移方法 | |
CN114374605A (zh) | 一种网络切片场景下服务功能链动态调整和迁移方法 | |
CN112887142B (zh) | 一种虚拟化无线接入边缘云中web应用切片生成方法 | |
WO2021083230A1 (zh) | 功率调节方法和接入网设备 | |
CN112492691A (zh) | 一种深度确定性策略梯度的下行noma功率分配方法 | |
Cicioğlu | Multi-criteria handover management using entropy‐based SAW method for SDN-based 5G small cells | |
CN114615744A (zh) | 一种知识迁移强化学习网络切片通感算资源协同优化方法 | |
CN111050362A (zh) | 资源分配方法及其全双工通信系统 | |
CN114217944A (zh) | 一种神经网络的针对模型并行的动态负载均衡方法 | |
CN117062156A (zh) | 基于智能分层切片技术的数字孪生传感信息同步方法 | |
CN115361453A (zh) | 一种面向边缘服务网络的负载公平卸载与迁移方法 | |
KR20190127480A (ko) | 통신 시스템에서 전송 포인트 및 링크 적응 방식을 결정하기 위한 방법 및 장치 | |
CN115250156A (zh) | 一种基于联邦学习的无线网络多信道频谱接入方法 | |
CN114189877A (zh) | 一种面向5g基站的复合式能耗优化控制方法 | |
Gao et al. | Deep reinforcement learning based rendering service placement for cloud gaming in mobile edge computing systems | |
Kaneko et al. | Wireless Multi-Interface Connectivity with Deep Learning-Enabled User Devices: An Energy Efficiency Perspective |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240411 Address after: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Henglang Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000 Patentee after: Shenzhen Wanzhida Technology Transfer Center Co.,Ltd. Country or region after: China Address before: 400065 Chongqing Nan'an District huangjuezhen pass Chongwen Road No. 2 Patentee before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS Country or region before: China |