CN111501032A - 一种多模态变形ipmc柔性驱动器的设计与制备方法 - Google Patents

一种多模态变形ipmc柔性驱动器的设计与制备方法 Download PDF

Info

Publication number
CN111501032A
CN111501032A CN202010338342.XA CN202010338342A CN111501032A CN 111501032 A CN111501032 A CN 111501032A CN 202010338342 A CN202010338342 A CN 202010338342A CN 111501032 A CN111501032 A CN 111501032A
Authority
CN
China
Prior art keywords
film
nafion film
nafion
preparation
flexible driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010338342.XA
Other languages
English (en)
Other versions
CN111501032B (zh
Inventor
马愫倩
林兆华
梁云虹
张�浩
任雷
张志辉
任露泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202010338342.XA priority Critical patent/CN111501032B/zh
Publication of CN111501032A publication Critical patent/CN111501032A/zh
Application granted granted Critical
Publication of CN111501032B publication Critical patent/CN111501032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1673Magnetic field
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1676Heating of the solution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

本发明公开了一种多模态变形柔性驱动器的设计与制备方法本发明所制备的一种多维度、多模态变形IPMC柔性驱动器,打破传统IPMC驱动器只能产生弯曲形变的束缚,其可在2V~8V的驱动电压下产生复杂的多维度折叠、扭转、偏转等多模态变形,本发明是以商业化的Nafion离子交换膜为基底,并在其表面打磨引入0°~180°方向的各向同性条纹结构,通过化学镀在Nafion膜表面制备铂电极,最终裁剪成带有0°~180°条纹结构的IPMC柔性驱动器薄膜,本发明提供的方法使IPMC柔性驱动器可以产生复杂的三维折叠、扭转、偏转等多模态形变与运动,并且可以通过改变工作电压,实现多维度折叠、扭转、偏转等多模态结构的伸长和收缩,大大拓宽了IPMC柔性驱动器的功能属性与应用范围。

Description

一种多模态变形IPMC柔性驱动器的设计与制备方法
技术领域
本发明涉及新型智能材料技术领域,特别涉及一种多模态变形柔性驱动器的设计与制备方法。
背景技术
人工肌肉又称电活性聚合物,是一种新型的智能高分子材料,它能在外加电场的作用下,通过材料内部结构的改变而伸缩、弯曲、束紧或膨胀,并产生一定的驱动性能,和生物肌肉的功能十分相似。电活性聚合物与传统的柔性驱动材料相比,具有更大的应变能力,且重量轻、驱动效率高、响应速度快,是最具有发展潜力的仿生材料之一。电活性聚合物根据作用机理的不同,可分为电子型电活性聚合物和离子型电活性聚合物。其中,电子型电活性聚合物的工作电压极高,通常需要几千甚至上万伏,造成了极大的安全隐患,同时也限制了其实际应用。而离子型电活性聚合物在较低的工作电压下(通常仅需要10V以下),就可以实现变形和驱动,具有较大的应用前景。离子聚合物-金属复合物(IPMC)是一种最具代表性的离子型电活性聚合物,其在较低的驱动电压下即能产生较大的形变位移,作为一种新型柔性智能材料,非常适用于柔性驱动器和仿生机器人的设计与开发。IPMC是由中间层离子交换膜和上下两层电极组成的三明治结构,其在通电情况下,离子交换膜内的水合阳离子向阴极的迁移,会使IPMC的阴极一侧吸水膨胀,发生向阳极的弯曲变形。但是,目前基于IPMC的柔性驱动器只能实现如图1所示的简单弯曲变形,无法实现复杂的三维结构的多模态变形,这在一定程度上阻碍了IPMC柔性驱动器的发展。为了实现IPMC柔性驱动器的复杂多维度、多模态变形,本发明通过向IPMC离子交换膜表面引入条纹结构的方法,制备了一种通电后可以实现多维度的折叠、扭转、偏转等多模态形变的IPMC柔性驱动器。
发明内容
一种多模态变形柔性驱动器的设计与制备方法,包括以下步骤:
步骤一、选用Nafion薄膜,将其裁剪成正方形小片,用砂纸在Nafion薄膜一侧的表面沿着正方形一边,以0°~180°的方向打磨,最终在Nafion薄膜表面形成不同角度的条纹结构,Nafion薄膜的另一侧表面不做处理,保持光滑,将打磨后的Nafion薄膜浸泡在去离子水中超声清洗2~5次;
步骤二、将清洗过的Nafion薄膜浸泡在过氧化氢水溶液中2h~5h,然后将Nafion薄膜在70℃~100℃的去离子水中煮0.5h~2h,将Nafion薄膜浸泡在硫酸溶液中2h~4h,然后在70℃~100℃的去离子水中煮0.5h~2h,经过前处理后Nafion薄膜充分地吸水溶胀,呈现柔软的透明状;
步骤三、采用化学镀的方法,在Nafion薄膜表面通过2~4次化学镀,制备铂电极;
步骤四、将Nafion薄膜置于60℃~80℃的真空干燥箱中干燥3h~6h,除去膜内的水分子,然后将Nafion薄膜浸泡在去离子水中充分吸水溶胀,最后将Nafion薄膜浸泡在饱和的氯化锂水溶液中20h~28h,进行充分的锂离子交换,使Nafion离子交换膜内充分置换入正一价的锂离子,至此,基于Nafion的IPMC柔性驱动器制备完成;
步骤五、将所制备的Nafion IPMC薄膜以0°~180°的角度裁剪成宽度为3mm~20mm的长条状,此时,IPMC薄膜的长边与其表面的条纹状结构的角度为0°~180°;
所述制备铂电极包括以下步骤:
1)将已经进行过前处理的Nafion薄膜浸泡在四氨合氯化铂水溶液中20h~28h,使Nafion薄膜表面吸附大量的铂氨离子;
2)将Nafion薄膜浸泡在去离子水中0.5h~2h,使Nafion薄膜充分地吸水溶胀;
3)将浸泡有Nafion薄膜的去离子水升温至30℃~60℃,在磁力搅拌下,每隔20min~40min滴加3mL~8mL硼氢化钠水溶液,共滴加6次~12次,硼氢化钠作为还原剂,可以使Nafion薄膜表面吸附的铂氨离子还原成单质铂,在Nafion薄膜表面形成一层铂电极;
4)将上述步骤1、2和3重复1~3次,最终可以在Nafion薄膜表面形成均匀的铂电极;
所述Nafion薄膜厚度为150μm~250μm;
所述正方形小片边长为20mm~70mm;
所述砂纸为600目~2000目;
所述过氧化氢水溶液质量分数为3%~7%;
所述硫酸溶液质量分数为3%~6%;
所述四氨合氯化铂水溶液质量分数为0.3%~0.6%;
所述硼氢化钠水溶液质量分数为2%~7%。
本发明的工作原理和过程:
本发明所制备的一种多维度、多模态变形IPMC柔性驱动器,打破传统IPMC驱动器只能产生弯曲形变的束缚,其可在2V~8V的驱动电压下产生复杂的多维度折叠、扭转、偏转等多模态变形,进行过充分离子交换的IPMC柔性驱动器的Nafion膜内含有大量的水合阳离子,当对IPMC施加电压后,Nafion膜内的水合阳离子会向电极的阴极一侧移动,使阴极侧的Nafion膜吸水膨胀,相反,阳极侧的Nafion膜失水收缩,使整个IPMC柔性驱动器向阳极一侧变形;同时,在Nafion膜表面0°~180°条纹结构的驱使下,整个IPMC柔性驱动器会向阳极一侧按着0°~180°方向进行多维度折叠、扭转、偏转等变形,从而实现驱动器的复杂多模态变形与运动。
本发明的有益效果:
本发明提供的多模态变形IPMC柔性驱动器,是以商业化的Nafion离子交换膜为基底,并在其表面打磨引入0°~180°方向的各向同性条纹结构,通过化学镀在Nafion膜表面制备铂电极,最终裁剪成带有0°~180°条纹结构的IPMC柔性驱动器薄膜。与传统的IPMC柔性驱动器相比,本发明提供的方法使IPMC柔性驱动器可以产生复杂的三维折叠、扭转、偏转等多模态形变与运动,并且可以通过改变工作电压,实现多维度、多模态结构的伸长和收缩,大大拓宽了IPMC柔性驱动器的功能属性与应用范围。
附图说明
图1是传统IPMC柔性驱动器弯曲变形的原理图。
图2是本发明多模态变形IPMC柔性驱动器180°条纹结构的制备方法示意图。图3是本发明45°多模态变形的IPMC柔性驱动器的表面条纹结构示意图。
图4是本发明IPMC柔性驱动器的45°多模态变形示意图。
图5是本发明IPMC柔性驱动器的伸缩变形示意图。
具体实施方式
请参阅图1至图5所示,一种多模态变形柔性驱动器的设计与制备方法,包括以下步骤:
步骤一、选用杜邦公司生产的Nafion 117薄膜厚度为190μm,将其裁剪成长50mm,宽50mm的正方形小片,用600目的砂纸在Nafion薄膜一侧的表面沿着正方形一边0°~180°的方向打磨,最终在Nafion薄膜表面形成各向同性条纹结构,Nafion薄膜的另一侧表面不做处理,保持光滑,将打磨后的Nafion薄膜浸泡在去离子水中超声清洗3次;
步骤二、将清洗过的Nafion薄膜浸泡在质量分数为5%的过氧化氢水溶液中4h,然后将Nafion薄膜在100℃的去离子水中煮1h,将Nafion薄膜浸泡在质量分数为5%的硫酸溶液中4h,然后在100℃的去离子水中煮1h,经过前处理后,Nafion薄膜充分地吸水溶胀,呈现柔软的透明状;
步骤三、采用化学镀的方法,在Nafion薄膜表面通过3次化学镀,制备铂电极;
1)将已经进行过前处理的Nafion薄膜浸泡在质量分数为0.5%的四氨合氯化铂水溶液中24h,使Nafion薄膜表面吸附大量的铂氨离子;
2)将Nafion薄膜浸泡在去离子水中1h,使Nafion薄膜充分地吸水溶胀;
3)将浸泡有Nafion薄膜的去离子水升温至40℃,在磁力搅拌下,每隔30min滴加5mL质量分数为5%的硼氢化钠水溶液,共滴加10次,硼氢化钠作为还原剂,可以使Nafion薄膜表面吸附的铂氨离子还原成单质铂,在Nafion薄膜表面形成一层铂电极;
4)将上述步骤(1)、(2)和(3)重复2次,最终可以在Nafion薄膜表面形成均匀的铂电极;
步骤四、将Nafion薄膜置于80℃的真空干燥箱中干燥4h,除去膜内的水分子,然后将Nafion薄膜浸泡在去离子水中充分吸水溶胀,最后将Nafion薄膜浸泡在饱和的氯化锂水溶液中24h,进行充分的锂离子交换,使Nafion离子交换膜内充分置换入正一价的锂离子,至此,基于Nafion的IPMC柔性驱动器制备完成;
步骤五、将所制备的Nafion IPMC薄膜沿着正方形薄膜以不同的角度裁剪成宽度为5mm的长条状,此时,IPMC薄膜的长边与其表面的条纹结构的角度为0°~180°,在薄膜表面条纹结构的驱使下,IPMC柔性驱动器通电后可以实现多模态变形。
实施例一
请参阅图3所示:
本发明所提供的一种多模态变形IPMC柔性驱动器的设计和制备方法,在步骤一中以180°方向在IPMC薄膜表面制备条纹结构,在步骤五中沿着正方形薄膜对角线的方向裁剪成宽度为5mm的长条,此时,IPMC薄膜的长边与其表面的条纹结构的角度为45°。
实施例二
请参阅图4所示:
本发明所提供的一种多模态变形IPMC柔性驱动器,能够在2V~8V的驱动电压下,实现由一维条带到复杂三维结构的变形,打破了传统IPMC柔性驱动器只能实现简单弯曲变形的束缚。
如图4所示,当45°IPMC柔性驱动器的两端被施加一定电压后,Nafion膜内的水合阳离子会向负极一侧移动,使Nafion膜的负极一侧吸水溶胀,正极一侧失水收缩,而且IPMC柔性驱动器表面的45°条纹结构会驱使样件在弯曲形变的同时发生一定的扭转,最终呈现出图4所示的复杂三维扭转结构。
实施例三
请参阅图5所示:
本发明所提供的一种多模态变形IPMC柔性驱动器在不同的驱动电压下可以改变其样件总长度,随着驱动电压的增大,样件的扭转圈数增多从而导致总长度增长,具体的样件总长度相对于施加电压的变化关系列于表1:
表1IPMC柔性驱动器的扭转形态在不同电压下的总长度
电压 2V 4V 6V 8V
总长度 6 mm 14mm 23mm 31mm

Claims (9)

1.一种多模态变形柔性驱动器的设计与制备方法,其特征在于:包括以下步骤:
步骤一、选用Nafion薄膜,将其裁剪成正方形小片,用砂纸在Nafion薄膜一侧的表面沿着正方形一边,以0°~180°的方向打磨,最终在Nafion薄膜表面形成不同角度的条纹结构,Nafion薄膜的另一侧表面不做处理,保持光滑,将打磨后的Nafion薄膜浸泡在去离子水中超声清洗2~5次;
步骤二、将清洗过的Nafion薄膜浸泡在过氧化氢水溶液中2h~5h,然后将Nafion薄膜在70℃~100℃的去离子水中煮0.5h~2h,将Nafion薄膜浸泡在硫酸溶液中2h~4h,然后在70℃~100℃的去离子水中煮0.5h~2h,经过前处理后Nafion薄膜充分地吸水溶胀,呈现柔软的透明状;
步骤三、采用化学镀的方法,在Nafion薄膜表面通过2~4次化学镀,制备铂电极;
步骤四、将Nafion薄膜置于60℃~80℃的真空干燥箱中干燥3h~6h,除去膜内的水分子,然后将Nafion薄膜浸泡在去离子水中充分吸水溶胀,最后将Nafion薄膜浸泡在饱和的氯化锂水溶液中20h~28h,进行充分的锂离子交换,使Nafion离子交换膜内充分置换入正一价的锂离子,至此,基于Nafion的IPMC柔性驱动器制备完成;
步骤五、将所制备的Nafion IPMC薄膜以0°~180°的角度裁剪成宽度为3mm~20mm的长条状,此时,IPMC薄膜的长边与其表面的条纹状结构的角度为0°~180°。
2.根据权利要求1所述的一种多模态变形柔性驱动器的设计与制备方法,其特征在于:所述制备铂电极包括以下步骤:
1)将已经进行过前处理的Nafion薄膜浸泡在四氨合氯化铂水溶液中20h~28h,使Nafion薄膜表面吸附大量的铂氨离子;
2)将Nafion薄膜浸泡在去离子水中0.5h~2h,使Nafion薄膜充分地吸水溶胀;
3)将浸泡有Nafion薄膜的去离子水升温至30℃~60℃,在磁力搅拌下,每隔20min~40min滴加3mL~8mL硼氢化钠水溶液,共滴加6次~12次,硼氢化钠作为还原剂,可以使Nafion薄膜表面吸附的铂氨离子还原成单质铂,在Nafion薄膜表面形成一层铂电极;
4)将上述步骤1、2和3重复1~3次,最终可以在Nafion薄膜表面形成均匀的铂电极。
3.根据权利要求1所述的一种多模态变形柔性驱动器的设计与制备方法,其特征在于:所述Nafion薄膜厚度为150μm~250μm。
4.根据权利要求1所述的一种多模态变形柔性驱动器的设计与制备方法,其特征在于:所述正方形小片边长为20mm~70mm。
5.根据权利要求1所述的一种多模态变形柔性驱动器的设计与制备方法,其特征在于:所述砂纸为600目~2000目。
6.根据权利要求1所述的一种多模态变形柔性驱动器的设计与制备方法,其特征在于:所述过氧化氢水溶液质量分数为3%~7%。
7.根据权利要求1所述的一种多模态变形柔性驱动器的设计与制备方法,其特征在于:所述硫酸溶液质量分数为3%~6%。
8.根据权利要求2所述的一种多模态变形柔性驱动器的设计与制备方法,其特征在于:所述四氨合氯化铂水溶液质量分数为0.3%~0.6%。
9.根据权利要求2所述的一种多模态变形柔性驱动器的设计与制备方法,其特征在于:所述硼氢化钠水溶液质量分数为2%~7%。
CN202010338342.XA 2020-04-26 2020-04-26 一种多模态变形ipmc柔性驱动器的设计与制备方法 Active CN111501032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010338342.XA CN111501032B (zh) 2020-04-26 2020-04-26 一种多模态变形ipmc柔性驱动器的设计与制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010338342.XA CN111501032B (zh) 2020-04-26 2020-04-26 一种多模态变形ipmc柔性驱动器的设计与制备方法

Publications (2)

Publication Number Publication Date
CN111501032A true CN111501032A (zh) 2020-08-07
CN111501032B CN111501032B (zh) 2021-07-09

Family

ID=71870573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010338342.XA Active CN111501032B (zh) 2020-04-26 2020-04-26 一种多模态变形ipmc柔性驱动器的设计与制备方法

Country Status (1)

Country Link
CN (1) CN111501032B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088944A (zh) * 2021-03-22 2021-07-09 西安交通大学 基于ipmc电活性聚合物的主动减阻材料及其制备方法
CN113733548A (zh) * 2021-08-05 2021-12-03 西安交通大学 一种面向曲面ipmc的4d打印方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085639A (zh) * 2017-12-14 2018-05-29 浙江理工大学 一种单片螺旋形离子聚合物金属复合材料线性驱动单元及其制备方法
CN109881188A (zh) * 2019-03-25 2019-06-14 吉林大学 一种电控型人工肌肉的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085639A (zh) * 2017-12-14 2018-05-29 浙江理工大学 一种单片螺旋形离子聚合物金属复合材料线性驱动单元及其制备方法
CN109881188A (zh) * 2019-03-25 2019-06-14 吉林大学 一种电控型人工肌肉的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088944A (zh) * 2021-03-22 2021-07-09 西安交通大学 基于ipmc电活性聚合物的主动减阻材料及其制备方法
CN113088944B (zh) * 2021-03-22 2022-02-11 西安交通大学 基于ipmc电活性聚合物的主动减阻材料及其制备方法
CN113733548A (zh) * 2021-08-05 2021-12-03 西安交通大学 一种面向曲面ipmc的4d打印方法

Also Published As

Publication number Publication date
CN111501032B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN111501032B (zh) 一种多模态变形ipmc柔性驱动器的设计与制备方法
Jeon et al. Novel biomimetic actuator based on SPEEK and PVDF
Kim et al. Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT: PSS
Guo et al. Smart supercapacitors with deformable and healable functions
Tang et al. Novel sulfonated polysulfone ion exchange membranes for ionic polymer–metal composite actuators
CN110164717B (zh) 一种π-d共轭Ni-HITP MOF导电薄膜的制备方法及储能应用
Shoji et al. Effects of humidity on the performance of ionic polymer− metal composite actuators: experimental study of the back-relaxation of actuators
CN110576447A (zh) 一种电控双向弯曲型变形-变刚度一体化驱动器
CN106653994B (zh) 一种单层电极型ipmc结构及其制备工艺
CN109881188B (zh) 一种电控型人工肌肉的制备方法
Wang et al. Stretchable fluoroelastomer quasi-solid-state organic electrolyte for high-performance asymmetric flexible supercapacitors
CN110544553A (zh) 柔性透明电极及其制备方法和含有该透明电极的光传输控制装置
CN108085639B (zh) 一种单片螺旋形离子聚合物金属复合材料线性驱动单元及其制备方法
Mondal et al. IPMC based flexible platform: a boon to the alternative energy solution
Yin et al. Fabrication and performance analysis of high-performance cylindrical ionic polymer-metal composite actuators with various diameters
CN111411351B (zh) 高性能电驱动全氟磺酸ipmc柔性驱动器的制备方法
CN109909124B (zh) 一种全氟磺酸人工肌肉的制备方法
CN113253533B (zh) 柔性电致变色器件及其制备方法
Lee et al. Multiday operable ionic polymer-metal composites prepared using a stacking method for practical actuator applications
CN114736480A (zh) 光响应纳米复合材料、制备方法以及微纳4d打印方法
KR101667334B1 (ko) 신축성 전자소자 및 에너지 저장을 위한 무기 액틴-미오신 결합
KR20210065653A (ko) 마찰 전기 발전 소자 및 이의 제조방법
Oh et al. Graphene-based Ionic Polymer Actuators
CN116408780A (zh) 一种强抗疲劳性人工肌肉驱动器及其制备方法
US20130062993A1 (en) Actuator and method for manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant