CN111509775A - 基于mmc光储混合逆变器的新型集成结构和功率分配方法 - Google Patents

基于mmc光储混合逆变器的新型集成结构和功率分配方法 Download PDF

Info

Publication number
CN111509775A
CN111509775A CN202010366520.XA CN202010366520A CN111509775A CN 111509775 A CN111509775 A CN 111509775A CN 202010366520 A CN202010366520 A CN 202010366520A CN 111509775 A CN111509775 A CN 111509775A
Authority
CN
China
Prior art keywords
power
photovoltaic
phase
grid
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010366520.XA
Other languages
English (en)
Other versions
CN111509775B (zh
Inventor
余婕
刘钊
孔建寿
陆一言
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202010366520.XA priority Critical patent/CN111509775B/zh
Publication of CN111509775A publication Critical patent/CN111509775A/zh
Application granted granted Critical
Publication of CN111509775B publication Critical patent/CN111509775B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于模块化多电平光储混合并网逆变器的新型集成结构和功率分配方法,对系统进行上层并网控制,稳定直流侧电压;对光伏模块进行最大功率跟踪控制和环流抑制,使各光伏子模块在一定光照下输出其最大功率;对蓄电池模块进行SOC均衡控制;根据电网功率需求指令,对蓄电池模块进行下层功率控制,使其充当系统备用电源。本发明可根据电力调度指令,灵活地将有功功率分配到光伏模块和储能电池模块中,通过上层控制稳定直流侧电压,下层控制可最大限度地提高能源利用效率,提高了系统的稳定性,抑制环流,适用于大规模光伏并网系统。

Description

基于MMC光储混合逆变器的新型集成结构和功率分配方法
技术领域
本发明涉及电力电子技术,具体涉及一种基于MMC光储混合逆变器的新型集成结构和功率分配方法。
背景技术
带储能元件的模块化多电平光伏并网逆变器具有模块化程度高、开关频率高、谐波特性好等特点,其中储能系统还可以辅助光伏系统并网,平滑功率波动,提高电能质量,得到了广泛的应用。
针对基于MMC的光储混合逆变器,已有一些可行的集成结构提出,包括将光伏组件和蓄电池通过DC-DC变换器同时集成到一个子模块中,或将大量光伏电池进行串并联直接连接到MMC直流侧,将蓄电池集成到各子模块中。现有结构中含有大量DC-DC双向变换器,大大增加了系统中开关管和变压器数量,增大了系统损耗和控制难度,而将大量光伏组件串并联无法解决光伏电池的局部阴影问题,容易造成系统的功率波动。此外,现有技术中对于系统中光伏电池和蓄电池两种直流源的功率分配问题并未进行详细阐述,难以满足电力调度需求。
发明内容
本发明的目的在于提供一种基于MMC光储混合逆变器的新型集成结构和功率分配方法。
实现本发明目的的技术解决方案为:一种基于模块化多电平光储混合并网逆变器的新型集成结构和功率分配方法,包括如下步骤:
步骤1、对系统进行上层并网控制,稳定直流侧电压;
步骤2、对光伏模块进行最大功率跟踪控制和环流抑制,使各光伏子模块在一定光照下输出其最大功率;
步骤3、对蓄电池模块进行SOC均衡控制;
步骤4、根据电网功率需求指令,对蓄电池模块进行下层功率控制,使其充当系统备用电源。
进一步的,步骤1中,对系统进行上层并网控制的具体方法为:
采用电压电流内外环控制实现系统解耦控制后的交流并网,由直流侧电压参考值和实际值经PI控制器调节得到参考并网电流在d轴上的分量idref,并实现直流侧电压恒定,由电网无功功率指令Q得到参考并网电流在q轴上的分量iqref,使系统跟踪电网指令要求。
进一步的,步骤2中,对光伏模块进行最大功率跟踪控制和环流抑制的具体方法为:
步骤2.1、确定光伏子模块电压调节量,利用扰动观察法得到每个光伏子模块的最大功率点电压,将其与光伏模块瞬时电压作差,经PI调节后乘以对应桥臂电流经符号调节后的结果,使得每个光伏子模块都能独立工作在其最大功率点上;
步骤2.2、确定光伏子模块环流调节量,其由j(j=a,b,c)相环流实际值与参考值作差后经PR调节后得到,其中环流参考值由其直流分量和基频分量构成,通过将j(j=a,b,c)相上桥臂所有光伏电池输出电压和与下桥臂光伏电池电压和相加,与参考值作差经PI控制后得到j相环流直流分量参考值,以控制相间电压均衡,通过将j相上桥臂所有光伏电池输出电压和与下桥臂光伏电池电压和相减,与参考值作差经PI控制后得到j相环流基频分量参考值,以控制桥臂间电压均衡。
进一步的,步骤3中,对蓄电池模块进行SOC均衡控制的具体方法为:
确定蓄电池子模块SOC调节量,其由每个模块的SOC值和对应桥臂SOC平均值作差经PI调节后得到,以确保在蓄电池初始SOC状态不一致时使其趋于均衡。
进一步的,步骤4中,对蓄电池模块进行下层功率控制的具体方法为:
步骤4.1、确定j(j=a,b,c)相所有光伏电池发出的有功功率
Figure BDA0002476907850000021
包括j相上桥臂和下桥臂所有光伏电池发出的有功功率
Figure BDA0002476907850000022
具体公式为:
Figure BDA0002476907850000023
Figure BDA0002476907850000024
其中,
Figure BDA0002476907850000025
为j相z(z=p,n)桥臂第k个光伏子模块的输出功率,Upv_zjk为j相z桥臂第k个光伏子模块的最大功率点电压,Izjk为j相z桥臂第k个光伏子模块的输出电流,P* pv_pj为j相上桥臂所有光伏电池发出的有功功率,P* pv_nj为j相下桥臂所有光伏电池发出的有功功率;
步骤4.2、由于光伏电池发出的功率存在不确定性,根据电网调度指令,其他有功功率由蓄电池补充以确保其满足电网需求,并使其在光照条件变化情况下仍能保持输出功率恒定,确定j(j=a,b,c)相所有蓄电池应发出的有功功率,具体公式为:
Figure BDA0002476907850000031
其中,P* ac_j为j相输出的总功率,P* ac为电网调度指定的总功率。
本发明与现有技术相比,其显著优点为:1)新型集成结构简化了系统配置和控制,降低了系统损耗;2)在用电高峰及局部阴影条件下,提出的功率分配方法可根据电网功率调度,由光伏电池和蓄电池同时向电网供电,适用于大规模光伏并网系统。
附图说明
图1为本发明基于MMC光储混合逆变器的新型集成结构的示意图。
图2为本发明功率分配方法的整体控制原理图。
图3为本发明下层控制原理图。
图4为本发明仿真结果图,其中(a)为光照均衡和光照不均衡两种情况下电网电压和电流、电容电压和功率波形图,(b)为两种情况下直流侧电压和环流波形图。
图中,m为各桥臂光伏子模块数量,n为各桥臂子模块总数量,L为桥臂滤波电感,Udc为直流侧电压,Ls为负载电感,Usj(j=a,b,c)为电网电压,ij为j相并网电流,ipj为j相上桥臂电流,inj为j相下桥臂电流,icirj为j相环流。
具体实施方式
下面结合附图和具体实施例,进一步说明本发明方案。
本发明提出一种基于MMC光储混合逆变器的新型集成结构,不需要DC-DC转换器,通过半桥结构将光伏电池和储能电池集成到不同的子模块中,减少了系统损耗,可以独立控制光伏模块和蓄电池模块,使能源得到充分利用。如图1所示,MMC中每个相位包含上、下两个桥臂,每个桥臂由n个子模块和滤波电感L组成,n个子模块包括m个光伏子模块和n-m个蓄电池子模块,其中,光伏电池或蓄电池直接连接到半桥结构上。上、下桥臂的公共点引出相线通过负载电感Ls与电网相连。环流由icirj=(ipj+inj)/2得到,并网电流由ij=(ipj-inj)/2得到。
基于上述新型集成结构,本发明还提出一种功率分配方法,以解决传统光伏并网系统无法满足电网需求问题以及由于光照不平衡而引起的功率波动问题,当光伏模块输出功率无法满足电网需求时,可由两种电源同时向交流电网供电以满足调度需求。如图2-3所示,基于模块化多电平光储混合并网逆变器的功率分配方法,其过程具体包括如下三个部分:
(1)并网控制
图2为本发明控制方式示意图,上层控制为并网控制,只要给定参考并网电流在d轴和q轴上的分量idref和iqref,即可实现解耦控制后的交流并网,其中idref由直流侧电压参考值和实际值经PI控制器调节得到,iqref由电网无功功率指令Q得到,通常设置为0。
MMC交流侧等效输出电压可由其在d轴和q轴上的分量usd和usq经反派克变换得到,usd和usq可由下式得到:
Figure BDA0002476907850000041
式中:vd和vq分别由并网电流在d轴和q轴上的分量的参考值和实际值作差后经PI控制器得到;ed和eq分别为电网电压在d轴和q轴上的分量;L为MMC等效连接电感;ω为电网电压基波频率。
(2)功率控制
图3为本发明下层控制方式示意图,包括功率控制和均衡控制。功率控制即为上述步骤4中所述对系统蓄电池模块进行的下层功率控制。根据电力调度指令确定总输出功率P* ac,由于光伏电池可以根据光照强度输出固定的功率,剩余的功率由蓄电池补充以满足电网需要。将一相中所有光伏电池的最大输出功率相加可以得到光伏模块参考功率P* pv_j,具体公式为:
Figure BDA0002476907850000042
其中:
Figure BDA0002476907850000051
每相所有蓄电池需补充的有功功率P* ES_j可由根据调度需求确定的每相输出的总功率P* ac_j和P* pv_j作差得到,即:
Figure BDA0002476907850000052
当耗电量处于一天中的峰值时,光伏电池输出的功率无法满足电网的供电需求。此外,当处于局部阴影情况下,即光伏子模块光照不均衡情况下,光伏模块的输出功率发生波动。本发明提出的功率分配方法可以根据功率需求指令,由蓄电池充当备用电源补足剩余功率。
(3)均衡控制
均衡控制包括上述步骤2中所述对光伏模块进行最大功率跟踪控制和环流抑制控制以及步骤3中所述对蓄电池模块进行的SOC均衡控制。如图3所示,在MPPT控制中,对每个光伏电池都采取单独的控制使其工作在各自的最大功率点,以保证太阳能的最大利用。采用扰动观察法得到j(j=a,b,c)相z(z=p,n)桥臂第k个光伏电池的最大功率点电压Upv_zjk,将其与光伏电池瞬时电压作差,经PI控制后乘以对应桥臂电流经符号调节后的结果。此外,为了降低系统损耗,提出了各相的环流抑制方案。其中,环流参考值的基频分量由上、下桥臂电压差产生,直流分量由两桥臂电压之和产生。将环流参考值与实际值作差,通过PR控制器消除环流中的二倍频分量。通过这种控制方式,在局部阴影条件下,仍然可以保证电力系统的稳定运行。在蓄电池模块中,需考虑蓄电池的SOC均衡控制。计算各对应桥臂的SOC均值并将其作为参考值与各蓄电池子模块SOC实际值作差,经PI控制后,加上功率控制的调节量,乘以对应桥臂电流经符号调节的结果,得到蓄电池子模块的调节量。由于在光伏模块中考虑了环流抑制,因此在蓄电池中不再考虑。
本发明适用于光伏电池和储能电池作为链节直流源的模块化多电平混合储能系统,能够根据电网调度需求和实现各相内部链节的有功功率分配,并保证系统在光照不平衡或光照变化情况下仍能安全稳定运行,不影响系统总功率输出。但是,本方法的应用场合不限于由光伏电池和蓄电池作为直流源的模块化多电平混合储能系统,理论上还适用于其他三相多电平混合储能系统。
实施例
为了验证本发明的有效性,在Matlab/Simulink中搭建实验仿真模型,系统实际参数如下:
表1系统实际参数表
Figure BDA0002476907850000061
以A相为例,光照均衡和不均衡情况下的仿真结果如图4(a)所示。当所有光伏电池的光照强度为1000W/m2时,由于无功功率命令为0,电网电压和电流的相位保持一致且每个光伏电池都能跟踪其最大功率点。设定A相输出总功率为4400W,由于光伏模块的最大输出功率无法满足电网需求,剩余功率由蓄电池补充。当部分子模块光照强度下降到400W/m2时,光伏模块的输出功率下降,并网电流随之减小。光伏电池跟踪新的最大功率点且互不影响。总功率设定为3000W,光伏模块提供最大功率,其余由蓄电池补充。
A相直流侧电压和环流波形如图4(b)所示。直流侧电压能跟踪指令值,环流也能得到很好地抑制,可以看出本发明控制方式能够达到控制目标。

Claims (5)

1.一种基于模块化多电平光储混合并网逆变器的新型集成结构和功率分配方法,其特征在于,包括如下步骤:
步骤1、对系统进行上层并网控制,稳定直流侧电压;
步骤2、对光伏模块进行最大功率跟踪控制和环流抑制,使各光伏子模块在一定光照下输出其最大功率;
步骤3、对蓄电池模块进行SOC均衡控制;
步骤4、根据电网功率需求指令,对蓄电池模块进行下层功率控制,使其充当系统备用电源。
2.根据权利要求1所述的功率分配方法,其特征在于,步骤1中,对系统进行上层并网控制的具体方法为:
采用电压电流内外环控制实现系统解耦控制后的交流并网,由直流侧电压参考值和实际值经PI控制器调节得到参考并网电流在d轴上的分量idref,并实现直流侧电压恒定,由电网无功功率指令Q得到参考并网电流在q轴上的分量iqref,使系统跟踪电网指令要求。
3.根据权利要求1所述的功率分配方法,其特征在于,步骤2中,对光伏模块进行最大功率跟踪控制和环流抑制的具体方法为:
步骤2.1、确定光伏子模块电压调节量,利用扰动观察法得到每个光伏子模块的最大功率点电压,将其与光伏模块瞬时电压作差,经PI调节后乘以对应桥臂电流经符号调节后的结果,使得每个光伏子模块都能独立工作在其最大功率点上;
步骤2.2、确定光伏子模块环流调节量,其由j(j=a,b,c)相环流实际值与参考值作差后经PR调节后得到,其中环流参考值由其直流分量和基频分量构成,通过将j(j=a,b,c)相上桥臂所有光伏电池输出电压和与下桥臂光伏电池电压和相加,与参考值作差经PI控制后得到j相环流直流分量参考值,以控制相间电压均衡,通过将j相上桥臂所有光伏电池输出电压和与下桥臂光伏电池电压和相减,与参考值作差经PI控制后得到j相环流基频分量参考值,以控制桥臂间电压均衡。
4.根据权利要求1所述的功率分配方法,其特征在于,步骤3中,对蓄电池模块进行SOC均衡控制的具体方法为:
确定蓄电池子模块SOC调节量,其由每个模块的SOC值和对应桥臂SOC平均值作差经PI调节后得到,以确保在蓄电池初始SOC状态不一致时使其趋于均衡。
5.根据权利要求1所述的功率分配方法,其特征在于,步骤4中,对蓄电池模块进行下层功率控制的具体方法为:
步骤4.1、确定j(j=a,b,c)相所有光伏电池发出的有功功率
Figure FDA0002476907840000021
包括j相上桥臂和下桥臂所有光伏电池发出的有功功率
Figure FDA0002476907840000022
具体公式为:
Figure FDA0002476907840000023
Figure FDA0002476907840000024
其中,P* pv_zjk为j相z(z=p,n)桥臂第k个光伏子模块的输出功率,Upv_zjk为j相z桥臂第k个光伏子模块的最大功率点电压,Izjk为j相z桥臂第k个光伏子模块的输出电流,P* pv_pj为j相上桥臂所有光伏电池发出的有功功率,P* pv_nj为j相下桥臂所有光伏电池发出的有功功率;
步骤4.2、由于光伏电池发出的功率存在不确定性,根据电网调度指令,其他有功功率由蓄电池补充以确保其满足电网需求,并使其在光照条件变化情况下仍能保持输出功率恒定,确定j(j=a,b,c)相所有蓄电池应发出的有功功率,具体公式为:
Figure FDA0002476907840000025
其中,P* ac_j为j相输出的总功率,P* ac为电网调度指定的总功率。
CN202010366520.XA 2020-04-30 2020-04-30 基于mmc光储混合逆变器的集成结构和功率分配方法 Active CN111509775B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010366520.XA CN111509775B (zh) 2020-04-30 2020-04-30 基于mmc光储混合逆变器的集成结构和功率分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010366520.XA CN111509775B (zh) 2020-04-30 2020-04-30 基于mmc光储混合逆变器的集成结构和功率分配方法

Publications (2)

Publication Number Publication Date
CN111509775A true CN111509775A (zh) 2020-08-07
CN111509775B CN111509775B (zh) 2022-09-13

Family

ID=71875059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010366520.XA Active CN111509775B (zh) 2020-04-30 2020-04-30 基于mmc光储混合逆变器的集成结构和功率分配方法

Country Status (1)

Country Link
CN (1) CN111509775B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383082A (zh) * 2020-08-26 2021-02-19 平高集团有限公司 一种光储混合系统及其多模态冗余控制方法
CN112564161A (zh) * 2020-11-11 2021-03-26 平高集团储能科技有限公司 基于mmc的光储并网逆变器及其功率控制方法
CN112952878A (zh) * 2021-03-08 2021-06-11 阳光电源股份有限公司 一种多直流耦合系统及其控制方法
CN113572220A (zh) * 2021-06-28 2021-10-29 南方电网调峰调频发电有限公司 交直流并网的电池储能系统差异电池均衡方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158211A (zh) * 2014-07-25 2014-11-19 山东大学 基于模块化多电平变换器的多电源并网系统控制方法
CN104167760A (zh) * 2014-07-28 2014-11-26 湖南大学 一种模块化多电平光伏并网系统及其控制方法
CN110138007A (zh) * 2019-05-22 2019-08-16 南京理工大学 一种单相级联型光储混合系统的多模式运行控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158211A (zh) * 2014-07-25 2014-11-19 山东大学 基于模块化多电平变换器的多电源并网系统控制方法
CN104167760A (zh) * 2014-07-28 2014-11-26 湖南大学 一种模块化多电平光伏并网系统及其控制方法
CN110138007A (zh) * 2019-05-22 2019-08-16 南京理工大学 一种单相级联型光储混合系统的多模式运行控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383082A (zh) * 2020-08-26 2021-02-19 平高集团有限公司 一种光储混合系统及其多模态冗余控制方法
CN112564161A (zh) * 2020-11-11 2021-03-26 平高集团储能科技有限公司 基于mmc的光储并网逆变器及其功率控制方法
CN112952878A (zh) * 2021-03-08 2021-06-11 阳光电源股份有限公司 一种多直流耦合系统及其控制方法
CN112952878B (zh) * 2021-03-08 2024-05-14 阳光电源股份有限公司 一种多直流耦合系统及其控制方法
CN113572220A (zh) * 2021-06-28 2021-10-29 南方电网调峰调频发电有限公司 交直流并网的电池储能系统差异电池均衡方法和装置

Also Published As

Publication number Publication date
CN111509775B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN111509775B (zh) 基于mmc光储混合逆变器的集成结构和功率分配方法
Mechouma et al. Three-phase grid connected inverter for photovoltaic systems, a review
Kotra et al. Energy management of hybrid microgrid with hybrid energy storage system
Farhadi-Kangarlu et al. A single dc-source five-level inverter applied in stand-alone photovoltaic systems considering mppt capability
Carr et al. A high frequency link multiport converter utility interface for renewable energy resources with integrated energy storage
Zhang et al. A modular multilevel converter-based grid-tied battery-supercapacitor hybrid energy storage system with decoupled power control
Zorig et al. Control of three-level T-type inverter based grid connected PV system
Premkumar et al. A review on solar PV based grid connected microinverter control schemes and topologies
Law et al. Flyback cascaded multilevel inverter based SHE-PWM control for STATCOM applications
Bizhani et al. A grid-connected smart extendable structure for hybrid integration of distributed generations
Karthick et al. Analysis of multi input transformer coupled bidirectional dc-ac converter for hybrid system
Rivera et al. Four-level double star multilevel converter for grid-connected photovoltaic systems
WO2023117045A1 (en) Photo-voltaic power conversion arrangement
Xiang et al. Study on high voltage grid-connected PV inverter based on modular multilevel converter
Gurgi et al. Harmonic reduction for grid-connected photovoltaic system based on multilevel inverter
Shahsavar et al. A new single source five-level common ground switched capacitor based inverter
Yelaverthi et al. Dual multi-string PV topology fed three level grid connected inverter
CN112564161A (zh) 基于mmc的光储并网逆变器及其功率控制方法
Qiu et al. The Duality Droop Control for Grid-Tied Cascaded Microinverter
Hosseini et al. A Nonlinear Programming Solver based on Battery Efficiency Maximization for Quasi-Z-source Cascaded H-bridge Multilevel Inverter with PV and Battery
Chen et al. Design of High-Power Energy Storage Bidirectional Power Conversion System
Horrillo-Quintero et al. Power Sharing Control for a Microgrid with PV Power Plants, Batteries and Quasi-Z-source Cascaded H-bridge Multilevel Inverter
Yu et al. A Novel Integrating Configuration and A Power Distribution Method for MMC-Based Grid-Connected PV System with Integrated Batteries
Prasad et al. A Unified Droop Control Strategy for DC Bus Voltage Regulation and MPPT Control of Multi Input Bi-Directional DC-DC Converter in ac-DC-Microgrid
ML et al. High Performance Multistring Converter Topology for Three-Phase Grid Tied 200 kW Photovoltaic Generating System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Liu Zhao

Inventor after: Yu Jie

Inventor after: Kong Jianshou

Inventor after: Lu Yiyan

Inventor before: Yu Jie

Inventor before: Liu Zhao

Inventor before: Kong Jianshou

Inventor before: Lu Yiyan

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant