CN111489268B - 一种基于可信度模糊规划方法的火电厂环境综合管理方法 - Google Patents

一种基于可信度模糊规划方法的火电厂环境综合管理方法 Download PDF

Info

Publication number
CN111489268B
CN111489268B CN202010288732.0A CN202010288732A CN111489268B CN 111489268 B CN111489268 B CN 111489268B CN 202010288732 A CN202010288732 A CN 202010288732A CN 111489268 B CN111489268 B CN 111489268B
Authority
CN
China
Prior art keywords
power plant
constraint
credibility
carbon
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010288732.0A
Other languages
English (en)
Other versions
CN111489268A (zh
Inventor
李永平
龚靖雯
吕静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN202010288732.0A priority Critical patent/CN111489268B/zh
Publication of CN111489268A publication Critical patent/CN111489268A/zh
Application granted granted Critical
Publication of CN111489268B publication Critical patent/CN111489268B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/02Computing arrangements based on specific mathematical models using fuzzy logic
    • G06N7/023Learning or tuning the parameters of a fuzzy system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/82Energy audits or management systems therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Fuzzy Systems (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Operations Research (AREA)
  • Computational Mathematics (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Algebra (AREA)
  • Artificial Intelligence (AREA)
  • Water Supply & Treatment (AREA)
  • Data Mining & Analysis (AREA)
  • Educational Administration (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Development Economics (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)

Abstract

本发明属于能源系统排放的分析与管理技术领域,尤其涉及一种基于可信度模糊规划方法的火电厂环境综合管理方法,包括:步骤A:确定区域火电厂二氧化硫排放限制、氮氧化物排放限制、和颗粒物排放限制为模糊参数,确定二氧化碳排放限制为区间参数;步骤B:建立考虑碳交易机制及空气污染物约束的火电厂环境综合管理系统模型;步骤C:利用可信度理论对含有模糊参数的约束进行可信度截取,将非线性模型转化为线性模型;步骤D:求解线性模型,量化不同可信度水平对区域火电厂供电比例及碳配额分配的影响。本发明不仅能有效处理电力系统中表现为模糊数的大气污染物排放限值的不确定性,而且能基于不同模糊可信度水平得到相应的区域电力系统规划方案。

Description

一种基于可信度模糊规划方法的火电厂环境综合管理方法
技术领域
本发明属于能源系统排放的分析与管理技术领域,尤其涉及一种基于可信度模糊规划方法的火电厂环境综合管理方法。
背景技术
随着社会经济的快速发展和人口的持续增长,电力消费量激增,能源供需矛盾逐渐显现。以煤炭、天然气等化石能源为主的供电结构导致了生态环境恶化。硫、硝是火电厂排放烟气当中主要的污染物质,此类物质会导致大气环境受到严重的污染,进而引发酸雨等自然灾害,使得人类生存环境受到威胁。火电厂排放废气中存在的颗粒物能够吸附多种有毒化学组分随呼吸进入人体,对人体呼吸系统和心血管系统造成损害,使癌症发病率提升。此外,化石燃料燃烧带来的大量二氧化碳排放导致全球范围持续升温,陆地积雪覆盖率降低,冰川融化,海平面上升等效应,并带来一系列的环境问题和生态问题。然而,我国的能源结构决定了我国能源消耗中长期仍将以煤炭等化石能源为主,火电厂在未来很长一段时间内仍在供电中占主导地位。因此,对火电厂进行综合管理,在大气污染物和二氧化碳排放限制下合理分配区域供电比例对于优化区域能源系统,保障区域能源供应可持续发展具有重要意义。
目前,尽管现有技术中在火电厂环境管理方面,已经开展了大量的分析和尝试工作,但仍存在一定的局限性。例如,缺乏表征电力系统复杂性和多重不确定性方法的研究与开发,不能有效地在时间上和空间上充分考虑不确定性因素,从而为决策提供更加科学合理的依据。此外,在二氧化碳排放管理方面,缺乏引入碳交易机制,没能灵活分配碳排放配额,使火电厂获得更大收益。因此,在火电厂环境综合管理系统中引入不确定性分析,能够更加科学有效的对决策方案的生成提供技术支撑。
发明内容
为了克服现有技术存在的上述缺陷,本发明提出了一种基于可信度模糊规划方法的火电厂环境综合管理方法,包括:
步骤A:确定区域火电厂二氧化硫排放限制、氮氧化物排放限制、和颗粒物排放限制为模糊参数,确定二氧化碳排放限制为区间参数;
步骤B:建立考虑碳交易机制及空气污染物约束的火电厂环境综合管理系统模型;
步骤C:利用可信度理论对含有模糊参数的约束进行可信度截取,将非线性模型转化为线性模型;
步骤D:求解线性模型,量化不同可信度水平对区域火电厂供电比例及碳配额分配的影响。
所述火电厂环境综合管理系统模型如下:
目标函数:
Figure BDA0002449573480000021
约束条件:
单个电厂碳排放约束
Figure BDA0002449573480000022
区域碳配额总量约束
Figure BDA0002449573480000023
单个电厂碳处理量约束
Figure BDA0002449573480000024
区域污染物排放约束
Figure BDA0002449573480000025
单个电厂污染物处理量约束
Figure BDA0002449573480000031
非负约束
Figure BDA0002449573480000032
式中,i为电厂编号;k为规划时期,k=1为一阶段,k=2为二阶段,k=3为三阶段;fopt为系统净优;
Figure BDA0002449573480000033
为每个电厂发电量;
Figure BDA0002449573480000034
为单位发电净优;
Figure BDA0002449573480000035
为发电损失;j为碳捕集技术,j=1代表化学捕集,j=2代表膜分离捕集;
Figure BDA0002449573480000036
为二氧化碳处理量;
Figure BDA0002449573480000037
为单位二氧化碳处理损失;w为大气污染物类型,w=1为二氧化硫,w=2为氮氧化物,w=3为颗粒物;
Figure BDA0002449573480000038
为电厂污染物处理量;
Figure BDA0002449573480000039
为污染物处理损失;
Figure BDA00024495734800000310
为电厂二氧化碳排放因子;
Figure BDA00024495734800000311
为优化后的电厂碳配额;χ为政策要求的碳减排比例;
Figure BDA00024495734800000312
为碳排放约束总量;
Figure BDA00024495734800000313
为电厂二氧化碳最大处理能力;COSiwk为电厂大气污染物排放因子;
Figure BDA00024495734800000314
区域电力系统大气污染物排放限值;lsiwk为电厂大气污染物最大处理能力。
所述步骤C中所述可信度理论对含有模糊参数的约束进行可信度截取包括:
步骤C1:基于可信度理论对含有模糊参数的约束转化为可信度约束;
常规的含有模糊参数的约束表示为:
Figure BDA00024495734800000315
其中,xi是决策变量,A为技术参数,
Figure BDA00024495734800000316
为模糊参数,
基于可信度理论对该约束转化后表示为:
Figure BDA00024495734800000317
其中,Cr{·}为模糊事件
Figure BDA00024495734800000318
的可信度水平;
步骤C2:将可信度约束进行可信度截取,将非线性约束转化为线性约束:
Figure BDA0002449573480000041
表示为三角模糊函数时,该可信度水平可转化为:
Figure BDA0002449573480000042
其中ξ1和ξ2是三角模糊函数
Figure BDA0002449573480000043
的左右端点;将此可信度约束进行如下转化:
Figure BDA0002449573480000044
步骤C3:将步骤B中所述模型的模糊约束转化为线性约束,得到线性化模型:
目标函数:
Figure BDA0002449573480000045
约束条件:
单个电厂碳排放约束
Figure BDA0002449573480000046
区域碳配额总量约束
Figure BDA0002449573480000047
单个电厂碳处理量约束
Figure BDA0002449573480000048
区域污染物排放约束
Figure BDA0002449573480000051
单个电厂污染物处理量约束
Figure BDA0002449573480000052
非负约束
PETik,CPNijk,WRTik
Figure BDA0002449573480000053
本发明的有益效果:
本发明的将可信度模糊规划引入火电厂环境综合管理系统,不仅能够有效处理电力系统中表现为模糊数的大气污染物排放限值的不确定性,而且能够基于不同模糊可信度水平得到相应的区域电力系统规划方案。同时通过模糊可信度规划,深入分析系统可信度水平和火电厂环境违约风险的权衡关系,对于环境综合、经济和系统可靠性因素的决策提供建议。
本发明主要适用于火电厂占主导地位的区域的电力系统规划。通过引入碳交易机制,本发明有助于区域调整供电结构,控制大气污染物及二氧化碳排放,制定符合区域特色的管理措施和控制方案。
附图说明
图1为本发明火电厂环境综合管理系统的示意图;
图2为实施方式中不同减排比例和不同可信度水平对火电厂环境综合管理系统收益的影响示意图;
图3为实施方式中不同可信度水平对区域各火电厂碳配额总量的影响示意图;
具体实施方式
下面结合附图,对实施例作详细说明。
本发明的火电厂环境综合管理方法的示意图如图1所示,具体而言,所述火电厂环境综合管理方法包括以下步骤:
步骤A:确定区域火电厂二氧化硫排放限制、氮氧化物排放限制、和颗粒物排放限制为模糊参数,确定二氧化碳排放限制为区间参数;
步骤B:建立考虑碳交易机制及空气污染物约束的火电厂环境综合管理系统模型;
步骤C:利用可信度理论对含有模糊参数的约束进行可信度截取,将非线性模型转化为线性模型;
步骤D:求解线性模型,量化不同可信度水平对区域火电厂供电比例及碳配额分配的影响。
所述火电厂环境综合管理系统模型如下:
目标函数:
Figure BDA0002449573480000061
约束条件:
单个电厂碳排放约束
Figure BDA0002449573480000062
区域碳配额总量约束
Figure BDA0002449573480000063
单个电厂碳处理量约束
Figure BDA0002449573480000064
区域污染物排放约束
Figure BDA0002449573480000065
单个电厂污染物处理量约束
Figure BDA0002449573480000071
非负约束
Figure BDA0002449573480000072
式中,i为电厂编号;k为规划时期,k=1为一阶段,k=2为二阶段,k=3为三阶段;fopt为系统净优;
Figure BDA0002449573480000073
为每个电厂发电量;
Figure BDA0002449573480000074
为单位发电净优;
Figure BDA0002449573480000075
为发电损失;j为碳捕集技术,j=1代表化学捕集,j=2代表膜分离捕集;
Figure BDA0002449573480000076
为二氧化碳处理量;
Figure BDA0002449573480000077
为单位二氧化碳处理损失;w为大气污染物类型,w=1为二氧化硫,w=2为氮氧化物,w=3为颗粒物;
Figure BDA0002449573480000078
为电厂污染物处理量;
Figure BDA0002449573480000079
为污染物处理损失;
Figure BDA00024495734800000710
为电厂二氧化碳排放因子;
Figure BDA00024495734800000711
为优化后的电厂碳配额;χ为政策要求的碳减排比例;
Figure BDA00024495734800000712
为碳排放约束总量;
Figure BDA00024495734800000713
为电厂二氧化碳最大处理能力;COSiwk为电厂大气污染物排放因子;
Figure BDA00024495734800000714
区域电力系统大气污染物排放限值;lsiwk为电厂大气污染物最大处理能力。
所述步骤C中所述可信度理论对含有模糊参数的约束进行可信度截取包括:
步骤C1:基于可信度理论对含有模糊参数的约束转化为可信度约束;
常规的含有模糊参数的约束表示为:
Figure BDA00024495734800000715
其中,xi是决策变量,A为技术参数,
Figure BDA00024495734800000716
为模糊参数,
基于可信度理论对该约束转化后表示为:
Figure BDA00024495734800000717
其中,Cr{·}为模糊事件
Figure BDA00024495734800000718
的可信度水平;
步骤C2:将可信度约束进行可信度截取,将非线性约束转化为线性约束:
Figure BDA0002449573480000081
表示为三角模糊函数时,该可信度水平可转化为:
Figure BDA0002449573480000082
其中ξ1和ξ2是三角模糊函数
Figure BDA0002449573480000083
的左右端点;将此可信度约束进行如下转化:
Figure BDA0002449573480000084
步骤C3:将步骤B中所述模型的模糊约束转化为线性约束,得到线性化模型:
目标函数:
Figure BDA0002449573480000085
约束条件:
单个电厂碳排放约束
Figure BDA0002449573480000086
区域碳配额总量约束
Figure BDA0002449573480000087
单个电厂碳处理量约束
Figure BDA0002449573480000088
区域污染物排放约束
Figure BDA0002449573480000091
单个电厂污染物处理量约束
Figure BDA0002449573480000092
非负约束
PETik,CPNijk,WRTik
Figure BDA0002449573480000093
分别将系统二氧化碳减排量达到0、10%、20%、30%、40%、50%、60%、70%、80%设定为情景1、情景2、情景3、情景4、情景5、情景6、情景7、情景8、情景9,分别选取λ值为0.6,0.7,0.8,0.9,0.95,1,代入相关数据,可以得到火电厂环境综合管理系统优化结果。图2为实施方式中不同减排比例和不同可信度水平对火电厂环境综合管理系统成本的影响示意图。图3为实施方式中不同可信度水平对区域各火电厂碳配额总量的影响示意图;
此实施例仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (1)

1.一种基于可信度模糊规划方法的火电厂环境综合管理方法,其特征在于,包括:
步骤A:确定区域火电厂二氧化硫排放限制、氮氧化物排放限制、和颗粒物排放限制为模糊参数,确定二氧化碳排放限制为区间参数;
步骤B:建立考虑碳交易机制及空气污染物约束的火电厂环境综合管理系统模型;
步骤C:利用可信度理论对含有模糊参数的约束进行可信度截取,将非线性模型转化为线性模型;
步骤D:求解线性模型,量化不同可信度水平对区域火电厂供电比例及碳配额分配的影响;
所述基于可信度模糊规划方法的火电厂环境综合管理方法,其特征在于,所述火电厂环境综合管理系统模型如下:
目标函数:
Figure FDA0003749833570000011
约束条件:
单个电厂碳排放约束
Figure FDA0003749833570000012
区域碳配额总量约束
Figure FDA0003749833570000013
单个电厂碳处理量约束
Figure FDA0003749833570000014
区域污染物排放约束
Figure FDA0003749833570000021
单个电厂污染物处理量约束
Figure FDA0003749833570000022
非负约束
Figure FDA0003749833570000023
式中,i为电厂编号;k为规划时期,k=1为一阶段,k=2为二阶段,k=3为三阶段;fopt为系统净优;
Figure FDA0003749833570000024
为每个电厂发电量;
Figure FDA0003749833570000025
为单位发电净优;
Figure FDA0003749833570000026
为发电损失;j为碳捕集技术,j=1代表化学捕集,j=2代表膜分离捕集;
Figure FDA0003749833570000027
为二氧化碳处理量;
Figure FDA0003749833570000028
为单位二氧化碳处理损失;w为大气污染物类型,w=1为二氧化硫,w=2为氮氧化物,w=3为颗粒物;
Figure FDA0003749833570000029
为电厂污染物处理量;
Figure FDA00037498335700000210
为污染物处理损失;
Figure FDA00037498335700000211
为电厂二氧化碳排放因子;
Figure FDA00037498335700000212
为优化后的电厂碳配额;χ为政策要求的碳减排比例;
Figure FDA00037498335700000213
为碳排放约束总量;
Figure FDA00037498335700000214
为电厂二氧化碳最大处理能力;COSiwk为电厂大气污染物排放因子;
Figure FDA00037498335700000215
区域电力系统大气污染物排放限值;lsiwk为电厂大气污染物最大处理能力;
所述步骤C中所述可信度理论对含有模糊参数的约束进行可信度截取包括:
步骤C1:基于可信度理论对含有模糊参数的约束转化为可信度约束;
常规的含有模糊参数的约束表示为:
Figure FDA00037498335700000216
其中,xi是决策变量,A为技术参数,
Figure FDA00037498335700000217
为模糊参数,
基于可信度理论对该约束转化后表示为:
Figure FDA00037498335700000218
其中,Cr{·}为模糊参数
Figure FDA0003749833570000031
的可信度水平;
步骤C2:将可信度约束进行可信度截取,将非线性约束转化为线性约束:
当模糊参数
Figure FDA0003749833570000032
的隶属函数呈三角分布时,该可信度水平可转化为:
Figure FDA0003749833570000033
其中ξ1和ξ2是模糊参数
Figure FDA0003749833570000034
的左右端点;将此可信度约束进行如下转化:
Figure FDA0003749833570000035
步骤C3:将步骤B中所述模型的模糊约束转化为线性约束,得到线性化模型:
目标函数:
Figure FDA0003749833570000036
约束条件:
单个电厂碳排放约束
Figure FDA0003749833570000037
区域碳配额总量约束
Figure FDA0003749833570000038
单个电厂碳处理量约束
Figure FDA0003749833570000041
区域污染物排放约束
Figure FDA0003749833570000042
单个电厂污染物处理量约束
Figure FDA0003749833570000043
非负约束
Figure FDA0003749833570000044
CN202010288732.0A 2020-04-14 2020-04-14 一种基于可信度模糊规划方法的火电厂环境综合管理方法 Active CN111489268B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010288732.0A CN111489268B (zh) 2020-04-14 2020-04-14 一种基于可信度模糊规划方法的火电厂环境综合管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010288732.0A CN111489268B (zh) 2020-04-14 2020-04-14 一种基于可信度模糊规划方法的火电厂环境综合管理方法

Publications (2)

Publication Number Publication Date
CN111489268A CN111489268A (zh) 2020-08-04
CN111489268B true CN111489268B (zh) 2022-09-16

Family

ID=71812748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010288732.0A Active CN111489268B (zh) 2020-04-14 2020-04-14 一种基于可信度模糊规划方法的火电厂环境综合管理方法

Country Status (1)

Country Link
CN (1) CN111489268B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108268973A (zh) * 2017-12-20 2018-07-10 华北电力大学 不确定两阶段机会约束低碳电力优化规划方法
CN109002921A (zh) * 2018-07-19 2018-12-14 北京师范大学 一种基于二型模糊机会约束的区域能源系统优化方法
CN109740955A (zh) * 2019-01-10 2019-05-10 燕山大学 一种计及改进阶梯式碳交易的电-气综合能源系统规划方法
CN110472783A (zh) * 2019-08-06 2019-11-19 国网冀北综合能源服务有限公司 考虑发电量配额的碳捕集机组优化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110178833A1 (en) * 2010-01-20 2011-07-21 International Business Machines Corporation Developing an optimal long term electricity generation capacity resource plan under a carbon dioxide regulatory regime
CN108615192B (zh) * 2017-08-18 2019-11-15 赫普科技发展(北京)有限公司 一种基于区块链的碳交易系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108268973A (zh) * 2017-12-20 2018-07-10 华北电力大学 不确定两阶段机会约束低碳电力优化规划方法
CN109002921A (zh) * 2018-07-19 2018-12-14 北京师范大学 一种基于二型模糊机会约束的区域能源系统优化方法
CN109740955A (zh) * 2019-01-10 2019-05-10 燕山大学 一种计及改进阶梯式碳交易的电-气综合能源系统规划方法
CN110472783A (zh) * 2019-08-06 2019-11-19 国网冀北综合能源服务有限公司 考虑发电量配额的碳捕集机组优化方法

Also Published As

Publication number Publication date
CN111489268A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
Johnson et al. Clear water, blue skies: China's environment in the new century
CN107316112A (zh) 一种成本效益最优的火电机组减排方案定制方法和系统
CN112884274B (zh) 一种基于排放网格的二氧化碳源-汇匹配方法及装置
Zhang et al. Heavy ozone pollution episodes in urban Beijing during the early summertime from 2014 to 2017: Implications for control strategy
Amann et al. Future air quality in Ha Noi and northern Vietnam
Yan et al. Encoder-decoder model for forecast of PM2. 5 concentration per hour
CN112364562A (zh) 一种烟气环保岛协同控制方法及系统
Cahyono et al. Projection of CO2 emissions in Indonesia
CN115455248A (zh) 一种基于数据分析的城市碳排放监测方法
Luo et al. Synoptic condition-driven summertime ozone formation regime in Shanghai and the implication for dynamic ozone control strategies
Yan et al. Hybrid dynamic coal blending method to address multiple environmental objectives under a carbon emissions allocation mechanism
ApSIMON et al. Synergies in addressing air quality and climate change
CN111489268B (zh) 一种基于可信度模糊规划方法的火电厂环境综合管理方法
Adesina et al. Assessment of criteria pollutants contributions from coal-fired plants and domestic solid fuel combustion at the South African industrial highveld
Sangeetha et al. A study on estimation of CO 2 emission using computational techniques
Li et al. Characteristics of secondary inorganic aerosols and contributions to PM2. 5 pollution based on machine learning approach in Shandong Province
Hu et al. Diurnal variations of aerosol chemical compositions and related gaseous pollutants in Beijing and Guangzhou
Kaygusuz Air polluted emissions from coal-fired power plants and their human health effects in Turkey
Wang et al. Sensitivity analysis of atmospheric oxidation capacity in Beijing based on the GRAPES-CUACE adjoint model
Toro et al. Long-term assessment and acute air pollution events in a mega-industrial area in Central Chile
Liu et al. Development of an interval double-stochastic carbon-neutral electric power system planning model: A case study of Fujian province, China
Anggarani et al. Dispersion modeling of power plant emissions on air quality
Yin et al. Selection of Factors Affecting NOx Emissions Concentration Forecast Modeling Based on BP Neural Network
Ukachukwu et al. Application of Machine Learning to Air Pollution Studies: A Systematic Review
Hudedmani et al. Impacts of Energy Generation on Environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant