CN111505602A - Electronic device and three-dimensional scanning method - Google Patents

Electronic device and three-dimensional scanning method Download PDF

Info

Publication number
CN111505602A
CN111505602A CN201910089436.5A CN201910089436A CN111505602A CN 111505602 A CN111505602 A CN 111505602A CN 201910089436 A CN201910089436 A CN 201910089436A CN 111505602 A CN111505602 A CN 111505602A
Authority
CN
China
Prior art keywords
laser
line laser
scanned
shaper
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910089436.5A
Other languages
Chinese (zh)
Inventor
陈海潭
陈楠
林君翰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang OFilm Biometric Identification Technology Co Ltd
Original Assignee
Nanchang OFilm Biometric Identification Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang OFilm Biometric Identification Technology Co Ltd filed Critical Nanchang OFilm Biometric Identification Technology Co Ltd
Priority to CN201910089436.5A priority Critical patent/CN111505602A/en
Publication of CN111505602A publication Critical patent/CN111505602A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)

Abstract

The invention relates to an electronic device.A laser emitting module can emit line laser and rotate around a rotating shaft under the driving of a driving piece, so that the line laser sequentially covers the whole surface of an object to be scanned. By adjusting the rotating preset angle range, the covering surface of the line laser can be matched with the size of an object to be scanned, and the waste of laser energy is avoided. Moreover, for the area with more characteristic points on the surface of the object to be scanned, the controller can control the driving piece to slow down the rotating speed, so that the energy of the linear laser is concentrated in the area to project more characteristic points; for the area with less characteristic points, the controller can control the driving element to rotate quickly to avoid unnecessary energy waste because less characteristic points need to be projected. Therefore, on the premise of ensuring the scanning effect, the required power of the electronic device is smaller, so that the scanning efficiency is effectively improved. In addition, the invention also provides a three-dimensional scanning method.

Description

Electronic device and three-dimensional scanning method
Technical Field
The present invention relates to the field of scanning and recognition technologies for 3D imaging, and in particular, to an electronic device and a three-dimensional scanning method.
Background
The scanning identification technology is widely applied to the fields of mobile phones, vehicles, robots, 3D printing and the like, and information collection and model reconstruction can be carried out on scanned objects through scanning. In the three-dimensional scanning technique, in order to obtain depth data, a surface laser is generally used as a scanning light source.
The area light source can generate depth data, but the FOV (field angle) of the area light source is fixed. Thus, at different application distances, there is a difference in the area covered by the FOV. For example, in the case of short-distance application, the coverage area is small, so the FOV required by an object to be measured (such as a human face) is large, and the larger the light output power is, the more the power consumption is. When the device is used for a long distance, the coverage area is large, and the proportion of the object to be measured occupying the FOV visual field range is too small, so that the waste of the light source is caused.
Therefore, when the conventional electronic device performs three-dimensional scanning, the light emitting power is greatly wasted no matter the electronic device is used at a long distance or at a short distance, so that the scanning efficiency is not high.
Disclosure of Invention
Accordingly, it is desirable to provide an electronic device and a three-dimensional scanning method capable of improving the scanning efficiency, which is directed to the problem of low scanning efficiency of the conventional electronic device.
An electronic device for 3D scanning imaging, comprising:
the rotatable laser emission module is used for projecting line laser to the surface of an object to be scanned;
the driving piece is rotationally connected with the laser emission module through a rotating shaft so as to drive the laser emission module to rotate around the rotating shaft within a preset angle range, and the rotating shaft is parallel to a plane formed by the line laser and is vertical to the light emitting direction of the line laser; and
and the controller is electrically connected with the driving piece and controls the driving piece to drive the laser emission module to rotate at a variable speed according to a preset instruction.
The laser emitting module can emit line laser and rotate around the rotating shaft under the driving of the driving part, so that the line laser sequentially covers the whole surface of the object to be scanned. By adjusting the rotating preset angle range, the covering surface of the line laser can be matched with the size of an object to be scanned, and the waste of laser energy is avoided. Moreover, for the area with more characteristic points on the surface of the object to be scanned, the controller can control the driving piece to slow down the rotating speed, so that the energy of the linear laser is concentrated in the area to project more characteristic points; for the area with less characteristic points, the controller can control the driving element to rotate quickly to avoid unnecessary energy waste because less characteristic points need to be projected.
In one embodiment, the laser emission module includes a base having an exit, a ceramic substrate mounted on the base, a shaper, and a vertical cavity surface emitting laser supported on the ceramic substrate, the shaper covers the exit, the ceramic substrate is disposed opposite to the shaper, the vertical cavity surface emitting laser is located between the ceramic substrate and the shaper, and the line laser is obtained after the exit of the vertical cavity surface emitting laser is shaped by the shaper.
In one embodiment, the laser emission module comprises a base with a light outlet, a ceramic substrate accommodated in the base, an edge-emitting laser and a shaper, the ceramic substrate is fixed on a side wall of the housing, the shaper covers the light outlet, the edge-emitting laser is carried on the ceramic substrate and aligned with the shaper, and light emitted from the edge-emitting laser is shaped by the shaper to obtain the line laser.
In one embodiment, the shaper is a glass plate having a surface microstructure, the surface of the glass plate having micro-optical structures to refract light passing through the micro-optical structures.
In one embodiment, the drive member is a servo motor.
Because the rotating speed of the servo motor is accurate and controllable, the rotating speed and the rotating angle of the laser emission module can be accurately controlled.
In one embodiment, the preset angle range includes a plurality of continuous rotation intervals, each rotation interval has a corresponding rotation speed, and the controller controls the driving member according to the corresponding relationship between the rotation intervals and the rotation speeds.
In one embodiment, the light-emitting angle of the laser emitting module is adjustable.
The linear laser is in fan shape, and the length of a light spot formed on an object to be scanned is determined by the size of a light-emitting angle of the linear laser. Therefore, the coverage range of the line laser can be better matched with the transverse boundary of the object to be scanned by adjusting the size of the light-emitting angle.
In one embodiment, the scanning device further comprises a signal receiving module, configured to receive a return light signal formed by reflection of the line laser by the object to be scanned.
A three-dimensional scanning method is used for scanning an object to be scanned with a surface having a dense characteristic region and a sparse characteristic region, and comprises the following steps:
projecting line laser on the surface of the object to be scanned;
and moving the line laser along a direction perpendicular to a plane formed by the line laser, wherein the moving speed of the line laser in the feature dense area is lower than that in the feature sparse area.
By controlling the moving distance of the line laser, the covering area of the line laser can be just matched with the surface size of the object to be scanned. Therefore, the laser scanning device can avoid the condition that the light beam of the line laser irradiates outside the range of the object to be scanned, overcomes the defect of fixed view angle in the existing surface laser scanning, and effectively avoids the waste of laser energy. The line laser does not move at a constant speed, and the moving speed of the line laser is lower for a characteristic dense area with more distributed characteristic points on the surface of an object to be scanned, so that the energy of the line laser is concentrated in the area to project more characteristic points; for the characteristic sparse area with less distributed characteristic points, the linear laser moves faster due to less required projected characteristic points, and further unnecessary energy waste is avoided. Therefore, the required power is smaller on the premise of ensuring the scanning effect, and the scanning efficiency is effectively improved.
In one embodiment, the method further comprises the following steps: and receiving a return light signal formed by reflecting the line laser by the object to be scanned.
Drawings
FIG. 1 is a flow chart of a three-dimensional scanning method according to a preferred embodiment of the present invention;
FIG. 2 is a schematic view of a three-dimensional scan scenario of the present invention;
FIG. 3 is a schematic structural diagram of an electronic device according to a preferred embodiment of the invention;
FIG. 4 is a schematic structural diagram of a laser transmitter module according to an embodiment of the present invention;
fig. 5 is a schematic structural diagram of a laser emitting module according to another embodiment of the invention.
Detailed Description
To facilitate an understanding of the invention, the invention will now be described more fully with reference to the accompanying drawings. Preferred embodiments of the present invention are shown in the drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete.
It will be understood that when an element is referred to as being "secured to" another element, it can be directly on the other element or intervening elements may also be present. When an element is referred to as being "connected" to another element, it can be directly connected to the other element or intervening elements may also be present. The terms "vertical," "horizontal," "left," "right," and the like as used herein are for illustrative purposes only.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
The invention provides a three-dimensional scanning method and an electronic device, both of which are used for three-dimensionally scanning an object to be scanned to realize 3D imaging, so that the three-dimensional scanning method and the electronic device are applied to the fields of face recognition, 3D printing and the like.
Referring to fig. 1, the three-dimensional scanning method in the preferred embodiment of the invention includes steps S110 to S120:
step 110, the line laser is projected on the surface of the object to be scanned.
Specifically, when the light beam of the line laser is projected onto a plane, the light spot formed on the plane is in a shape of a straight line. The direction in which the spot extends is referred to as the longitudinal direction of the line laser spot. The line laser can be emitted by a special line laser emitter, and the surface laser emitted by the surface laser emitter can be converted into the line laser through a shaper.
The surface of the object to be scanned has a characteristic dense region and a characteristic sparse region. The dense feature region refers to a region with a complex surface structure and a large distribution of feature points. The characteristic sparse region refers to a region with a flat surface, a simple structure and less distribution of characteristic points. Taking a human face as an example, the triangular region is relatively three-dimensional and complex in structure due to the fact that the triangular region is uneven, and therefore the triangular region is considered as a characteristic dense region of the human face; the forehead is similar to a plane, and the structure is relatively simple, so the forehead can be regarded as a characteristic sparse region of the face.
More than one characteristic dense region and characteristic sparse region can be arranged on the surface of the object to be scanned. Also, the feature dense region and the feature sparse region are relative concepts. For example, there are A, B, C three regions on the surface of an object to be scanned, and the distribution of the number of feature points in a unit area in the three regions is A > B > C. Then region a is a feature dense region relative to region B and region C; region B is a feature sparse region with respect to region a, and a feature dense region with respect to region C.
And step 120, moving the line laser along the direction perpendicular to the plane formed by the line laser, wherein the moving speed of the line laser in the dense feature area is lower than that in the sparse feature area.
Specifically, the linear laser light emitting can form a fan-shaped light emitting plane. When the line laser is moved in a direction perpendicular to a plane formed by the line laser, a movement locus of the line laser can be made to be a plane. Therefore, the line laser can sequentially cover the whole surface of the object to be scanned, thereby being equivalent to the scanning effect of the area laser.
By controlling the moving distance of the line laser, the covering area of the line laser can be just matched with the surface size of the object to be scanned. Therefore, the laser scanning device can avoid the condition that the light beam of the line laser irradiates outside the range of the object to be scanned, overcomes the defect of fixed view angle in the existing surface laser scanning, and effectively avoids the waste of laser energy.
In this embodiment, the light exit angle of the line laser is adjustable. The linear laser is in fan shape, and the size of the light-emitting angle determines the length of a light spot formed on an object to be scanned. Therefore, by adjusting the light-emitting angle, such as 30 degrees, 75 degrees, 90 degrees or 110 degrees, the coverage of the line laser can be better matched with the lateral boundary of the object to be scanned.
Furthermore, the line laser does not move at a constant speed, but moves at different speeds in different areas of the object to be scanned. As shown in fig. 2, the line laser beam rapidly passes through the region with a small distribution of the upper feature points, decreases the moving speed when moving to the region with a large distribution of the middle feature points, and increases the speed again to rapidly pass through the region with a small distribution of the lower feature points.
For a characteristic dense area with more distributed characteristic points on the surface of an object to be scanned, the moving speed of the line laser is lower, so that the energy of the line laser is concentrated in the area to project more characteristic points; for the characteristic sparse area with less distributed characteristic points, the linear laser moves faster due to less required projected characteristic points, and further unnecessary energy waste is avoided. Therefore, the required power is smaller on the premise of ensuring the scanning effect, and the scanning efficiency is effectively improved.
In addition, the line laser adopts a variable speed moving mode, so that the stay time in a characteristic dense area is long, more characteristic points can be projected, and the scanning accuracy is higher.
In this embodiment, the three-dimensional scanning method further includes: and receiving a return light signal formed by reflecting the line laser by an object to be scanned.
Specifically, the return light signal contains characteristic point information of the surface of the object to be scanned, and the return light signal is further processed, analyzed and modeled to reconstruct the surface of the object to be scanned, so that the return light signal can be used for subsequent processes of identification, printing and the like.
The moving speed of the line laser can be preset. Specifically, the moving process of the line laser is divided into a plurality of stages, and different moving speeds are set for each stage. The speed setting is small at the stage corresponding to the region where the surface features of the object to be scanned are dense, and is large at the stage corresponding to the region where the surface features of the object to be scanned are sparse. Taking the scanning process shown in fig. 2 as an example, the moving process of the line laser can be divided into three stages, the first stage and the third stage are faster, such as 5 cm/s; while the intermediate second stage speed is set slower, such as 2 cm/sec. However, such a phase arrangement is effective only for a fixed type of object to be scanned, and when the type of object to be scanned is changed, a large deviation may occur.
In other embodiments, the return light signal is analyzed to extract feature points, and the number of the extracted feature points in unit time is compared to judge whether the line laser enters a feature dense region or a feature sparse region, so as to control the moving speed of the line laser.
Specifically, when the number of the feature points extracted in unit time is in an increasing trend, the judgment line laser enters the feature dense region from the feature sparse region, so that the moving speed is reduced. When the number of the extracted feature points in unit time is in a decreasing trend, the judgment line laser enters the feature sparse area from the feature dense area, so that the moving speed is improved. Therefore, the moving speed of the line laser can realize dynamic matching, so that the line laser can be suitable for various different types of objects to be scanned.
Referring to fig. 3, the present invention further provides an electronic apparatus 200 for 3D scanning imaging. The electronic device 200 according to the preferred embodiment of the present invention includes a laser emitting module 210, a driving member 220, and a controller (not shown).
The laser emitting module 210 is used for projecting line laser to the surface of the object to be scanned. When the light beam of the line laser is projected to a plane, the light spot formed on the plane is in a linear shape. The extending direction of the spot is referred to as the longitudinal direction of the line laser. The laser emitting module 210 is rotatably disposed. Specifically, the electronic device 200 generally has a housing (not shown), and the laser emitting module 210, the driving member 220 and the controller are integrated in the housing. The laser emitting module 210 can be rotatably mounted in the housing by a coaxial pin and a hinge.
As shown in fig. 4, in one embodiment, the laser emitting module 210 includes a base 211, a ceramic substrate 213, a shaper 215, and a vertical cavity surface emitting laser 217.
The base 211 has a light exit (not shown), and the ceramic substrate 213 and the shaper 215 are mounted on the base 211. The shaper 215 covers the light outlet, and the transmittance of the shaper 215 is generally more than or equal to 95%. Specifically, the shaper 215 is a glass plate having micro-optical structures on its surface to refract light passing through the glass plate, i.e., to shape the light by the micro-optical structures on the surface of the glass plate. The vertical cavity surface emitting laser 217 is carried on the ceramic substrate 213, the ceramic substrate 213 is disposed opposite to the shaper 215, and the vertical cavity surface emitting laser 217 is located between the ceramic substrate 213 and the shaper 215. At this time, the laser emitting module 210 is vertical.
The multiple quantum wells FOV 21 ° ± 3 ° of the vertical cavity surface emitting laser 217 are cast on the shaper 215, and the microstructure on the shaper 215 shapes the invisible light source into line laser by refraction and convergence. The obtained line laser has good collimation in the line width direction and small divergence angle (generally 0.5 degree).
In another embodiment, as shown in fig. 5, laser firing module 210 includes a base 211, a ceramic substrate 213, a shaper 215, and an edge-emitting laser 217.
The base 211 has a light exit (not shown), and the ceramic substrate 213 and the shaper 215 are accommodated in the base 211. The shaper 215 covers the light outlet, and the transmittance of the shaper 215 is generally more than or equal to 95%. In particular, the shaper 215 is a glass plate having a micro-optical structure on its surface to refract light passing through the glass plate. The ceramic substrate 213 is secured to the sidewall of the base 211 and the edge-emitting laser 217 is carried on the ceramic substrate 213 in alignment with the shaper 215. At this time, the laser emitting module 210 is horizontal.
A quantum well (a fast axis divergence angle is 30-60 degrees, a slow axis divergence angle is 10 degrees, and the EE L conversion efficiency is higher than or equal to 65 percent) of the edge emitting laser 217 is thrown on the shaper 215, and the microstructure on the shaper 215 shapes the invisible light source into line laser emission through refraction and convergence, wherein the line width direction collimation of the obtained line laser is good, and the divergence angle is small (generally 0.5 degrees).
The driving member 220 is rotatably connected to the laser emitting module 210 through a rotating shaft (not shown) to drive the laser emitting module 210 to rotate around the rotating shaft within a predetermined angle range, wherein the rotating shaft is parallel to a plane formed by the line laser and perpendicular to a light emitting direction of the line laser. That is, the spindle extends in the longitudinal direction of the line laser. At this time, the laser emitting module 210 rotates around the rotation axis, and can drive the line laser to move upwards in a direction perpendicular to the plane formed by the line laser, so that the moving track of the line laser is planar. Therefore, the line laser can sequentially cover the whole surface of the object to be scanned, thereby being equivalent to the scanning effect of the area laser.
By controlling the range of the preset angle, the coverage area of the line laser can be just matched with the surface size of the object to be scanned. Therefore, the line laser emitted by the laser emitting module 210 can be prevented from irradiating outside the range of the object to be scanned, the defect of fixed view angle in the existing surface laser scanning device is overcome, and the waste of laser energy is effectively avoided. Moreover, no matter how far or near the application range is, the power of the laser emitting module 210 does not need to be adjusted, and only the rotating preset angle range needs to be adjusted.
Specifically, in the present embodiment, the light-emitting angle of the laser emitting module 210 is adjustable. The linear laser is in fan shape, and the length of a light spot formed on an object to be scanned is determined by the size of a light-emitting angle of the linear laser. Therefore, by adjusting the light-emitting angle, such as 30 degrees, 75 degrees, 90 degrees or 110 degrees, the coverage of the line laser can be better matched with the lateral boundary of the object to be scanned.
In the present embodiment, the driving member 220 is a servo motor. The output shaft of the servo motor is linked with the laser emitting module 210. Since the rotation speed of the servo motor is precisely controllable, the rotation speed and the rotation angle of the laser emitting module 210 can be precisely controlled.
The controller is electrically connected to the driving member 220, and the controller controls the driving member 220 to drive the laser emitting module 210 to rotate at a variable speed according to a preset command. That is, the line laser does not only move at a constant speed, but also moves at different speeds in different areas of the object to be scanned.
Specifically, the surface of the object to be scanned has a dense-feature region and a sparse-feature region. The dense feature region refers to a region with a complex surface structure and a large distribution of feature points. The characteristic sparse region refers to a region with a flat surface, a simple structure and less distribution of characteristic points. Taking a human face as an example, the triangular region is relatively three-dimensional and complex in structure due to the fact that the triangular region is uneven, and therefore the triangular region is considered as a characteristic dense region of the human face; the forehead is similar to a plane, and the structure is relatively simple, so the forehead can be regarded as a characteristic sparse region of the face.
More than one characteristic dense region and characteristic sparse region can be arranged on the surface of the object to be scanned. Also, the feature dense region and the feature sparse region are relative concepts. For example, there are A, B, C three regions on the surface of an object to be scanned, and the distribution of the number of feature points in the three regions is A > B > C. Then region a is a feature dense region relative to region B and region C; region B is a feature sparse region with respect to region a, and a feature dense region with respect to region C.
According to a preset instruction, for a feature-dense area with more distributed feature points on the surface of the object to be scanned, the controller may control the driving member 220 to slow down the rotation speed, so that the energy of the line laser is concentrated in the area to project more feature points; for the sparse feature areas with less feature points, the controller can control the driving member 220 to rotate rapidly to avoid unnecessary energy waste because fewer feature points need to be projected. Therefore, the required power is smaller on the premise of ensuring the scanning effect, and the scanning efficiency is effectively improved.
Moreover, since the line laser moves in a variable speed manner, the stay time in the dense feature area is long, so that more feature points can be projected, and the scanning accuracy of the electronic device 200 is higher.
As shown in fig. 2, the line laser beam rapidly passes through the region with a small distribution of the upper feature points, decreases the moving speed when moving to the region with a large distribution of the middle feature points, and increases the speed again to rapidly pass through the region with a small distribution of the lower feature points.
In this embodiment, the predetermined angle range includes a plurality of continuous rotation intervals, and each rotation interval has a corresponding rotation speed, and the controller controls the driving member 220 according to the corresponding relationship between the rotation interval and the rotation speed.
Specifically, the rotation process of the laser emitting module 210 is divided into a plurality of stages in advance, corresponding to a plurality of rotation intervals. Different rotation angular speeds are set in each stage, so that the moving speed of the line laser can be correspondingly changed. The angular velocity is set to be small at a stage of rotating to correspond to the dense region of the surface features of the object to be scanned, and is set to be large at a stage of corresponding to the sparse region of the surface features of the object to be scanned. For example, the predetermined angle range of the rotation of the laser emitting module 210 is set to 60 degrees, and the rotation interval of every 20 degrees can be divided into three rotation intervals. When the laser emitting module 210 rotates to one of the rotation intervals, the controller rotates at a corresponding angle.
Taking the scanning process shown in fig. 2 as an example, the rotation process of the laser emitting module 210 can be divided into three stages, the first stage and the third stage have faster angular velocity, such as 5 cm/s; while the intermediate second stage angular velocity is set slower, such as 2 cm/sec.
In the embodiment of the present disclosure, the electronic device 200 further includes a signal receiving module 230 for receiving a return light signal formed by reflecting the line laser through the object to be scanned.
Specifically, the return light signal includes characteristic point information of the surface of the object to be scanned, the signal receiving module 230 receives the return light signal, and the return light signal is further processed, analyzed, and modeled to reconstruct the surface of the object to be scanned, so that the signal receiving module can be used in subsequent processes such as identification and printing.
In other embodiments, the return light signal is analyzed to extract feature points, and the number of the extracted feature points in unit time is compared to judge whether the line laser enters a feature dense region or a feature sparse region, so as to control the moving speed of the line laser.
Specifically, when the number of the feature points extracted in unit time is in an increasing trend, the judgment line laser enters the feature dense region from the feature sparse region. At this time, the angular velocity of the laser emitting module 210 is reduced, so that the line laser movement becomes slow. And when the number of the extracted feature points in unit time is in a decreasing trend, judging that the linear laser enters the feature sparse area from the feature dense area. At this time, the angular velocity of the laser emitting module 210 is increased, so that the line laser movement becomes fast. Therefore, the moving speed of the line laser can realize dynamic matching, so that the line laser can be suitable for various different types of objects to be scanned.
In the electronic device 200, the laser emitting module 210 can emit line laser, and the line laser is driven by the driving member 220 to rotate around the rotating shaft, so that the line laser sequentially covers the whole surface of the object to be scanned. By adjusting the rotating preset angle range, the covering surface of the line laser can be matched with the size of an object to be scanned, and the waste of laser energy is avoided. Moreover, for the region with more characteristic points on the surface of the object to be scanned, the controller can control the driving element 220 to slow down the rotation speed, so that the energy of the line laser is concentrated in the region to project more characteristic points; for the regions with fewer feature points, the controller can control the driving member 220 to rotate rapidly to avoid unnecessary energy waste because fewer feature points need to be projected. Therefore, on the premise of ensuring the scanning effect, the required power of the electronic device is smaller, so that the scanning efficiency is effectively improved.
The technical features of the embodiments described above may be arbitrarily combined, and for the sake of brevity, all possible combinations of the technical features in the embodiments described above are not described, but should be considered as being within the scope of the present specification as long as there is no contradiction between the combinations of the technical features.
The above-mentioned embodiments only express several embodiments of the present invention, and the description thereof is more specific and detailed, but not construed as limiting the scope of the invention. It should be noted that, for a person skilled in the art, several variations and modifications can be made without departing from the inventive concept, which falls within the scope of the present invention. Therefore, the protection scope of the present patent shall be subject to the appended claims.

Claims (10)

1. An electronic device, for 3D scanning imaging, comprising:
the rotatable laser emission module is used for projecting line laser to the surface of an object to be scanned;
the driving piece is rotationally connected with the laser emission module through a rotating shaft so as to drive the laser emission module to rotate around the rotating shaft within a preset angle range, and the rotating shaft is parallel to a plane formed by the line laser and is vertical to the light emitting direction of the line laser; and
and the controller is electrically connected with the driving piece and controls the driving piece to drive the laser emission module to rotate at a variable speed according to a preset instruction.
2. The electronic device of claim 1, wherein the laser emitting module comprises a base having an exit opening, a ceramic substrate mounted on the base, a shaper, and a vertical cavity surface emitting laser supported on the ceramic substrate, wherein the shaper covers the exit opening, the ceramic substrate is disposed opposite to the shaper with the vertical cavity surface emitting laser disposed between the ceramic substrate and the shaper, and the line laser is obtained by shaping the exit light of the vertical cavity surface emitting laser by the shaper.
3. The electronic device of claim 1, wherein the laser emitting module comprises a base having an exit port, a ceramic substrate received in the base, an edge-emitting laser and a shaper, the ceramic substrate is fixed to a sidewall of the housing, the shaper covers the exit port, the edge-emitting laser is carried on the ceramic substrate and aligned with the shaper, and the line laser is obtained after the exit light of the edge-emitting laser is shaped by the shaper.
4. An electronic device according to claim 2 or 3, characterized in that the shaper is a glass plate having a micro-optical structure on its surface for refracting light passing through the micro-optical structure.
5. The electronic device of claim 1, wherein the drive member is a servo motor.
6. The electronic device according to claim 1, wherein the predetermined angular range includes a plurality of consecutive rotation intervals, each rotation interval has a corresponding rotation speed, and the controller controls the driving member according to a corresponding relationship between the rotation interval and the rotation speed.
7. The electronic device of claim 1, wherein the light-emitting angle of the laser emitting module is adjustable.
8. The electronic device of claim 1, further comprising a signal receiving module configured to receive a return light signal formed by the line laser reflected by the object to be scanned.
9. A three-dimensional scanning method is used for scanning an object to be scanned with a surface having a dense characteristic region and a sparse characteristic region, and is characterized by comprising the following steps:
projecting line laser on the surface of the object to be scanned;
and moving the line laser along a direction perpendicular to a plane formed by the line laser, wherein the moving speed of the line laser in the feature dense area is lower than that in the feature sparse area.
10. The three-dimensional scanning method according to claim 9, further comprising the steps of: and receiving a return light signal formed by reflecting the line laser by the object to be scanned.
CN201910089436.5A 2019-01-30 2019-01-30 Electronic device and three-dimensional scanning method Withdrawn CN111505602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910089436.5A CN111505602A (en) 2019-01-30 2019-01-30 Electronic device and three-dimensional scanning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910089436.5A CN111505602A (en) 2019-01-30 2019-01-30 Electronic device and three-dimensional scanning method

Publications (1)

Publication Number Publication Date
CN111505602A true CN111505602A (en) 2020-08-07

Family

ID=71868934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910089436.5A Withdrawn CN111505602A (en) 2019-01-30 2019-01-30 Electronic device and three-dimensional scanning method

Country Status (1)

Country Link
CN (1) CN111505602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909712A (en) * 2021-03-08 2021-06-04 北京石头世纪科技股份有限公司 Line laser module and self-moving equipment
WO2022252712A1 (en) * 2021-06-02 2022-12-08 北京石头世纪科技股份有限公司 Line laser module and self-moving device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909712A (en) * 2021-03-08 2021-06-04 北京石头世纪科技股份有限公司 Line laser module and self-moving equipment
WO2022188366A1 (en) * 2021-03-08 2022-09-15 北京石头世纪科技股份有限公司 Line laser module and self-moving device
WO2022252712A1 (en) * 2021-06-02 2022-12-08 北京石头世纪科技股份有限公司 Line laser module and self-moving device
US11966233B2 (en) 2021-06-02 2024-04-23 Beijing Roborock Technology Co., Ltd. Line laser module and autonomous mobile device

Similar Documents

Publication Publication Date Title
JP5541410B2 (en) Laser radar equipment
EP3217208B1 (en) Head device of three-dimensional modeling equipment having unidirectionally rotating polygon mirrors, scanning method for modeling plane using same, and three-dimensional modeling device using same
CN101972928B (en) Automatic aligning assembly system for micro members
CN111505602A (en) Electronic device and three-dimensional scanning method
CN103033819A (en) Obstacle sensor and robot cleaner having the same
WO2021057569A1 (en) Rotatable reflecting head and laser scanning apparatus
CN107112710A (en) Laser irradiation device and method
KR102673029B1 (en) Lidar optical apparatus
JP6309754B2 (en) Laser radar equipment
WO2018077262A1 (en) Sensor for automatic drive
CN209928015U (en) Electronic device
EP4150377A1 (en) Dual shaft axial flux motor for optical scanners
US10782536B2 (en) Laser device for additive manufacturing and operation method thereof
KR102249842B1 (en) 3D scanner device
CN110554395A (en) Laser detection system and method thereof
CN111398272B (en) Terahertz wave rotating mirror continuous imaging method and system
EP3899604B1 (en) Reflector for reflecting electromagnetic waves from a rotating electromagnetic wave source
KR102287071B1 (en) Lidar optical apparatus
WO2020110801A1 (en) Ranging sensor, vehicle lamp, and ranging method
CN113960562A (en) Structured light module and self-moving equipment
CN108459390B (en) Energy gathering device
KR20200059426A (en) Lidar optical apparatus
CN106054176A (en) Method of utilizing 2D radar to realize space exploration
KR20210023052A (en) Optical apparatus for light detection and ranging
CN113126107A (en) Scanning laser radar

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 330096 No.699 Tianxiang North Avenue, Nanchang hi tech Industrial Development Zone, Nanchang City, Jiangxi Province

Applicant after: Jiangxi OMS Microelectronics Co.,Ltd.

Address before: 330096 No.699 Tianxiang North Avenue, Nanchang hi tech Industrial Development Zone, Nanchang City, Jiangxi Province

Applicant before: OFilm Microelectronics Technology Co.,Ltd.

Address after: 330096 No.699 Tianxiang North Avenue, Nanchang hi tech Industrial Development Zone, Nanchang City, Jiangxi Province

Applicant after: OFilm Microelectronics Technology Co.,Ltd.

Address before: 330029 No. 1189 Jingdong Avenue, Nanchang high tech Zone, Jiangxi

Applicant before: NANCHANG OFILM BIO-IDENTIFICATION TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
WW01 Invention patent application withdrawn after publication

Application publication date: 20200807

WW01 Invention patent application withdrawn after publication