CN111493858A - Single-lead specific main wave identification and positioning method based on cluster analysis - Google Patents
Single-lead specific main wave identification and positioning method based on cluster analysis Download PDFInfo
- Publication number
- CN111493858A CN111493858A CN202010180896.1A CN202010180896A CN111493858A CN 111493858 A CN111493858 A CN 111493858A CN 202010180896 A CN202010180896 A CN 202010180896A CN 111493858 A CN111493858 A CN 111493858A
- Authority
- CN
- China
- Prior art keywords
- main wave
- specific
- interval
- wave
- class
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000007621 cluster analysis Methods 0.000 title claims abstract description 25
- 238000004458 analytical method Methods 0.000 claims abstract description 62
- 238000011156 evaluation Methods 0.000 claims description 37
- 230000000877 morphologic effect Effects 0.000 claims description 22
- 208000000418 Premature Cardiac Complexes Diseases 0.000 claims description 12
- 239000013589 supplement Substances 0.000 claims description 11
- 230000016507 interphase Effects 0.000 claims description 9
- 230000036279 refractory period Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000012163 sequencing technique Methods 0.000 claims description 3
- 230000001502 supplementing effect Effects 0.000 claims description 3
- 238000002203 pretreatment Methods 0.000 claims description 2
- 238000003745 diagnosis Methods 0.000 abstract description 5
- 206010015856 Extrasystoles Diseases 0.000 description 6
- 206010003119 arrhythmia Diseases 0.000 description 6
- 230000006793 arrhythmia Effects 0.000 description 6
- 230000001746 atrial effect Effects 0.000 description 4
- 230000002861 ventricular Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000036244 malformation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02405—Determining heart rate variability
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/366—Detecting abnormal QRS complex, e.g. widening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0223—Operational features of calibration, e.g. protocols for calibrating sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2576/00—Medical imaging apparatus involving image processing or analysis
- A61B2576/02—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
- A61B2576/023—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the heart
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010180896.1A CN111493858B (en) | 2020-03-16 | 2020-03-16 | Single-guide-joint specific main wave identification and positioning method based on cluster analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010180896.1A CN111493858B (en) | 2020-03-16 | 2020-03-16 | Single-guide-joint specific main wave identification and positioning method based on cluster analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111493858A true CN111493858A (en) | 2020-08-07 |
CN111493858B CN111493858B (en) | 2022-12-09 |
Family
ID=71848228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010180896.1A Active CN111493858B (en) | 2020-03-16 | 2020-03-16 | Single-guide-joint specific main wave identification and positioning method based on cluster analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111493858B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112869752A (en) * | 2021-02-10 | 2021-06-01 | 武汉大学 | Electrocardiosignal acquisition device and quality grade evaluation and QRS wave detection method |
CN113111972A (en) * | 2021-05-07 | 2021-07-13 | 杭州博日科技股份有限公司 | Melting curve Tm value determination method and device based on hierarchical clustering and electronic equipment |
CN115486854A (en) * | 2022-09-15 | 2022-12-20 | 浙江好络维医疗技术有限公司 | Single lead electrocardiogram ventricular premature beat identification method aiming at dry electrode acquisition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019100565A1 (en) * | 2017-11-27 | 2019-05-31 | 乐普(北京)医疗器械股份有限公司 | Method and device for self-learning dynamic electrocardiography analysis employing artificial intelligence |
CN109875548A (en) * | 2019-03-24 | 2019-06-14 | 浙江好络维医疗技术有限公司 | A kind of Characteristics of electrocardiogram waveform clustering method based on multi-lead comprehensive analysis |
CN109893119A (en) * | 2019-03-24 | 2019-06-18 | 浙江好络维医疗技术有限公司 | A kind of P wave recognition positioning method based on multi-lead clustering |
CN110236529A (en) * | 2019-07-19 | 2019-09-17 | 浙江好络维医疗技术有限公司 | A kind of multi-lead arrhythmia cordis intelligent diagnosing method based on MODWT and LSTM |
CN110367969A (en) * | 2019-07-05 | 2019-10-25 | 复旦大学 | A kind of improved electrocardiosignal K-Means Cluster |
-
2020
- 2020-03-16 CN CN202010180896.1A patent/CN111493858B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019100565A1 (en) * | 2017-11-27 | 2019-05-31 | 乐普(北京)医疗器械股份有限公司 | Method and device for self-learning dynamic electrocardiography analysis employing artificial intelligence |
CN109875548A (en) * | 2019-03-24 | 2019-06-14 | 浙江好络维医疗技术有限公司 | A kind of Characteristics of electrocardiogram waveform clustering method based on multi-lead comprehensive analysis |
CN109893119A (en) * | 2019-03-24 | 2019-06-18 | 浙江好络维医疗技术有限公司 | A kind of P wave recognition positioning method based on multi-lead clustering |
CN110367969A (en) * | 2019-07-05 | 2019-10-25 | 复旦大学 | A kind of improved electrocardiosignal K-Means Cluster |
CN110236529A (en) * | 2019-07-19 | 2019-09-17 | 浙江好络维医疗技术有限公司 | A kind of multi-lead arrhythmia cordis intelligent diagnosing method based on MODWT and LSTM |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112869752A (en) * | 2021-02-10 | 2021-06-01 | 武汉大学 | Electrocardiosignal acquisition device and quality grade evaluation and QRS wave detection method |
CN112869752B (en) * | 2021-02-10 | 2022-02-01 | 武汉大学 | Electrocardiosignal acquisition device and quality grade evaluation and QRS wave detection method |
CN113111972A (en) * | 2021-05-07 | 2021-07-13 | 杭州博日科技股份有限公司 | Melting curve Tm value determination method and device based on hierarchical clustering and electronic equipment |
CN113111972B (en) * | 2021-05-07 | 2023-02-24 | 杭州博日科技股份有限公司 | Melting curve Tm value determination method and device based on hierarchical clustering and electronic equipment |
CN115486854A (en) * | 2022-09-15 | 2022-12-20 | 浙江好络维医疗技术有限公司 | Single lead electrocardiogram ventricular premature beat identification method aiming at dry electrode acquisition |
CN115486854B (en) * | 2022-09-15 | 2024-04-30 | 浙江好络维医疗技术有限公司 | Single-lead electrocardiograph ventricular premature beat identification method for dry electrode acquisition |
Also Published As
Publication number | Publication date |
---|---|
CN111493858B (en) | 2022-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111493858B (en) | Single-guide-joint specific main wave identification and positioning method based on cluster analysis | |
CN109117730B (en) | Real-time electrocardiogram atrial fibrillation judgment method, device and system and storage medium | |
US7769434B2 (en) | Method of physiological data analysis and measurement quality check using principal component analysis | |
CN109893119B (en) | P wave identification and positioning method based on multi-lead clustering analysis | |
CN109758145B (en) | Automatic sleep staging method based on electroencephalogram causal relationship | |
WO2009091583A1 (en) | Method and apparatus for predicting patient outcomes form a physiological segmentable patient signal | |
CN104834921B (en) | Electrocardio just/abnormal big data processing method and processing device | |
KR102632272B1 (en) | Classification method of atrial fibrillation and congestive heart failure using a convolutional artificial neural network | |
CN109875548B (en) | Electrocardiogram characteristic waveform clustering method based on multi-lead comprehensive analysis | |
Jones et al. | Improving ECG classification interpretability using saliency maps | |
CN112932498A (en) | T wave morphology classification system with strong generalization capability based on deep learning | |
CN111261278A (en) | Heart disease detection method based on deep learning model of three-dimensional image | |
Xie et al. | Research on heartbeat classification algorithm based on CART decision tree | |
CN109893124B (en) | Difficult electrocardiogram dominant wave identification and positioning method based on multi-lead clustering analysis | |
CN114190950B (en) | Electrocardiogram intelligent analysis method for noise-containing label and electrocardiograph | |
CN113069124A (en) | Electrocardio monitoring method based on CNN-ET model | |
Kim et al. | Lightweight Convolutional Neural Network for Real-Time Arrhythmia Classification on Low-Power Wearable Electrocardiograph | |
CN113729724B (en) | Electrocardiogram measuring method and device | |
CN113940682B (en) | Atrial fibrillation recognition method based on statistical characteristics | |
CN111493859B (en) | Single-lead wide and large malformation main wave identification and positioning method based on dtw-hierarchical clustering analysis | |
Gregg et al. | 12-Lead ECG interpretation by database comparison | |
Kovalchuk et al. | A novel feature vector for ECG classification using deep learning | |
CN111513702A (en) | Method for detecting electrocardiographic data and storage medium | |
Wang et al. | Accurately Identifying Coronary Atherosclerotic Heart Disease through Merged Beats of Electrocardiogram | |
Wen et al. | ECG beat classification using GreyART network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 310012 block B, 5 / F, building e, Paradise Software Park, No.3 xidoumen Road, Xihu District, Hangzhou City, Zhejiang Province Applicant after: ZHEJIANG HELOWIN MEDICAL TECHNOLOGY Co.,Ltd. Address before: 310012 A building 7D, Paradise Software Park, 3 West Road, Hangzhou, Zhejiang, Xihu District Applicant before: ZHEJIANG HELOWIN MEDICAL TECHNOLOGY Co.,Ltd. |
|
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 310012 Block A, 13/F, Building E, Paradise Software Park, No. 3, Xidoumen Road, Xihu District, Hangzhou, Zhejiang Applicant after: ZHEJIANG HELOWIN MEDICAL TECHNOLOGY CO.,LTD. Address before: 310012 block B, 5 / F, building e, Paradise Software Park, No.3 xidoumen Road, Xihu District, Hangzhou City, Zhejiang Province Applicant before: ZHEJIANG HELOWIN MEDICAL TECHNOLOGY CO.,LTD. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: Building D, 14th Floor, Block C, Tian Tang Software Park, No. 3 Xidoumen Road, Gudang Street, Xihu District, Hangzhou City, Zhejiang Province 310012 Patentee after: ZHEJIANG HELOWIN MEDICAL TECHNOLOGY CO.,LTD. Country or region after: China Address before: 310012 Block A, 13/F, Building E, Paradise Software Park, No. 3, Xidoumen Road, Xihu District, Hangzhou, Zhejiang Patentee before: ZHEJIANG HELOWIN MEDICAL TECHNOLOGY CO.,LTD. Country or region before: China |