CN111504177B - 一种高对比度编码显微成像系统及方法 - Google Patents

一种高对比度编码显微成像系统及方法 Download PDF

Info

Publication number
CN111504177B
CN111504177B CN202010343527.XA CN202010343527A CN111504177B CN 111504177 B CN111504177 B CN 111504177B CN 202010343527 A CN202010343527 A CN 202010343527A CN 111504177 B CN111504177 B CN 111504177B
Authority
CN
China
Prior art keywords
coding
light source
imaging
contrast
microscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010343527.XA
Other languages
English (en)
Other versions
CN111504177A (zh
Inventor
陈硕
路交
王大珩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN202010343527.XA priority Critical patent/CN111504177B/zh
Publication of CN111504177A publication Critical patent/CN111504177A/zh
Application granted granted Critical
Publication of CN111504177B publication Critical patent/CN111504177B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明属于光学领域,公开了一种高对比度编码显微成像系统及方法,系统包括编码光源模块和显微成像模块。其中,编码光源模块包含白光光源、光纤、扩束镜、光栅、消色差透镜、数字微镜器件、透镜组、锥型光纤及计算机,用于实现任意输出光源光谱的编码光源;显微成像模块包含载物台、物镜、透镜、相机以及计算机,用于采集编码显微图像。该方法利用光谱数据后处理方法计算可实现高对比度显微成像所需的波长位置以及该波长对于提高对比度的权重,随后通过控制编码光源模块实现对应的光源输出光谱,最后通过在该编码光源照明下成像获得高对比度的编码显微图像。

Description

一种高对比度编码显微成像系统及方法
技术领域
本发明属于光学领域,涉及一种高对比度编码显微成像系统及方法。
背景技术
光学显微成像可提供关于样本的微细结构信息,已被广泛应用于生物、医学、材料科学等众多领域。而对比度作为衡量光学显微成像系统成像质量的关键技术指标之一,一直是显微成像领域研究的热点问题。由于待测样本对于光的选择吸收性,即待测样本中不同位置的组成成分对于不同波长下光的吸收不同,因此不同波长下所采集的显微图像的对比度通常具有显著差异。然而,由于生物样本组成成分的复杂性,仅利用单一波长下的显微成像通常难以实现较高的成像对比度,而复色光源通常光谱固定,亦难以作为高对比度显微成像的照明光源。因此,利用何种光源输出光谱的复色光源可实现高对比度成像,以及如何真正实现这种光源输出光谱的复色光源,是实现高对比度光学显微成像亟需解决的关键技术瓶颈。
发明内容
为实现高对比度的光学显微成像,本发明提供了一种高对比度编码显微成像系统及方法,利用光谱数据后处理方法计算可实现高对比度显微成像所需的波长位置以及该波长对于提高对比度的权重,随后通过编码光源模块实现对应的光源输出光谱,最后通过在该编码光源照明下成像获得高对比度的编码显微图像。
本发明的具体方案为:一种高对比度编码显微成像系统,包括编码光源模块、显微成像模块及计算机;其中,编码光源模块包含白光光源、光纤、扩束镜、光栅、消色差透镜、数字微镜器件、透镜组和锥形光纤,用于输出编码光源;显微成像模块包含载物台、物镜、透镜及相机,用于采集编码显微图像;编码光源模块中所述的白光光源发出的白光经光纤和扩束镜后形成平行束,经光栅分光后由消色差透镜将相同波长的光汇聚在数字微镜器件的同一微镜单元上,经数字微镜器件反射后由透镜组和锥型光纤耦合成单束光;通过计算机控制数字微镜器件上各微镜单元的角度,用于输出指定波长的光形成编码光,并照射至样本上;显微成像模块中所述载物台上放置样本并由物镜成像,经透镜调整放大倍数后,由相机采集编码显微图像,并在计算机上显示。
上述编码光源模块中,利用锥形光纤将由透镜组汇聚的光进一步缩束并准直,用于提高照射到样本上的光照强度和均匀度;其中,锥形光纤的一端由多根光纤组成直径较粗的光纤束,用于尽可能的收集编码光;另一端为直径相对较细的单根光纤,用于实现高强度、均匀的照明;光纤束与单根光纤之间通过光锥连接,用于将光束缩束。
采用上述系统进行高对比度编码显微成像的方法,利用带有标签信息的高光谱数据和光谱数据后处理方法,通过一系列线性操作将光谱数据后处理方法变换为一个一维向量,进而获得可实现高对比度显微成像所需的波长位置以及该波长对于提高对比度的权重,生成用于控制数字微镜器件的编码矩阵,基于编码矩阵控制数字微镜器件输出可实现高对比度编码显微成像的编码光源,利用显微成像模块采集该编码光源照明下的显微图像,即获得高对比度的编码显微图像。
本发明的有益效果为:本发明提供了一种高对比度编码显微成像系统及方法,利用光谱数据后处理方法计算可实现高对比度显微成像所需的波长位置以及该波长对于提高对比度的权重,随后通过高对比度编码显微成像系统中的编码光源模块实现对应的光源输出光谱,最后通过在该编码光源照明下获得编码显微图像,实现更高对比度的显微成像。
附图说明
图1是本发明一种高对比度编码显微成像系统的光路图;
图中:1白光光源;2光纤;3扩束器;4光栅;5消色差透镜;6数字微镜器件;7透镜组;8锥形光纤;9载物台;10物镜;11透镜;12相机;13计算机。
图2是实施例1利用一种高对比度编码显微成像系统,针对成骨细胞样本的编码显微成像结果;(a)是利用白光照明所采集的成骨细胞显微图像;(b)是用于获得高对比度显微图像的成像编码光源和补偿编码光源的光谱图;(c)是等效于编码光源照明下所采集的高对比度成骨细胞编码显微图像;(d)是白光照明下和编码光源照明下虚线所圈出区域中的细胞边界经归一化后的平均剖线图。
具体实施方式
下面结合附图对本发明的具体实施做详细说明。
实施例1
根据图1所示光路搭建一种高对比度编码显微成像系统,包括编码光源模块和显微成像模块。在编码光源模块,选用氙灯作为白光光源1,发出的白光经光纤2和扩束镜3后形成平行束,经刻线密度为300线/毫米的光栅4分光后,由焦距为35mm的消色差透镜5将相同波长的光汇聚在DLP4500数字微镜器件6的同一微镜单元上,通过计算机13控制数字微镜器件6上各微镜单元的角度,编码的指定波长的光由焦距为30mm和22mm两个消色差透镜所组成透镜组7和锥型光纤8耦合成单束光,形成编码光源;其中,所选用的锥形光纤8,一端由多根芯径为100um的光纤组成直径为3mm的光纤束作为收光端,另一端为直径为1mm的单根光纤作为出光端,光纤束与单根光纤之间通过放大率为3/1的光锥连接。在显微成像模块,置于载物台9上样本经编码光源照射后,由50X物镜10成像,经焦距为30mm的透镜11调整放大倍数后,由sCMOS相机12采集编码显微图像,并在计算机13上显示。图中:锥形光纤的一端由多根光纤组成直径较粗的光纤束,另一端为直径相对较细的单根光纤,光纤束与单根光纤之间通过光锥连接。
基于带有细胞和背景标签信息的成骨细胞样本高光谱数据集,将主成分分析和线性判别算法经一系列线性操作后,计算获得可实现高对比度显微成像所需的波长位置以及该波长对于提高对比度的权重,生成用于控制数字微镜器件6的编码矩阵;随后,根据编码矩阵控制编码光源模块输出编码光源;最终,利用显微成像模块在该编码光源下采集高对比度成骨细胞编码显微图像。具体步骤如下:
步骤一、利用主成分分析获得变换向量U1。计算成骨细胞高光谱数据H的协方差矩阵D,并按特征值由大到小排列后,取其中前4个特征向量作为变换向量U1,并计算对应的特征值s。
步骤二、利用线性判别方法获得变换向量U2。基于步骤一中所获得的特征值s和标签矩阵Y,计算类内散度矩阵Min和类间散度矩阵Mout,则变换向量U2为Min的逆矩阵与Mout的乘积。
步骤三、计算可实现高对比度显微成像所需的波长位置以及该波长对于提高对比度的权重,生成用于控制数字微镜器件6的编码矩阵T=U1U2
步骤四、由于编码矩阵T中存在负值,而高对比度编码显微成像系统的编码光源模块仅能输入非负的编码矩阵进行控制,因此可将编码矩阵T可以分解为非负的成像编码矩阵T1和非负的补偿编码矩阵T2。其中,补偿编码矩阵T2中各元素值等于编码矩阵T中最小值的绝对值,且编码矩阵T、成像编码矩阵T1及补偿编码矩阵T2满足T=T1-T2
步骤五、根据步骤四中的成像编码矩阵T1及补偿编码矩阵T2,控制编码光源模块分别生成成像编码光源和补偿编码光源,如图2(b)所示。
步骤六、利用显微成像模块,分别获得成像编码光源照明下的成骨细胞显微图像I1和补偿编码光源照明下的成骨细胞显微图像I2
步骤七、将成像编码光源照明下所采集的成骨细胞显微图像I1与补偿编码光源照明下所采集的成骨细胞显微图像I2相减,可等效于在编码光源照明下所采集的高对比度成骨细胞编码显微图像,如图2(c)所示。
通过与白光照明下所采集的成骨细胞显微图像对比可发现,白光照明下所采集的成骨细胞显微图像难以观测到成骨细胞(图2(a)),而编码光源下所采集的高对比度成骨细胞编码显微图像的成像可以很容易地观测到成骨细胞(图2(c))。根据图2(d)所示的细胞边界经归一化后的平均剖线图可计算出,对比于白光照明下所采集的成骨细胞显微图像,编码照明下所采集的成骨细胞编码显微图像的对比度提高了约59%。
实施例2
根据图1所示光路搭建一种高对比度编码显微成像系统,包括编码光源模块和显微成像模块。在编码光源模块,选用氙灯作为白光光源1,发出的白光经光纤2和扩束镜3后形成平行束,经刻线密度为300线/毫米的光栅4分光后,由焦距为35mm的消色差透镜5将相同波长的光汇聚在DLP4500数字微镜器件6的同一微镜单元上,通过计算机13控制数字微镜器件6上各微镜单元的角度,编码的指定波长的光由焦距为30mm和22mm两个消色差透镜所组成透镜组7和锥型光纤8耦合成单束光,形成编码光源;其中,所选用的锥形光纤8,一端由多根芯径为100um的光纤组成直径为3mm的光纤束作为收光端,另一端为直径为1mm的单根光纤作为出光端,光纤束与单根光纤之间通过放大率为3/1的光锥连接。在显微成像模块,置于载物台9上样本经编码光源照射后,由50X物镜10成像,经焦距为30mm的透镜11调整放大倍数后,由sCMOS相机12采集编码显微图像,并在计算机13上显示。图中:锥形光纤的一端由多根光纤组成直径较粗的光纤束,另一端为直径相对较细的单根光纤,光纤束与单根光纤之间通过光锥连接。
基于带有细胞和背景标签信息的成骨细胞样本高光谱数据集,将伪逆法经一系列线性操作后,计算获得可实现高对比度显微成像所需的波长位置以及该波长对于提高对比度的权重,生成用于控制数字微镜器件6的编码矩阵;随后,根据编码矩阵控制编码光源模块输出编码光源;最终,利用显微成像模块在该编码光源下采集高对比度成骨细胞编码显微图像。具体步骤如下:
步骤一、利用伪逆法,基于成骨细胞高光谱数据H和标签矩阵Y,计算可实现高对比度显微成像所需的波长位置以及该波长对于提高对比度的权重,生成用于控制数字微镜器件6的编码矩阵T,则编码矩阵T=YHT(HHT)-1
步骤二、由于编码矩阵T中存在负值,而高对比度编码显微成像系统的编码光源模块仅能输入非负的编码矩阵,因此可将编码矩阵T可以分解为非负的成像编码矩阵T1和非负的补偿编码矩阵T2。其中,补偿编码矩阵T2中各元素值等于编码矩阵T中最小值的绝对值,且编码矩阵T、成像编码矩阵T1及补偿编码矩阵T2满足T=T1-T2
步骤三、根据步骤四中的成像编码矩阵T1及补偿编码矩阵T2,控制编码光源模块分别生成成像编码光源和补偿编码光源。
步骤四、利用显微成像模块,分别获得成像编码光源照明下的成骨细胞显微图像I1和补偿编码光源照明下的成骨细胞显微图像I2
步骤五、将成像编码光源照明下所采集的成骨细胞显微图像I1与补偿编码光源照明下所采集的成骨细胞显微图像I2相减,可等效于在编码光源照明下所采集的高对比度成骨细胞编码显微图像。

Claims (4)

1.一种高对比度编码显微成像方法,其特征在于,该方法基于一种高对比度编码显微成像系统实现,所述的高对比度编码显微成像系统包括编码光源模块、显微成像模块及计算机(13);其中,编码光源模块包含白光光源(1)、光纤(2)、扩束镜(3)、光栅(4)、消色差透镜(5)、数字微镜器件(6)、透镜组(7)和锥形光纤(8),用于输出编码光源;显微成像模块包含载物台(9)、物镜(10)、透镜(11)及相机(12),用于采集编码显微图像;编码光源模块中所述的白光光源(1)发出的白光经光纤(2)和扩束镜(3)后形成平行束,经光栅(4)分光后由消色差透镜(5)将相同波长的光汇聚在数字微镜器件(6)的同一微镜单元上,经数字微镜器件(6)反射后由透镜组(7)和锥型光纤(8)耦合成单束光;通过计算机(13)控制数字微镜器件(6)上各微镜单元的角度,用于输出指定波长的光形成编码光,并照射至样本上;显微成像模块中所述载物台(9)上放置样本并由物镜(10)成像,经透镜(11)调整放大倍数后,由相机(12)采集编码显微图像,并在计算机(13)上显示;
所述的成像方法利用带有标签信息的高光谱数据和光谱数据后处理方法,通过一系列线性操作将光谱数据后处理方法变换为一个一维向量,进而获得可实现高对比度显微成像所需的波长位置以及该波长对于提高对比度的权重,生成用于控制数字微镜器件(6)的编码矩阵,基于编码矩阵控制编码光源模块输出可实现高对比度编码显微成像的编码光源,利用显微成像模块采集该编码光源照明下的显微图像,即获得高对比度的编码显微图像。
2.根据权利要求1所述的一种高对比度编码显微成像方法,其特征在于,编码光源模块中,利用锥形光纤(8)将由透镜组(7)汇聚的光进一步缩束并准直,用于提高照射到样本上的光照强度和均匀度;其中,锥形光纤的一端由多根光纤组成直径较粗的光纤束,用于尽可能的收集编码光;另一端为直径相对较细的单根光纤,用于实现高强度、均匀的照明;光纤束与单根光纤之间通过光锥连接,用于将光束缩束。
3.根据权利要求1所述的方法,其特征在于,采集编码光源照明下的高对比度编码显微图像的步骤如下:
步骤一、利用主成分分析获得变换向量U1;计算样品高光谱数据H的协方差矩阵D,按特征值由大到小排列后,取其中特定数量的前几个特征向量作为变换向量U1,并计算对应的特征值s;
步骤二、利用线性判别方法获得变换向量U2;基于步骤一中所获得的特征值s和标签矩阵Y,计算类内散度矩阵Min和类间散度矩阵Mout,则变换向量U2为Min的逆矩阵与Mout的乘积;
步骤三、计算可实现高对比度显微成像所需的波长位置以及该波长对于提高对比度的权重,生成用于控制数字微镜器件(6)的编码矩阵T=U1U2
步骤四、若编码矩阵T为非负,则利用编码光源模块直接生成成像编码光源,利用显微成像模块采集该编码光源照明下的显微图像,即获得高对比度的编码显微图像;若编码矩阵T中存在负值,则将编码矩阵T分解为非负的成像编码矩阵T1和非负的补偿编码矩阵T2;其中,补偿编码矩阵T2中各元素值等于编码矩阵T中最小值的绝对值,且编码矩阵T、成像编码矩阵T1及补偿编码矩阵T2满足T=T1-T2,继续执行步骤五;
步骤五、根据步骤四中的成像编码矩阵T1及补偿编码矩阵T2,控制编码光源模块分别生成成像编码光源和补偿编码光源;
步骤六、利用显微成像模块,分别获得成像编码光源照明下的显微图像I1和补偿编码光源照明下的显微图像I2
步骤七、将成像编码光源照明下所采集的样品显微图像I1与补偿编码光源照明下所采集的样品显微图像I2相减,可等效于在编码光源照明下所采集的高对比度样品编码显微图像。
4.根据权利要求1所述的方法,其特征在于,采集编码光源照明下的高对比度编码显微图像的包括步骤如下:
步骤一、利用伪逆法,基于样品高光谱数据H和标签矩阵Y,计算可实现高对比度显微成像所需的波长位置以及该波长对于提高对比度的权重,生成用于控制数字微镜器件(6)的编码矩阵T,则编码矩阵T=YHT(HHT)-1
步骤二、若编码矩阵T为非负,则利用编码光源模块直接生成成像编码光源,利用显微成像模块采集该编码光源照明下的显微图像,即获得高对比度的编码显微图像;若编码矩阵T中存在负值,则将编码矩阵T分解为非负的成像编码矩阵T1和非负的补偿编码矩阵T2;其中,补偿编码矩阵T2中各元素值等于编码矩阵T中最小值的绝对值,且编码矩阵T、成像编码矩阵T1及补偿编码矩阵T2满足T=T1-T2,继续执行步骤三;
步骤三、根据步骤四中的成像编码矩阵T1及补偿编码矩阵T2,控制编码光源模块分别生成成像编码光源和补偿编码光源;
步骤四、利用显微成像模块,分别获得成像编码光源照明下的显微图像I1和补偿编码光源照明下的显微图像I2
步骤五、将成像编码光源照明下所采集的样品显微图像I1与补偿编码光源照明下所采集的样品显微图像I2相减,可等效于在编码光源照明下所采集的高对比度样品编码显微图像。
CN202010343527.XA 2020-04-27 2020-04-27 一种高对比度编码显微成像系统及方法 Active CN111504177B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010343527.XA CN111504177B (zh) 2020-04-27 2020-04-27 一种高对比度编码显微成像系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010343527.XA CN111504177B (zh) 2020-04-27 2020-04-27 一种高对比度编码显微成像系统及方法

Publications (2)

Publication Number Publication Date
CN111504177A CN111504177A (zh) 2020-08-07
CN111504177B true CN111504177B (zh) 2021-05-28

Family

ID=71869521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010343527.XA Active CN111504177B (zh) 2020-04-27 2020-04-27 一种高对比度编码显微成像系统及方法

Country Status (1)

Country Link
CN (1) CN111504177B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367447B (zh) * 2020-11-04 2022-03-08 清华大学深圳国际研究生院 编码光照实时对焦扫描成像装置和方法
CN115268096B (zh) * 2022-09-28 2023-04-21 中日友好医院(中日友好临床医学研究所) 多光谱调制输出光源装置及调制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540446A (zh) * 2011-12-28 2012-07-04 中国科学院西安光学精密机械研究所 一种基于数字微镜器件的高速结构照明光学显微系统及方法
CN108387186A (zh) * 2018-03-22 2018-08-10 深圳技术大学(筹) 一种基于数字微镜装置编码的三维扫描装置
CN109490223A (zh) * 2018-11-20 2019-03-19 东北大学 一种基于可编程高光谱成像的目标探测识别系统及方法
CN208635741U (zh) * 2018-08-31 2019-03-22 苏州大学 一种基于光谱调制度深度编码的微结构形貌测量装置
CN111007006A (zh) * 2019-11-25 2020-04-14 东北大学 一种多光谱调制输出光源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540446A (zh) * 2011-12-28 2012-07-04 中国科学院西安光学精密机械研究所 一种基于数字微镜器件的高速结构照明光学显微系统及方法
CN108387186A (zh) * 2018-03-22 2018-08-10 深圳技术大学(筹) 一种基于数字微镜装置编码的三维扫描装置
CN208635741U (zh) * 2018-08-31 2019-03-22 苏州大学 一种基于光谱调制度深度编码的微结构形貌测量装置
CN109490223A (zh) * 2018-11-20 2019-03-19 东北大学 一种基于可编程高光谱成像的目标探测识别系统及方法
CN111007006A (zh) * 2019-11-25 2020-04-14 东北大学 一种多光谱调制输出光源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
超分辨光学显微的成像原理及应用进展;付芸等;《激光与光电子学进展》;20191231;第56卷(第24期);文章正文第2.2节 *

Also Published As

Publication number Publication date
CN111504177A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
US9500846B2 (en) Rapid adaptive optical microscopy over large multicellular volumes
US10151907B2 (en) Full-color three-dimennsional optical sectioning microscopic imaging system and method based on structured illumination
CN111504177B (zh) 一种高对比度编码显微成像系统及方法
US10051240B2 (en) Structured plane illumination microscopy
CN107430266B (zh) 用于对试样进行光片显微检测的方法
CN109507765B (zh) 超透镜微结构的生成方法、基于超透镜的微型双光子显微系统
US10802256B2 (en) Multifocal scanning fluorescence microscope
CN107144954B (zh) 成像系统和方法
CN110246083B (zh) 一种荧光显微图像超分辨率成像方法
Garty et al. An automated imaging system for radiation biodosimetry
Antonello et al. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy
Wen et al. Compressive sensing for fast 3-D and random-access two-photon microscopy
Gehm et al. High-throughput, multiplexed pushbroom hyperspectral microscopy
Mochizuki et al. High-throughput line-illumination Raman microscopy with multislit detection
Poletto et al. Optical design of a spectrometer–monochromator for the extreme-ultraviolet and soft-x-ray emission of high-order harmonics
US20240053267A1 (en) Data generation method, fluorescence observation system, and information processing apparatus
Shymkiv et al. Aberration-free holographic microscope for simultaneous imaging and stimulation of neuronal populations
Qi et al. Fluorescence micro-optical sectioning tomography using acousto-optical deflector-based confocal scheme
Liu et al. Compressive sensing-based multi-focus line-scanning two-photon microscopy for fast 3D imaging
Xue Computational optics for high-throughput imaging of neural activity
US20180196244A1 (en) Method for multi-color fluorescence imaging under single exposure, imaging method and imaging system
Yin et al. Dynamic speckle illumination wide-field fluorescence microscopy with actively optical manipulation of rotational angles
Konda et al. Miniature Fourier ptychography microscope using Raspberry Pi camera and hardware
CN112666135B (zh) 一种三维显微成像装置及方法
Deglint et al. A Compact field-portable computational multispectral microscope using integrated Raspberry Pi

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant