CN111506832A - 一种基于块矩阵补全的异构对象补全方法 - Google Patents
一种基于块矩阵补全的异构对象补全方法 Download PDFInfo
- Publication number
- CN111506832A CN111506832A CN202010313257.8A CN202010313257A CN111506832A CN 111506832 A CN111506832 A CN 111506832A CN 202010313257 A CN202010313257 A CN 202010313257A CN 111506832 A CN111506832 A CN 111506832A
- Authority
- CN
- China
- Prior art keywords
- completion
- matrix
- label
- user
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000000007 visual effect Effects 0.000 claims description 17
- 230000006870 function Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 9
- 238000013527 convolutional neural network Methods 0.000 claims description 6
- 238000012549 training Methods 0.000 claims description 6
- 238000005457 optimization Methods 0.000 abstract description 16
- 238000004364 calculation method Methods 0.000 abstract description 6
- 238000012935 Averaging Methods 0.000 abstract description 5
- 238000012545 processing Methods 0.000 abstract description 5
- 230000006399 behavior Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 238000011478 gradient descent method Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9536—Search customisation based on social or collaborative filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9537—Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Stored Programmes (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010313257.8A CN111506832B (zh) | 2020-04-20 | 2020-04-20 | 一种基于块矩阵补全的异构对象补全方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010313257.8A CN111506832B (zh) | 2020-04-20 | 2020-04-20 | 一种基于块矩阵补全的异构对象补全方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111506832A true CN111506832A (zh) | 2020-08-07 |
CN111506832B CN111506832B (zh) | 2023-07-28 |
Family
ID=71878790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010313257.8A Active CN111506832B (zh) | 2020-04-20 | 2020-04-20 | 一种基于块矩阵补全的异构对象补全方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111506832B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113779628A (zh) * | 2021-09-08 | 2021-12-10 | 湖南科技学院 | 匿名关联用户矩阵填充隐私动态发布方法 |
CN113869503A (zh) * | 2021-12-02 | 2021-12-31 | 北京建筑大学 | 一种基于深度矩阵分解补全的数据处理方法及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103310229A (zh) * | 2013-06-15 | 2013-09-18 | 浙江大学 | 一种用于图像分类的多任务机器学习方法及其装置 |
US20160021503A1 (en) * | 2014-07-16 | 2016-01-21 | TUPL, Inc. | Machine learning-based geolocation and hotspot area identification |
CN110135488A (zh) * | 2019-05-10 | 2019-08-16 | 南京邮电大学 | 融合字典训练与观测矩阵优化的数据高质压缩方法 |
-
2020
- 2020-04-20 CN CN202010313257.8A patent/CN111506832B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103310229A (zh) * | 2013-06-15 | 2013-09-18 | 浙江大学 | 一种用于图像分类的多任务机器学习方法及其装置 |
US20160021503A1 (en) * | 2014-07-16 | 2016-01-21 | TUPL, Inc. | Machine learning-based geolocation and hotspot area identification |
CN110135488A (zh) * | 2019-05-10 | 2019-08-16 | 南京邮电大学 | 融合字典训练与观测矩阵优化的数据高质压缩方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113779628A (zh) * | 2021-09-08 | 2021-12-10 | 湖南科技学院 | 匿名关联用户矩阵填充隐私动态发布方法 |
CN113779628B (zh) * | 2021-09-08 | 2024-04-30 | 湖南科技学院 | 匿名关联用户矩阵填充隐私动态发布方法 |
CN113869503A (zh) * | 2021-12-02 | 2021-12-31 | 北京建筑大学 | 一种基于深度矩阵分解补全的数据处理方法及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN111506832B (zh) | 2023-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bhatti et al. | Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence | |
Zhang et al. | Detection of co-salient objects by looking deep and wide | |
US12175744B2 (en) | Systems and methods for interactive image scene graph pattern search and analysis | |
Sun et al. | Saliency guided deep network for weakly-supervised image segmentation | |
WO2017212459A1 (en) | Content embedding using deep metric learning algorithms | |
CN111368254B (zh) | 多流形正则化非负矩阵分解的多视角数据缺失补全方法 | |
CN114676777B (zh) | 一种基于孪生网络的自监督学习细粒度图像分类方法 | |
CN117393098A (zh) | 基于视觉先验和跨模态对齐网络的医疗影像报告生成方法 | |
Xia et al. | A regularized optimization framework for tag completion and image retrieval | |
CN111523586A (zh) | 一种基于噪声可知的全网络监督目标检测方法 | |
JP2015036939A (ja) | 特徴抽出プログラム及び情報処理装置 | |
CN111506832B (zh) | 一种基于块矩阵补全的异构对象补全方法 | |
Mishra et al. | Graph interpretation, summarization and visualization techniques: A review and open research issues | |
Gong et al. | Unsupervised RGB-T saliency detection by node classification distance and sparse constrained graph learning | |
Li et al. | Localized content-based image retrieval through evidence region identification | |
CN115631008A (zh) | 商品推荐方法、装置、设备及介质 | |
CN112364747A (zh) | 一种有限样本下的目标检测方法 | |
CN111046965A (zh) | 一种多标记分类中潜在类别发现和分类方法 | |
CN110175631A (zh) | 一种基于共同学习子空间结构和聚类指示矩阵的多视图聚类方法 | |
Zhou et al. | Semantic image segmentation using low-level features and contextual cues | |
CN113553975A (zh) | 基于样本对关系蒸馏的行人重识别方法、系统、设备及介质 | |
Tang et al. | A deep-learning model for semantic segmentation of meshes from UAV oblique images | |
Arya et al. | Node classification using deep learning in social networks | |
CN115019342B (zh) | 一种基于类关系推理的濒危动物目标检测方法 | |
Tang et al. | Tag ranking based on salient region graph propagation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230627 Address after: 450000 Longzihu University Park, Wenyuan North Road, Zhengdong New District, Zhengzhou City, Henan Province Applicant after: ZHENGZHOU VOCATIONAL University OF INFORMATION AND TECHNOLOGY Address before: 224000 North 22nd floor, Kechuang building, landscape Avenue, Xindu street, Chengnan New District, Yancheng City, Jiangsu Province (CND) Applicant before: YANCHENG CHANTU INTELLIGENT TECHNOLOGY CO.,LTD. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231221 Address after: Room 601-6, 6th Floor, Building B8, Building 5, Northwest, Intersection of Century Avenue and Baocai Road, Yandu District, Yancheng City, Jiangsu Province, 224000 Patentee after: Jiangsu Breus Technology Co.,Ltd. Address before: 450000 Longzihu University Park, Wenyuan North Road, Zhengdong New District, Zhengzhou City, Henan Province Patentee before: ZHENGZHOU VOCATIONAL University OF INFORMATION AND TECHNOLOGY |
|
TR01 | Transfer of patent right |