CN111503921B - 一种航天发射场液氢过冷度获取系统 - Google Patents

一种航天发射场液氢过冷度获取系统 Download PDF

Info

Publication number
CN111503921B
CN111503921B CN202010320378.5A CN202010320378A CN111503921B CN 111503921 B CN111503921 B CN 111503921B CN 202010320378 A CN202010320378 A CN 202010320378A CN 111503921 B CN111503921 B CN 111503921B
Authority
CN
China
Prior art keywords
helium
liquid hydrogen
outlet
heat exchanger
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010320378.5A
Other languages
English (en)
Other versions
CN111503921A (zh
Inventor
王磊
上官石
刘柏文
厉彦忠
谢福寿
马原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010320378.5A priority Critical patent/CN111503921B/zh
Publication of CN111503921A publication Critical patent/CN111503921A/zh
Application granted granted Critical
Publication of CN111503921B publication Critical patent/CN111503921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/12Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using 3He-4He dilution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种航天发射场液氢过冷度获取系统,包括液氢储罐,液氢储罐的顶部增压口通过阀门和高压氦气瓶出口连接;液氢储罐底部出口通过循环泵连接氦‑氢换热器的液氢侧入口,氦‑氢换热器的液氢侧出口通过回流止回阀连接液氢储罐顶部回流口;氦‑氢换热器的氦气侧出口通过冷氦压缩机连接液氢浴式换热器的氦气侧入口,液氢浴式换热器的氦气侧出口通过节流阀连接氦‑氢换热器氦气侧入口;液氢浴式换热器的液氢入口通过浮子调节阀与液氢储槽底部出口连接,液氢浴式换热器的氢气出口经氢气泄流阀排空;本发明利用发射场大量存在的液氢冷源实施预冷,结合冷氦压缩机,可规模化实现大过冷度液氢的发射场现场制备;设备投资与改造成本低,易于工程实现。

Description

一种航天发射场液氢过冷度获取系统
技术领域
本发明涉及航天发射场致密化低温燃料的制备技术领域,具体涉及一种航天发射场液氢过冷度获取系统。
背景技术
液氢/液氧是当前比冲最高的一组推进剂组合,相对于常温推进剂,其比冲高出30%~40%,因此,该推进剂应用于运载火箭上面级可显著提高火箭运载能力。
航天用液氢通常处于饱和温度,即20K,常压下密度约71.3kg/m3。若对液氢过冷,则有利于增大液氢密度,减小贮箱体积,提高火箭运载能力。当液氢过冷至13.9K(氢三相点)时,液氢的密度为77.0kg/m3,密度提升约8.1%。此外,航天发射采用过冷液氢有利于管理液氢,深空探测采用过冷液氢可延长液氢无损贮存期限或降低蒸发损失。氢的三相点温度13.9K,三相点压力约7.1kPa,若采用抽空系统制备近三相点过冷氢,则需要多级真空泵串联才能达到目标,这对真空泵系统提出了极高的技术挑战。
大部分液体过冷是利用温度更低的流体换热来实现,对于氢而言,仅有负压饱和氢与氦满足要求,但常规方案获得低温氦成本极高,设备能耗极大。
获取液氢过冷的方法包括:负压氢换热法、氦气鼓泡法、氦制冷机法。负压氢换热法要求对氢系统抽真空,其设备复杂,存在安全隐患,且氢真空泵研制难度极大,成本高昂,获得额定负压需要多台真空泵串联布置,能耗极大;氦气鼓泡法通过向推进剂贮罐通入氦气获取过冷度,其操作简单、可靠性高,但是应用在液氢过冷时获取的过冷度有限,氦气的消耗极大,需要较高的投资成本;氦制冷机用于液氢温区制冷时,系统最低温度为液氢过冷目标温度,通常低于20K;系统最高温度为室温。在该大温差区间制冷时,氦制冷系统的效率极低,功耗极大,且氦制冷机的设备投资较高。
截止目前,航天领域已经实现了对液氧、液甲烷、煤油等推进剂过冷,但尚未对液氢开展工程应用级的过冷操作,未来的航天探测对过冷氢的需求迫切。氢氧火箭发射任务中,发射场燃料储罐通常存储过量的液氢,每次任务后,均需要将地面储罐内剩余液氢进行安全处理。若将多余的液氢用作冷源并不会影响正常的航天发射,目前,已经具备了进、排气温度均处于低温区的冷氦压缩机,该型压缩机工作温度最低可达氦温区。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供了一种航天发射场液氢过冷度获取系统,以氦气为冷量传输的载体,利用发射场充足的饱和液氢对氦气开展预冷,再通过氦气膨胀制冷,制备温度低于20K的低温氦气,通过冷氦气与液氢的换热,进而制备过冷液氢,甚至制备固液混合浆氢。
为了达到上述目的,本发明采取的技术方案为:
一种航天发射场液氢过冷度获取系统,包括液氢储罐5,液氢储罐5的顶部增压口通过背压调节阀8、泄压阀9与高压氦气瓶10出口连接;液氢储罐5底部出口连接循环泵6入口,循环泵6出口连接氦-氢换热器4的液氢侧入口,氦-氢换热器4的液氢侧出口连接回流止回阀7入口,回流止回阀7出口连接液氢储罐5顶部回流口;
氦-氢换热器4的氦气侧出口连接冷氦压缩机1入口,冷氦压缩机1出口连接液氢浴式换热器2的氦气侧入口,液氢浴式换热器2的氦气侧出口连接节流阀3入口,节流阀3出口连接氦-氢换热器4氦气侧入口;
液氢浴式换热器2的液氢入口通过浮子调节阀12与液氢储槽11底部出口连接,液氢浴式换热器2的氢气出口经第一氢气泄流阀13排放。
增加了回冷器14,回冷器14的第一氦气入口连接氦-氢换热器4的氦气侧出口,回冷器14的第一氦气出口连接冷氦压缩机1入口,冷氦压缩机1出口连接液氢浴式换热器2的氦气侧入口,液氢浴式换热器2的氦气侧出口连接回冷器14的第二氦气入口,回冷器14的第二氦气出口连接节流阀3入口,节流阀3出口连接氦-氢换热器4氦气侧入口。
将氦-氢换热器4置于液氢储罐5内部,冷氦气直接对液氢储罐5内液氢开展过冷;节流阀3出口连接氦-氢换热器4氦气侧入口,氦-氢换热器4的氦气侧出口连接冷氦压缩机1入口;液氢储罐5底出口连接循环泵6入口,循环泵6出口连接回流止回阀7入口,回流止回阀7出口连接液氢储罐5顶部回流口。
将氦-氢换热器4缠绕在液氢储罐5内壳体的外表面,冷氦气与液氢储罐5壳体换热,实现液氢储罐5内液氢的过冷与保温。
一种航天发射场液氢过冷度获取系统,采用液氢加注过程实现大过冷度获取,包括液氢储罐5,液氢储罐5底部增压出口连接增压泄流阀15入口,增压泄流阀15出口连接空浴式汽化器16入口,空浴式汽化器16出口经增压止回阀17连接液氢储罐5的顶部增压口,液氢储罐5底部高于空浴式汽化器16顶部,依靠重力实现供液;
液氢储罐5底部出口连接液氢泄流阀18入口,液氢泄流阀18出口连接氦-氢换热器4的液氢侧入口,氦-氢换热器4的液氢侧出口连接加注阀19入口,加注阀19出口连接箭上贮箱20底部加注口,箭上贮箱20顶部增压口通过背压调节阀8、泄压阀9和高压氦气瓶10出口连接;
氦-氢换热器4的氦气侧出口连接冷氦压缩机1入口,冷氦压缩机1出口连接液氢浴式换热器2的氦气侧入口,液氢浴室换热器2的氦气侧出口连接节流阀3入口,节流阀3出口连接氦-氢换热器4氦气侧入口;
液氢浴室换热器2的液氢入口通过浮子调节阀12与液氢储槽11底部出口相接,液氢浴式换热器2的氢气出口经第一氢气泄流阀13排空。
所述的冷氦压缩机1采用离心式、轴流式结构,入口压力大于0.1MPa,压比不小于3。
所述的液氢浴式换热器2采用管壳式换热器结构,氦气置于管侧,液氢置于壳侧;氦气管采用蛇形盘管、内螺纹管结构;氦气管长度以出口氦气温度低于25K设置;壳侧液位由浮子调节阀12调节。
所述的氦-氢换热器4采用壳管式、板式、板翅式的间壁式换热器结构,氦气侧流道设置肋片的换热强化结构;换热器外部采用珠光砂填充绝热或真空绝热。
所述的液氢储罐5采用立式或卧式布置,不锈钢材质,采用真空粉末绝热或真空多层绝热,承压高于1MPa。
所述的循环泵6采用浸泡冷却,确保泵体处于液氢温度,泵的增压压头须大于液氢储罐5处于最低液位时的液氢循环流动压降与重力压降;循环泵6或采用潜液式泵结构,此时,循环泵6内置于液氢储罐5内部。
所述的节流阀3也能够采用低温氦膨胀机替代。
本发明的有益效果:
本发明利用发射场大量存在的液氢冷源,结合冷氦压缩机,可制获得大过冷液氢,有效改变了当前无法规模化制备过冷液氢的现状。利用发射场已经具备的条件,降低了液氢大过冷度获取的设备投资与改造成本,易于工程实现。
本发明可获得近三相点温度的超级过冷液氢,所获液氢过冷度较大,充分利用过冷液氢的优势;也可制备固液浆氢。
本发明利用冷氦压缩机适用于低温区工作的特性,限定制冷系统的工作温区在液氢温区以下,相较于常规氦制冷方案,具有较高的运行效率;同时利用发射场大量存在的液氢资源,对氦制冷系统开展节流膨胀前的预冷,极大提高了制冷系统的性能。
本发明以氦气为换热载体实现对液氢的过冷,由于氦气本身性质稳定,即使发生泄漏也不会产生安全风险,液氢不会被污染,操作更安全;此外,冷氦气与液氢换热时,氦气侧的换热速率控制方便,从而有助于获得定量的过冷目标温度,避免液氢侧的冰堵风险。
本发明布置灵活,可对地面储罐开展过冷,也可对箭上贮箱液氢开展过冷;对液氢的过冷可通过外置换热器实现,也可将换热器内置于液氢储罐内部、或冷氦管路缠绕液氢储罐壁面,实现过冷与保冷双重功效,即在地面制备过冷液氢后,通过制冷系统的间接式工作,维持过冷液氢的过冷度。
综上,本发明具有结构简单、运行安全稳定、可获取过冷度大、投资与改造成本低、系统运行效率高、布置灵活多样等优势,应用前景可观。
附图说明
图1为本发明实施例1的结构示意图。
图2为本发明实施例2的结构示意图。
图3为本发明实施例3的结构示意图。
图4为本发明实施例4的结构示意图。
图5为本发明实施例5的结构示意图。
具体实施方式
下面结合附图和实施例对本发明做详细描述。
实施例1,如图1所示,一种航天发射场液氢过冷度获取系统,包括液氢储罐5,液氢储罐5的顶部增压口通过背压调节阀8、泄压阀9和高压氦气瓶10出口连接;液氢储罐5底部出口连接循环泵6入口,循环泵6出口连接氦-氢换热器4的液氢侧入口,氦-氢换热器4的液氢侧出口连接回流止回阀7入口,回流止回阀7出口连接液氢储罐5顶部回流口;
氦-氢换热器4的氦气侧出口连接冷氦压缩机1入口,冷氦压缩机1出口连接液氢浴式换热器2的氦气侧入口,液氢浴式换热器2的氦气侧出口连接节流阀3入口,节流阀3出口连接氦-氢换热器4氦气侧入口;
液氢浴式换热器2的液氢入口通过浮子调节阀12与液氢储槽11底部出口连接,液氢浴式换热器2的氢气出口经第一氢气泄流阀13排空。
所述的液氢储罐5为不锈钢材质,立式或卧式布局,采用真空粉末绝热或真空多层绝热,储罐内液氢在循环泵6驱动下实现循环,液氢自液氢储罐5底部排出,过冷后的液氢自液氢储罐5顶部回流口回流。
所述的循环泵6的增压压头能够克服液氢储罐5内处于最低液位时循环流动压降、重力压降作用下的液氢循环动力需求;当循环泵6置于传输管路时,循环过冷前需对循环泵6开展预冷。
所述的氦-氢换热器4采用壳管式、板式、板翅式的间壁式换热器结构,氦气侧流道设置肋片等换热强化结构;换热器外部采用珠光砂填充绝热或真空绝热。
所述的高压氦气瓶10、泄压阀9、背压调节阀8根据液氢储罐5内气枕压力调节向液氢储罐5的氦气注入,避免液氢在过操作中液氢储罐5内产生负压,背压调节阀8的背压设置为大于环境压力+500Pa。
所述的冷氦压缩机1为离心式、或轴流式结构,入口压力大于0.1MPa,压比不小于3。
所述的液氢浴式换热器2采用管壳式换热器结构,氦气置于管侧,液氢置于壳侧;氦气管采用蛇形盘管、内螺纹管的换热强化结构;氦气管长度以出口氦气温度低于25K设置;壳侧液位由浮子调节阀12调节。
所述的节流阀3可采用氦膨胀器替换。
本实施例的工作原理为:如图1所示,在实施例1中,火箭燃料加注前,液氢储罐5由液氢槽车等加注满仓,内部液氢近似维持20K饱和温度,液氢储槽11也加注足量液氢。打开浮子调节阀12、第一氢气泄流阀13,向液氢浴式换热器2充注设定液位高度的液氢;开启冷氦压缩机1,制冷系统启动,对制冷系统(冷氦压缩机1、液氢浴式换热器2、氦-氢换热器4及配套的管路、阀门等硬件)进行预冷,直至达到稳态;开启泄压阀9、背压调节阀8,接通高压氦气瓶10与液氢储罐5的流道,实现对液氢储罐5的压力控制;对循环泵6开展预冷降温,降温结束后,开启回流止回阀7与循环泵6,接通液氢的循环回路,通过氦-氢换热器4内液氢与冷氦气的持续换热,实现液氢储罐5内液氢的逐渐过冷,直至目标温度达到。由于高压氦气瓶10、泄压阀9、背压调节阀8可保证增压氦气注入,确保了过冷过程中液氢储罐5不出现负压,维持箱内液氢过冷状态。
实施例2,如图2所示,在实施例1的基础上,增加了回冷器14,回冷器14的第一氦气入口连接氦-氢换热器4的氦气侧出口,回冷器14的第一氦气出口连接冷氦压缩机1入口,冷氦压缩机1出口连接液氢浴式换热器2的氦气侧入口,液氢浴式换热器2的氦气侧出口连接回冷器14的第二氦气入口,回冷器14的第二氦气出口连接节流阀3入口,节流阀3出口连接氦-氢换热器4氦气侧入口。
经过液氢浴式换热器2预冷后的氦气再经回冷器14进一步预冷至更低温度,从而降低进节流阀13的氦气温度,从而可获得更低的节流后温度,强化氦-氢换热器4内冷氦气对液氢的降温效果。
实施例3,参照图3,在实施例1基础上,将氦-氢换热器4置于液氢储罐5内部,冷氦气直接对液氢储罐5内液氢开展过冷;节流阀3出口连接氦-氢换热器4氦气侧入口,氦-氢换热器4的氦气侧出口连接冷氦压缩机1入口;液氢储罐5底部出口连接循环泵6入口,循环泵6出口连接回流止回阀7入口,回流止回阀7出口连接液氢储罐5顶部回流口。循环泵支路的作用在于实现液氢储罐5内液氢的充分搅拌,达到整体降温的目的,同时有利于强化氦-氢换热器4的液氢侧换热强度。
实施例4,参照图4,氦-氢换热器4缠绕在液氢储罐5内壳的外表面,冷氦气先将冷量传递给液氢储罐5的内壳壁面,再由内壳壁面传递给液氢储罐5的液氢。该布置在制备过冷液氢的基础上,也可通过制冷系统后期的工质维持液氢储罐5内液氢的过冷度。
实施例5,参照图5,一种航天发射场液氢过冷度获取系统,采用液氢加注过程实现大过冷度获取,包括液氢储罐5,液氢储罐5底部增压出口连接增压泄流阀15入口,增压泄流阀15出口连接空浴式汽化器16入口,空浴式汽化器16出口经增压止回阀17连接液氢储罐5的顶部增压口,液氢储罐5底部高于空浴式汽化器16顶部,依靠重力实现供液;
液氢储罐5底部出口连接液氢泄流阀18入口,液氢泄流阀2出口连接氦-氢换热器4的液氢侧入口,氦-氢换热器4的液氢侧出口连接加注阀19入口,加注阀19出口连接箭上贮箱20底部加注口,箭上贮箱20顶部增压口通过背压调节阀8、泄压阀9和高压氦气瓶10连接;
氦-氢换热器4的氦气侧出口连接冷氦压缩机1入口,冷氦压缩机1出口连接液氢浴式换热器2的氦气侧入口,液氢浴室换热器2的氦气侧出口连接节流阀3入口,节流阀3出口连接氦-氢换热器4氦气侧入口;
液氢浴室换热器2的液氢入口通过浮子调节阀12与液氢储槽10底部出口相接,液氢浴式换热器2的氢气出口经第一氢气泄流阀13排空。
当液氢储罐5向箭上贮箱20加注液氢时,带液氢预冷的冷氦制冷系统对传输管路中的液氢开展深度过冷;液氢储罐5内液氢通过增压泄流阀15进入空浴式汽化器16,液氢在空浴式汽化器16与环境换热实现气化,气化后的氢气经增压止回阀17进入液氢储罐5顶部,实现对液氢储罐5的增压,驱动液氢自液氢储罐5经液氢泄流阀18、氦-氢换热器4、加注阀19进入箭上贮箱20的底部;箭上贮箱20顶部设置有高压氦气瓶10、泄压阀9、背压调节阀8组成的压力控制系统,维持箭上贮箱20内的正压环境。

Claims (8)

1.一种航天发射场液氢过冷度获取系统,包括液氢储罐(5),其特征在于:液氢储罐(5)的顶部增压口通过背压调节阀(8)、泄压阀(9)和高压氦气瓶(10)出口连接;液氢储罐(5)底部出口连接循环泵(6)入口,循环泵(6)出口连接氦-氢换热器(4)的液氢侧入口,氦-氢换热器(4)的液氢侧出口连接回流止回阀(7)入口,回流止回阀(7)出口连接液氢储罐(5)顶部回流口;
氦-氢换热器(4)的氦气侧出口连接冷氦压缩机(1)入口,冷氦压缩机(1)出口连接液氢浴式换热器(2)的氦气侧入口,液氢浴式换热器(2)的氦气侧出口连接节流阀(3)入口,节流阀(3)出口连接氦-氢换热器(4)氦气侧入口;
液氢浴式换热器(2)的液氢入口通过浮子调节阀(12)与液氢储槽(11)底部出口连接,液氢浴式换热器(2)的氢气出口经第一氢气泄流阀(13)排空;
所述的氦-氢换热器(4)采用壳管式、板式、板翅式的间壁式换热器结构,氦气侧流道设置肋片的换热强化结构;换热器外部采用珠光砂填充绝热;
所述的节流阀(3)能够采用氦膨胀机替换。
2.根据权利要求1所述的一种航天发射场液氢过冷度获取系统,其特征在于:所述的循环泵(6)采用浸泡冷却或泄流冷却,确保泵体处于液氢温度,循环泵(6)的增压压头须大于液氢储罐(5)处于最低液位时的液氢循环流动压降与重力压降;循环泵(6)采用潜液式泵结构,循环泵(6)内置于液氢储罐(5)内部。
3.根据权利要求1所述的一种航天发射场液氢过冷度获取系统,其特征在于:增加了回冷器(14),回冷器(14)的第一氦气入口连接氦-氢换热器(4)的氦气侧出口,回冷器(14)的第一氦气出口连接冷氦压缩机(1)入口,冷氦压缩机(1)出口连接液氢浴式换热器(2)的氦气侧入口,液氢浴式换热器(2)的氦气侧出口连接回冷器(14)的第二氦气入口,回冷器(14)的第二氦气出口连接节流阀(3)入口,节流阀(3)出口连接氦-氢换热器(4)氦气侧入口。
4.根据权利要求1所述的一种航天发射场液氢过冷度获取系统,其特征在于:将氦-氢换热器(4)置于液氢储罐(5)内部,冷氦气直接对液氢储罐(5)内液氢开展过冷;节流阀(3)出口连接氦-氢换热器(4)氦气侧入口,氦-氢换热器(4)的氦气侧出口连接冷氦压缩机(1)入口;液氢储罐(5)底部出口连接循环泵(6)入口,循环泵(6)出口连接回流止回阀(7)入口,回流止回阀(7)出口连接液氢储罐(5)顶部回流口。
5.根据权利要求4所述的一种航天发射场液氢过冷度获取系统,其特征在于:将氦-氢换热器(4)缠绕在液氢储罐(5)内壳的外表面,冷氦气与液氢储罐(5)壳体换热以实现液氢过冷与保冷。
6.一种航天发射场液氢过冷度获取系统,采用液氢加注过程实现大过冷度获取,其特征在于:包括液氢储罐(5),液氢储罐(5)底部增压出口连接增压泄流阀(15)入口,增压泄流阀(15)出口连接空浴式汽化器(16)入口,空浴式汽化器(16)出口经增压止回阀(17)连接液氢储罐(5)的顶部增压口,液氢储罐(5)底部高于空浴式汽化器(16)顶部,依靠重力实现供液;
液氢储罐(5)底部出口连接液氢泄流阀(18)入口,液氢泄流阀(18)出口连接氦-氢换热器(4)的液氢侧入口,氦-氢换热器(4)的液氢侧出口连接加注阀(19)入口,加注阀(19)出口连接箭上贮箱(20)底部加注口,箭上贮箱(20)顶部增压口通过背压调节阀(8)、泄压阀(9)和高压氦气瓶(10)连接;
氦-氢换热器(4)的氦气侧出口连接冷氦压缩机(1)入口,冷氦压缩机(1)出口连接液氢浴式换热器(2)的氦气侧入口,液氢浴式换热器(2)的氦气侧出口连接节流阀(3)入口,节流阀(3)出口连接氦-氢换热器(4)氦气侧入口;
液氢浴式换热器(2)的液氢入口通过浮子调节阀(12)与液氢储槽(11)底部出口相接,液氢浴式换热器(2)的氢气出口经第一氢气泄流阀(13)排空;
所述的氦-氢换热器(4)采用壳管式、板式、板翅式的间壁式换热器结构,氦气侧流道设置肋片的换热强化结构;换热器外部采用珠光砂填充绝热。
7.根据权利要求1或6所述的一种航天发射场液氢过冷度获取系统,其特征在于:所述的液氢储罐(5)立式或卧式布置,不锈钢材质,采用真空粉末绝热或多层真空绝热,承压高于1MPa。
8.根据权利要求1或6所述的一种航天发射场液氢过冷度获取系统,其特征在于:所述的冷氦压缩机(1)为离心式或轴流式结构,入口压力大于0.1MPa,压比不小于3。
CN202010320378.5A 2020-04-22 2020-04-22 一种航天发射场液氢过冷度获取系统 Active CN111503921B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010320378.5A CN111503921B (zh) 2020-04-22 2020-04-22 一种航天发射场液氢过冷度获取系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010320378.5A CN111503921B (zh) 2020-04-22 2020-04-22 一种航天发射场液氢过冷度获取系统

Publications (2)

Publication Number Publication Date
CN111503921A CN111503921A (zh) 2020-08-07
CN111503921B true CN111503921B (zh) 2021-07-27

Family

ID=71869956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010320378.5A Active CN111503921B (zh) 2020-04-22 2020-04-22 一种航天发射场液氢过冷度获取系统

Country Status (1)

Country Link
CN (1) CN111503921B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566470B (zh) * 2021-08-20 2023-01-31 楼建军 一种氢浆发生器、连续批量制备氢浆的系统及方法
CN115371298B (zh) * 2022-08-25 2023-06-23 北京航天试验技术研究所 一种液氢和液氧同步深度过冷的撬装式系统及方法
CN115745713B (zh) * 2022-11-22 2023-11-14 北京航天试验技术研究所 一种高密度氢氧推进剂同步制备系统及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627638A (zh) * 2015-12-29 2016-06-01 西安交通大学 一种低温推进剂快速过冷装置
CN106247649A (zh) * 2016-07-28 2016-12-21 西安交通大学 一种液氢过冷度获取装置
CN206771874U (zh) * 2017-06-01 2017-12-19 成都深冷液化设备股份有限公司 一种氢气液化的装置
US20180202690A1 (en) * 2017-01-16 2018-07-19 Neil M. Prosser Refrigeration cycle for liquid oxygen densification
CN109386326A (zh) * 2018-11-27 2019-02-26 翁志远 一种气体冷凝及低温工质发电系统和工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062102A (zh) * 2013-03-20 2014-09-24 北京航天试验技术研究所 一种液氢温区高压氦气的获取方法
CN108036582A (zh) * 2017-12-29 2018-05-15 上海启元空分技术发展股份有限公司 一种生产液氢的方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627638A (zh) * 2015-12-29 2016-06-01 西安交通大学 一种低温推进剂快速过冷装置
CN106247649A (zh) * 2016-07-28 2016-12-21 西安交通大学 一种液氢过冷度获取装置
US20180202690A1 (en) * 2017-01-16 2018-07-19 Neil M. Prosser Refrigeration cycle for liquid oxygen densification
CN206771874U (zh) * 2017-06-01 2017-12-19 成都深冷液化设备股份有限公司 一种氢气液化的装置
CN109386326A (zh) * 2018-11-27 2019-02-26 翁志远 一种气体冷凝及低温工质发电系统和工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
低温推进剂过冷技术研究;谢福寿等;《航空动力学报》;航空动力学报;20170331;第32卷(第3期);第763-765页 *

Also Published As

Publication number Publication date
CN111503921A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN111503921B (zh) 一种航天发射场液氢过冷度获取系统
CN111578570A (zh) 一种利用液氢冷量的液氧大过冷度获取系统
CN111412695B (zh) 一种基于液氧液氮混合再抽空的超级过冷液氧获取系统
CN111503920A (zh) 一种无负压的液氧大过冷度获取系统
CN105627638B (zh) 一种低温推进剂快速过冷装置
CN106247649B (zh) 一种液氢过冷度获取装置
CN103954090B (zh) 一种能充分利用液化天然气冷能的蓄冷冷库系统
CN112228765B (zh) 低温火箭发射场中深度过冷液氧加注与控制系统及方法
CN114739055B (zh) 一种基于液氧冷量的液氧/液甲烷综合过冷系统及方法
CN102027236A (zh) 用于泵送低温流体的装置和方法
CN111457635B (zh) 一种甲烷混合推进剂调制/防结冰过冷系统
CN114673936B (zh) 基于三级分段冷却的液氧推进剂全过冷加注系统及方法
CN115419829A (zh) 一种用于液氢发动机测试的高压液氢输送系统及其方法
CN213178918U (zh) 一种用于lng接收站与中转站大罐闪蒸气回收的设备
CN112254435B (zh) 一种深度过冷液氧制备系统及制备方法
CN115745713A (zh) 一种高密度氢氧推进剂同步制备系统及其方法
CN206247681U (zh) 一种钻井泥浆制冷装置
CN212720080U (zh) 一种空调循环相变制冷系统及空调器
CN115419822A (zh) 利用仲正氢转化冷量的液氢储运型加氢站氢气加注系统
CN112460915A (zh) 一种深度过冷液氧的制备装置及方法
CN206504498U (zh) Lng气化冷能冷库系统
CN110081644A (zh) 一种带相分离器的开环式超导变压器制冷方法和实现该方法的制冷机
CN220707828U (zh) 一种用于超导电缆冷却的过冷液氮循环装置
CN218208974U (zh) 高纯气体大规模存储快速液化与回收装置
CN110260151B (zh) 利用lng汽化制冷的船用天然气气瓶及其供气机构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant