CN111489321B - 基于派生图和Retinex的深度网络图像增强方法和系统 - Google Patents
基于派生图和Retinex的深度网络图像增强方法和系统 Download PDFInfo
- Publication number
- CN111489321B CN111489321B CN202010156373.3A CN202010156373A CN111489321B CN 111489321 B CN111489321 B CN 111489321B CN 202010156373 A CN202010156373 A CN 202010156373A CN 111489321 B CN111489321 B CN 111489321B
- Authority
- CN
- China
- Prior art keywords
- image
- network
- decomposition
- pic
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 110
- 238000009795 derivation Methods 0.000 claims abstract description 12
- 230000004927 fusion Effects 0.000 claims abstract description 6
- 238000005286 illumination Methods 0.000 claims description 62
- 238000012549 training Methods 0.000 claims description 47
- 230000004913 activation Effects 0.000 claims description 21
- 238000001914 filtration Methods 0.000 claims description 15
- 238000004422 calculation algorithm Methods 0.000 claims description 14
- 230000009466 transformation Effects 0.000 claims description 13
- 238000010276 construction Methods 0.000 claims description 6
- 230000003416 augmentation Effects 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 230000003044 adaptive effect Effects 0.000 claims description 2
- 238000013135 deep learning Methods 0.000 abstract description 10
- 230000006870 function Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- MWGATWIBSKHFMR-UHFFFAOYSA-N 2-anilinoethanol Chemical compound OCCNC1=CC=CC=C1 MWGATWIBSKHFMR-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011478 gradient descent method Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000013442 quality metrics Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/94—Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010156373.3A CN111489321B (zh) | 2020-03-09 | 2020-03-09 | 基于派生图和Retinex的深度网络图像增强方法和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010156373.3A CN111489321B (zh) | 2020-03-09 | 2020-03-09 | 基于派生图和Retinex的深度网络图像增强方法和系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111489321A CN111489321A (zh) | 2020-08-04 |
CN111489321B true CN111489321B (zh) | 2020-11-03 |
Family
ID=71794390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010156373.3A Active CN111489321B (zh) | 2020-03-09 | 2020-03-09 | 基于派生图和Retinex的深度网络图像增强方法和系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111489321B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112001863B (zh) * | 2020-08-28 | 2023-06-16 | 太原科技大学 | 一种基于深度学习的欠曝光图像恢复方法 |
CN114677450A (zh) * | 2022-03-19 | 2022-06-28 | 浙江工商大学 | 一种结合图像增强与图像融合的暗图像复原迭代神经网络方法 |
CN114943652B (zh) * | 2022-04-19 | 2024-12-10 | 西北工业大学 | 低照度遥感图像的高动态重建方法及装置 |
CN115205204A (zh) * | 2022-05-19 | 2022-10-18 | 宁波大学 | 一种夜间暗光图像质量评价方法 |
CN115760630A (zh) * | 2022-11-26 | 2023-03-07 | 南京林业大学 | 一种低照度图像增强方法 |
CN116128768B (zh) * | 2023-04-17 | 2023-07-11 | 中国石油大学(华东) | 一种带有去噪模块的无监督图像低照度增强方法 |
CN118096624B (zh) * | 2023-11-20 | 2025-01-28 | 深圳市规划和自然资源数据管理中心(深圳市空间地理信息中心) | 基于Retinex的低光遥感影像增强方法、装置、设备及存储介质 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106780392B (zh) * | 2016-12-27 | 2020-10-02 | 浙江大华技术股份有限公司 | 一种图像融合方法及装置 |
CN108764250B (zh) * | 2018-05-02 | 2021-09-17 | 西北工业大学 | 一种运用卷积神经网络提取本质图像的方法 |
CN108737750A (zh) * | 2018-06-07 | 2018-11-02 | 北京旷视科技有限公司 | 图像处理方法、装置及电子设备 |
CN109816608B (zh) * | 2019-01-22 | 2020-09-18 | 北京理工大学 | 一种基于噪声抑制的低照度图像自适应亮度增强方法 |
CN110503617B (zh) * | 2019-08-29 | 2022-09-30 | 大连海事大学 | 一种基于高、低频信息融合的水下图像增强方法 |
-
2020
- 2020-03-09 CN CN202010156373.3A patent/CN111489321B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111489321A (zh) | 2020-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111489321B (zh) | 基于派生图和Retinex的深度网络图像增强方法和系统 | |
Zhao et al. | RetinexDIP: A unified deep framework for low-light image enhancement | |
Golts et al. | Unsupervised single image dehazing using dark channel prior loss | |
CN115223004B (zh) | 基于改进的多尺度融合生成对抗网络图像增强方法 | |
CN114066747B (zh) | 一种基于光照和反射互补性的低照度图像增强方法 | |
CN113284064B (zh) | 一种基于注意力机制跨尺度上下文低照度图像增强方法 | |
CN115880663A (zh) | 一种低照度环境交通标志检测与识别方法 | |
CN114862707B (zh) | 一种多尺度特征恢复图像增强方法、装置及存储介质 | |
CN116012255A (zh) | 一种基于循环一致性生成对抗网络的低光图像增强方法 | |
CN114549343B (zh) | 基于双支残差特征融合去雾方法 | |
CN114638764B (zh) | 基于人工智能的多曝光图像融合方法及系统 | |
CN117576755A (zh) | 一种超光谱人脸融合与识别方法、电子设备及存储介质 | |
CN116228595A (zh) | 一种基于Retinex-Net和小波变换融合的低照度图像增强方法 | |
CN118351040A (zh) | 一种基于RetinexNet改进的低光照图像增强方法 | |
CN118247192A (zh) | 一种基于HSV和Transformer的无监督低照度图像增强方法 | |
CN115953311A (zh) | 基于Transformer的多尺度特征表示的图像去雾方法 | |
Zhuang et al. | Image enhancement by deep learning network based on derived image and retinex | |
CN116071266A (zh) | 一种基于Retinex的低光照图像增强方法、存储介质及终端 | |
Xu et al. | More than lightening: A self-supervised low-light image enhancement method capable for multiple degradations | |
CN114648457A (zh) | 图像增强方法、装置、设备及可读存储介质 | |
CN117372307B (zh) | 一种多无人机协同探测分布式图像增强方法 | |
CN118691849A (zh) | 一种基于滑动分层转换器的低照度光线增强方法 | |
CN116664463B (zh) | 两阶段的低照度图像增强方法 | |
CN111161189A (zh) | 一种基于细节弥补网络的单幅图像再增强方法 | |
Yu et al. | Low light combining multiscale deep learning networks and image enhancement algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: 223400 Eighth Floor, Andong Building, No. 10 Haian Road, Lianshui County, Huaian City, Jiangsu Province Patentee after: HUAIYIN INSTITUTE OF TECHNOLOGY Address before: While the economic and Technological Development Zone of Jiangsu Province, Huaian City, 223003 East Road No. 1 Patentee before: HUAIYIN INSTITUTE OF TECHNOLOGY |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20200804 Assignee: LIANSHUI JINZE ELECTRONIC TECHNOLOGY Co.,Ltd. Assignor: HUAIYIN INSTITUTE OF TECHNOLOGY Contract record no.: X2021980013469 Denomination of invention: Depth network image enhancement method and system based on derived graph and Retinex Granted publication date: 20201103 License type: Common License Record date: 20211130 |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221223 Address after: Room 309, Building D, Suzhou Hi tech Entrepreneurship Service Center, Jiangsu 215600 Patentee after: ZHANGJIAGANG QIANHE INTERNET TECHNOLOGY Co.,Ltd. Address before: 223400 8th floor, Anton building, 10 Haian Road, Lianshui, Huaian, Jiangsu Patentee before: HUAIYIN INSTITUTE OF TECHNOLOGY |