CN111478784B - 一种配置资源的确定方法及装置 - Google Patents

一种配置资源的确定方法及装置 Download PDF

Info

Publication number
CN111478784B
CN111478784B CN201910069176.5A CN201910069176A CN111478784B CN 111478784 B CN111478784 B CN 111478784B CN 201910069176 A CN201910069176 A CN 201910069176A CN 111478784 B CN111478784 B CN 111478784B
Authority
CN
China
Prior art keywords
resource
sfn
sequence number
configuration
resources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910069176.5A
Other languages
English (en)
Other versions
CN111478784A (zh
Inventor
范强
娄崇
黄曲芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201910069176.5A priority Critical patent/CN111478784B/zh
Priority to CN202210176051.4A priority patent/CN114916077A/zh
Priority to PCT/CN2020/073323 priority patent/WO2020151678A1/zh
Priority to EP20744672.5A priority patent/EP3917082A4/en
Priority to BR112021014568-0A priority patent/BR112021014568A2/pt
Publication of CN111478784A publication Critical patent/CN111478784A/zh
Priority to US17/384,381 priority patent/US20210352640A1/en
Application granted granted Critical
Publication of CN111478784B publication Critical patent/CN111478784B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/085Retrieval of network configuration; Tracking network configuration history
    • H04L41/0853Retrieval of network configuration; Tracking network configuration history by actively collecting configuration information or by backing up configuration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请提供一种配置资源的确定方法及装置。该方法包括:终端设备从网络设备获取配置资源的配置信息,配置资源为周期性资源,配置信息包括周期性资源的周期参数;终端设备为配置资源维护序号,其中序号在系统帧号SFN翻转时更新;终端设备根据序号和周期参数,确定配置资源。基于该方案,终端设备可以根据配置信息中的周期性资源的周期参数和维护的序号,确定配置资源,达到降低计算出的配置资源的位置和终端设备实际所需资源之间出现偏差的可能性,从而实现配置资源的有效配置。

Description

一种配置资源的确定方法及装置
技术领域
本申请涉及移动通信技术领域,尤其涉及一种配置资源的确定方法及装置。
背景技术
长期演进(Long Term Evolution,LTE)中,有两种调度机制,一种是动态调度,即基站每次调度传输资源时,都通过下行控制信息(downlink control information,DCI)指示被调度资源的时频位置等信息,另一种是半静态调度(semi-persistent scheduling,SPS),SPS机制适合于支持语音等周期性业务的传输。LTE中SPS机制包括下行SPS和上行SPS。基站通过RRC专用信令为终端设备配置SPS功能,配置的参数包括SPS小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)、SPS资源周期、使用SPS资源的进程数目等。基站通过DCI激活/去激活SPS配置。当基站通过DCI激活SPS配置时,在DCI中同时为终端设备指定一块资源,被称为SPS资源,该资源将按照配置的SPS资源周期参数周期性出现,无需再通过DCI指示其资源位置。
目前,在第五代(5th generation,5G)新无线(new radio,NR)中,下行方向上,重用LTE的下行SPS机制,而在上行方向上,定义了配置授权(configured grant,CG)的概念。目前,有两种配置授权,分别为配置授权类型1(configured grant Type 1)和配置授权类型2(configured grant Type 2)。其中,配置授权类型1的时频资源位置由网络设备通过无线资源控制(radio resource control,RRC)信令提供给终端设备,并由终端设备存储为配置上行授权(configured uplink grant),RRC信令配置了配置授权类型1(CG类型1)后终端设备即可进行使用;配置授权类型2(CG类型2)类似于LTE中的上行SPS,是由物理层或层1(L1)信令(即DCI)激活或去激活的,当网络设备通过DCI激活CG类型2时,时频资源由网络设备通过DCI提供给终端设备,并由终端设备存储或清除为配置上行授权。
目前,NR的SPS/CG机制只能够支持配置特定的周期,即周期要能够被10240ms整除,以确保每个SFN相同的无线帧内,终端设备所需的资源位置和终端设备计算出的资源出现的位置相匹配。
但随着通信技术的发展,配置的资源的周期可能不能够被10240ms整除,这将导致当系统帧号(system frame number,SFN)发生翻转后,在新的SFN周期内,终端设备所需的资源位置和终端设备计算出的SPS/CG资源出现的位置之间存在偏差,进而可能导致一些高可靠低延时业务的传输需求得不到满足。
发明内容
本申请提供一种配置资源的确定方法及装置,用以实现有效地确定配置资源。
第一方面,本申请提供一种配置资源的确定方法,包括:终端设备从网络设备获取配置资源的配置信息,配置资源为周期性资源,配置信息包括周期性资源的周期参数;终端设备为配置资源维护序号,其中序号在系统帧号SFN翻转时更新;终端设备根据序号和周期参数,确定配置资源。基于该方案,终端设备可以根据配置信息中的周期性资源的周期参数和维护的序号,确定配置资源,达到降低计算出的配置资源的位置和终端设备实际所需资源之间出现偏差的可能性,从而实现配置资源的有效配置。
在一种可能的实现方法中,配置信息包括序号的取值范围的配置信息。
在一种可能的实现方法中,终端设备从网络设备获取序号的取值范围的配置信息,配置信息为L,其中L为正整数;终端设备根据取值范围的配置信息,确定序号的取值范围为0至K-1或者1至K,其中,K=2L
在一种可能的实现方法中,终端设备从网络设备获取序号的取值范围的配置信息,配置信息为K,其中K为正整数;终端设备根据取值范围的配置信息,确定序号的取值范围为0至K-1或者1至K。
在一种可能的实现方法中,序号的取值范围预设为0至K-1或者1至K,且满足K*10240ms=周期性资源的周期的正整数倍。
在一种可能的实现方法中,序号的取值范围由预设值L确定,其中,序号的取值范围为0至K-1或者1至K,其中,K=2L
在一种可能的实现方法中,终端设备通过计数器维护序号,序号为计数器的取值。
在一种可能的实现方法中,终端设备为配置资源维护序号,其中序号在SFN翻转时按以下方式更新:更新后的序号=(原序号+1)modulo K,其中modulo为取模操作,K为序号的总数。
在一种可能的实现方法中,序号为超系统帧号H-SFN。
在一种可能的实现方法中,终端设备通过广播信令从网络设备获取H-SFN的配置信息。
在一种可能的实现方法中,H-SFN的配置信息为H-SFN的长度M,H-SFN标识210+M个无线帧。
在一种可能的实现方法中,终端设备为配置资源维护序号,其中序号在SFN翻转时更新,包括:终端设备每隔1024个无线帧对H-SFN进行累加1操作。
在一种可能的实现方法中,SFN翻转之前和之后确定的配置资源的时域间隔等于SFN的时长的正整数倍。
在一种可能的实现方法中,SFN翻转之前和之后确定的配置资源的时域间隔等于所述周期性资源的周期。
第二方面,本申请提供一种配置资源的确定方法,包括:终端设备获取配置资源的配置信息,配置信息包括第一参数,配置资源为周期性资源;终端设备根据第一参数确定配置资源的确定方式。基于该方案,终端设备可以根据配置信息中的第一参数,确定配置资源的确定方式,从而可以实现使用较为合适的方式确定配置资源,有助于实现有效地配置资源。
在一种可能的实现方法中,第一参数为周期参数,其中,周期参数所指示的资源周期不能被10240ms整除时,终端设备采用的配置资源的确定方式与资源周期能被10240ms整除时不同。基于该方案,有助于减少系统帧号翻转时带来的配置资源和终端设备所需资源不一致的问题,从而有助于实现正确配置资源,进而提升资源配置效率。
在一种可能的实现方法中,第一参数为时间信息或指示信息,时间信息包括SFN信息、或H-SFN信息、或协调世界时UTC/全球定位系统GPS时间信息,指示信息用于指示终端设备采用的配置资源的确定方式;其中,当终端设备收到第一参数时,终端设备采用的配置资源的确定方式与终端设备未收到第一参数时不同。
在一种可能的实现方法中,终端设备根据配置资源的资源周期和K值,确定配置资源;其中,配置资源的资源周期为符号symbol/时隙slot/毫秒ms的整数倍;K值为满足K*10240ms=资源周期*M的最小正整数,M为正整数,或者K=2L、且L为配置的正整数,或者K=2M、且M为配置的超系统帧号H-SFN的长度,或者K为配置的正整数。
在一种可能的实现方法中,终端设备为配置资源维护计数器,计数器的取值范围为0到K-1,或1到K。
在一种可能的实现方法中,当配置资源激活时,计数器置为0,当系统帧号SFN发生翻转时,计数器累加1并进行模K处理。
在一种可能的实现方法中,配置资源为配置授权类型1的时频资源,配置信息还包括网络设备生成配置信息或发送配置信息时的帧号,帧号为系统帧号SFN或超系统帧号H-SFN;若终端设备收到配置信息时的帧号大于或等于配置信息中的帧号,则终端设备将计数器置为0,否则置为1。如此,有助于实现为计数器设置正确的初始值。
在一种可能的实现方法中,配置资源为配置授权类型1的时频资源,终端设备通过RRC信令向网络设备发送辅助信息,辅助信息用于指示终端设备的业务模式(trafficpattern)。
在一种可能的实现方法中,K值携带于配置信息。
在一种可能的实现方法中,K值是MAC粒度或小区粒度(per MAC/per Cell)配置的。
在一种可能的实现方法中,配置信息还包括比特位图bitmap,bitmap包括Q比特,Q比特中的每比特对应于一个时间区域,且每个比特用于指示对应的时间区域内是否配置有资源,时间区域为X slot/symbol/ms,X为正整数;则终端设备根据bitmap,确定配置资源。
在一种可能的实现方法中,配置资源的资源周期为slot/ms的非整数倍;终端设备根据资源周期,确定配置资源的生效位置;根据生效位置,确定配置资源。
第三方面,本申请提供一种通信装置,该装置可以是终端设备,还可以是用于终端设备的芯片。该装置具有实现上述第一方面、或者第二方面中任意一个方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面或第一方面中任一所述的配置资源的确定方法、或者以使该装置执行如上述第二方面或第二方面中任一所述的配置资源的确定方法。
第五方面,本申请提供一种通信装置,包括:包括用于执行以上第一方面、或第二方面各个步骤的单元或手段(means)。
第六方面,本申请提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行以上第一方面、或第二方面提供的任意方法。该处理器包括一个或多个。
第七方面,本申请提供一种通信装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述第一方面、或第二方面的任意实现方式中的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第八方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行上述各方面所述的方法。
第九方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述各方面所述的方法。
第十一方面,本申请还提供一种通信系统,包括:终端设备和网络设备,终端设备包括以上方面中任一种通信装置。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请提供的一种可能的网络架构示意图;
图2为本申请提供的终端设备确定的资源位置与终端设备需要的资源位置不一致示意图;
图3为本申请提供的一种比特位图指示资源位置示意图;
图4为本申请提供的一种资源位置确定方法示意图;
图5为本申请提供的配置资源的确定方法示意图;
图6为本申请提供的网络理解的CG资源位置和终端设备理解的CG资源位置不一致示意图;
图7为本申请提供的又一种资源位置确定方法示意图;
图8为本申请提供的一种通信装置示意图;
图9为本申请提供的又一种通信装置示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。
如图1所示,为本申请所适用的一种可能的网络架构示意图,包括网络设备和至少一个终端设备。该网络设备和终端设备可以工作5G NR通信系统上,其中,终端设备可以通过5G NR通信系统与网络设备通信。该网络设备和终端设备也可以在其它通信系统上工作,本申请实施例不做限制。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internetdevice,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmentedreality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(selfdriving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。
网络设备是无线网络中的设备,例如将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base stationcontroller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,homeevolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
下面,首先对目前NR中的周期性的资源的配置方法进行介绍说明。
一、下行方向
在NR中,基站对下行SPS进行RRC配置时,会配置但不限于以下参数:
-周期(periodicity):即通过DCI对SPS进行激活后,SPS资源重复出现的周期,在NR R15中,SPS周期的取值可以包括10ms,20ms,32ms,40ms,64ms,80ms,128ms,160ms,320ms,640ms。SPS周期均能够被10240ms整除。
-混合自动重传请求(Hybrid automatic repeat request,HARQ)进程数(nrofHARQ-Processes):处理下行SPS资源时可用的HARQ进程数目。
-物理上行控制信道(Physical Uplink Shared CHannel,PUCCH)资源:终端设备反馈HARQ结果的资源配置。
二、上行方向
基站对配置授权(CG)进行配置时,RRC配置信令中包括但不限于以下参数:
-周期(periodicity):基站配置CG时,周期的取值和CG所在资源的子载波间隔(Sub-Carrier Space,SCS)有关,以15KHz为例,周期取值可以包括(以symbol为单位,在15KHz SCS下,1ms包括14个symbol):2,7,n*14,其中n={1,2,4,5,8,10,16,20,32,40,64,80,128,160,320,640}。目前,CG支持的周期均能被10240ms整除。
-HARQ进程数(nrofHARQ-Processes)/mcs-table等。
-对于CG类型1,基站还会给出配置上行授权(configured uplink grant)资源的相关配置,包括“第一块”configured uplink grant资源的时域位置、频域位置,以及相对于SFN=0时刻的偏移值timeDomainOffset,该偏移值以时隙(slot)为单位。其中,由于configured uplink grant可以只占据1个slot的部分symbol,这里的“第一块”configureduplink grant资源的时域位置指示的是在1个slot中第S个symbol开始,占据L个symbol的长度。
在NR R15中,一个SPS资源总占据一个slot。
下面对目前NR中配置的周期性资源的位置的确定方法以及使用的HARQ进程的确定方法进行说明。
本申请中,配置资源是一种非动态调度资源,或者说是一种半静态调度的资源,通常为周期性资源。例如在下行方向,包括SPS资源,在上行方向,包括CG类型1资源和CG类型2资源。
需要说明的是,本申请是将半静态调度的资源,在下行方向称为下行SPS资源或称为SPS资源或称为SPS,在上行方向称为CG类型1、CG类型2,或称为CG1类型1资源、CG类型2资源。本申请中的SPS或CG类型2只是用来表示RRC配置+DCI激活(指示资源)/去激活的方式的名称,CG类型1用来表示RRC配置+RRC指示资源的方式的名称,对于下行也可以采用RRC配置+RRC指示资源的方式,相应的计算下行周期性资源的位置,以及确定处理相应下行周期性资源的HARQ进程ID的计算方法也可以与以下实施例中CG类型1对应的方法相同,对此不做限定。随着通信制式的发展,这些名词也有可能会有其他名称予以替代,但只要其技术实质没有改变,亦可落入本申请的保护范围之内。
需要说明的是,本申请中的modulo表示取模操作,本申请中以一个系统帧的时长为10ms为例进行说明。这里统一说明,后续不再赘述。
一、下行方向
1、配置的周期性资源的位置的确定方法
基站通过DCI激活SPS时,会指定一块SPS资源位置,所指示资源的时域位置对应的系统帧号(SFN)和slot分别记为SFNstart time和slotstart time。终端设备通过如下公式(1)确定第N块SPS资源出现的时域位置,即出现在哪个SFN的哪个slot内,或者理解为:若(SFN,slotnumber in the frame)满足下列公式(1),则终端设备确定(SFN,slot number in theframe)为下行SPS资源的时域位置(SPS资源占据整数个slot):
(numberOfSlotsPerFrame*SFN+slot number in the frame)=[(numberOfSlotsPerFrame*SFNstart time+slotstart time)+N*periodicity*numberOfSlotsPerFrame/10]modulo(1024*numberOfSlotsPerFrame),……公式(1)
其中,SFN的取值范围为0,1,2,……,1023;slot number in the frame的取值范围为0,1,2,……,numberOfSlotsPerFrame-1;numberOfSlotsPerFrame表示一个系统帧包括的slot的数量;SFNstart time为DCI中指定的SPS资源所在系统帧的系统帧号;slotstart time为指定的DCI中指定的SPS资源在相应系统帧中的时隙编号;periodicity为RRC信令配置的SPS周期(或称为资源周期)。
由于SFN长度为10比特(bit),可以表示0到1023的取值,对于SFN=1023的无线帧的下一个无线帧,对应的SFN取值为0。由于SPS周期能被10240ms(即1024个无线帧的长度)整除,因此通过上述公式(1)计算出来的每个SFN相同的无线帧中SPS资源出现的位置总是相同的。
2、HARQ进程的确定方法
对于一个具体的SPS资源,终端设备通过如下公式(2)确定HARQ进程的标识(ID),从而确定用哪个HARQ进程处理或使用该SPS资源,即确定和该SPS资源关联的HARQ进程ID:
HARQ Process ID=[floor(CURRENT_slot*10/(numberOfSlotsPerFrame*periodicity))]modulo nrofHARQ-Processes,……公式(2)
其中,HARQ Process ID为确定的HARQ进程的标识,floor表示下取整函数,nrofHARQ-Processes为配置的HARQ进程的数量,CURRENT_slot为下行SPS资源的时域起始位置,且CURRENT_slot=(SFN*numberOfSlotsPerFrame)+slot number in the frame。
二、上行方向
1、配置的周期性资源的位置的确定方法
1.1、CG类型1
对于CG类型1,终端设备通过如下公式(3)确定第N块CG类型1资源的时域位置,即从哪个SFN的哪个slot的哪个symbol开始,或者理解为:若(SFN,slot number in theframe,symbol number in the slot)满足下列公式(3),则终端设备确定(SFN,slotnumber in the frame,symbol number in the slot)为CG类型1资源的时域位置:
(SFN*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+(slot number in theframe*numberOfSymbolsPerSlot)+symbol number in the slot)=(timeDomainOffset*numberOfSymbolsPerSlot+S+N*periodicity)modulo(1024*numberOfSlotsPerFrame*numberOfSymbolsPerSlot),N=1,2,3……,……公式(3)
其中,SFN的取值范围为0,1,2,……,1023;slot number in the frame的取值范围为0,1,2,……,numberOfSlotsPerFrame-1;symbol number in the slot的取值范围为0,1,2,……,numberOfSymbolsPerSlot-1;numberOfSlotsPerFrame表示一个系统帧包括的slot的数量;symbol number in the slot表示一个时隙包括的symbol的数量;periodicity为RRC信令配置的CG1周期(或称为资源周期);S表示为RRC信令中配置的“第一块”configured uplink grant在一个slot中第几个symbol开始。timeDomainOffset是“第一块”configured uplink grant相对于SFN=0时刻的偏移值,偏移值以时隙为单位。
作为又一种实现方式,对于下行方向也可以采用RRC配置+RRC指示资源的方式,相应的计算下行周期性资源的位置,以及确定处理相应下行周期性资源的HARQ进程ID的计算方法也可以与该实施例中的CG类型1的方法相同。
1.2、CG类型2
对于CG类型2,终端设备通过如下公式(4)确定第N块CG类型2资源的时域位置,即从哪个SFN的哪个slot的哪个symbol开始,或者理解为:若(SFN,slot number in theframe,symbol number in the slot)满足下列公式(4),则终端设备确定(SFN,slotnumber in the frame,symbol number in the slot)为CG类型2资源的时域位置:(SFN*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+(slot number in the frame*numberOfSymbolsPerSlot)+symbol number in the slot)=[(numberOfSlotsPerFrame*numberOfSymbolsPerSlot*SFNstart time+slotstart time*numberOfSymbolsPerSlot+symbolstart time)+N*periodicity]modulo(1024*numberOfSlotsPerFrame*numberOfSymbolsPerSlot),N=1,2,3……,……公式(4)
其中,SFN的取值范围为0,1,2,……,1023;slot number in the frame的取值范围为0,1,2,……,numberOfSlotsPerFrame-1;symbol number in the slot的取值范围为0,1,2,……,numberOfSymbolsPerSlot-1;numberOfSlotsPerFrame表示一个系统帧包括的slot的数量;symbol number in the slot表示一个时隙包括的symbol的数量;periodicity为RRC信令配置的CG2周期(或称为资源周期);SFNstart time为“第一块”configured uplink grant所在系统帧的系统帧号;slotstart time为“第一块”configureduplink grant在相应系统帧中的时隙编号,symbolstart time为“第一块”configured uplinkgrant在相应系统帧中的符号编号。
对于configured grant(CG类型1或CG类型2),由于其配置的周期能被10240ms整除,因此通过上述公式(3)或公式(4)计算出来的每个SFN相同的无线帧中configuredgrant资源的时频域位置也总是相同的。
2、HARQ进程的确定方法
对于一个具体的configured uplink grant资源(CG类型1的资源或CG类型2的资源),终端设备通过如下公式(5)确定HARQ进程的标识(ID),从而确定用哪个HARQ进程处理或使用该CC类型1的资源或CG类型2的资源,即确定和该CC类型1的资源或CG类型2的资源关联的HARQ进程ID:
HARQ Process ID=[floor(CURRENT_symbol/periodicity))]modulo nrofHARQ-Processes,……公式(5)
其中,HARQ Process ID为确定的HARQ进程的标识,floor表示下取整函数,nrofHARQ-Processes为配置的HARQ进程的数量,CURRENT_symbol为configured uplinkgrant资源的时域起始位置,且CURRENT_symbol=(SFN*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+slot number in the frame*numberOfSymbolsPerSlot+symbolnumber in the slot)。
上述现有技术中,只能够支持配置特定的SPS/CG的周期,即周期要能够被10240ms整除,以确保每个SFN相同的无线帧内,终端设备所需的资源位置和根据公式(即公式(1)、或公式(3)、或公式(4))计算出的SPS/CG资源出现的位置相匹配。
若配置的SPS/CG的周期不能够被10240ms整除,比如配置的SPS/CG的周期为3ms、1.6ms等,此时该周期不能被10240ms整除,当需要配置3ms或1.6ms周期的SPS资源以匹配终端设备的周期性下行业务数据的传输时,此时终端设备若仍然按照上述公式(1)、或公式(3)、或公式(4)计算SPS/CG资源出现的位置,当SFN发生翻转(从1023到0)后,在新的SFN周期内,根据上述公式(1)、或公式(3)、或公式(4)所确定的SPS/CG资源位置和实际所需要的下行/上行资源位置之间存在偏差,这样可能导致一些高可靠低延时业务的传输需求得不到满足。
如图2所示,为终端设备所需周期性资源位置示意图。图中示出了两种资源周期,一种是10ms,一种是3ms,其中10ms能被10240ms整除,因此终端设备确定的资源位置和实际资源位置不存在偏差。而对于不能被10240ms整除的周期,其以周期为3ms为例。可以看出,当SFN发生翻转后,终端设备实际需要的资源的位置与终端设备根据上述公式计算出的资源的位置存在偏差,进而将会导致一些高可靠低延时业务的传输需求得不到满足。具体的说,终端设备所需的传输资源的时域间隔为3ms,而根据上述公式计算资源位置时,在SFN翻转前后的两个周期性资源的时域间隔仅为1ms。
为解决上述问题,本申请提供多种不同的方法,下面分别说明。
实施例一
该实施例中,资源周期(periodicity)不能被10240ms整除,但可以被symbol/slot/ms整除。以资源周期可以被ms整除为例,如资源周期可以为3ms,6ms,15ms等。
网络设备可以为终端设备配置至少一套SPS/CG。每套SPS/CG配置一个K值,并且维护一个计数器(counter)值。网络在配置SPS/CG时,在配置信令中,可以额外显示的指示一个K值。K值可以表示对应SPS/CG维护的counter值的取值范围,例如:counter从0开始计数时,counter取值范围为0,1,2,…,K-1。当然,counter取值范围也可以有其他表示方式,比如counter取值范围为1,2,3,……,K。具体的,counter取值范围可以是任意数开始至该任意数+K-1(该任意数表示为t,则counter取值范围为t,t+1,t+2,……,t+K-1)。可选的,K值可以在RRC信令中显示指示,或是通过类似于如下方式隐式指示出:K可以为满足如下条件的最小正整数:K*10240ms=periodicity的整数倍。例如,当periodicity=15ms时,K=3。Counter值可以由终端设备的媒体接入控制(medium access control,MAC)层实体进行维护,或者由终端设备的RRC层实体进行维护。
当网络通过DCI激活一套SPS/CG配置时,该套SPS/CG配置对应的counter重置为0。当SFN发生翻转时,即一个无线帧对应SFN=1023,到下一个无线帧对应的SFN翻转为0时,相应的counter值按照如下方式进行更新:counter=(counter+1)modulo K,即当SFN翻转时,counter值累加1,为避免取值超过允许的取值范围,对累加后的结果进行取模操作。
基于该实施例,配置的周期性资源的位置的确定方法以及使用的HARQ进程的确定方法分别如下:
一、下行方向
1、配置的周期性资源的位置的确定方法
在SFN从0到1023的无线帧内,终端设备在确定周期性资源的位置时,需要考虑counter值以及K值,例如,可以通过如下公式(6)确定第N块SPS资源出现的时域位置,即出现在哪个SFN的哪个slot内,或者理解为:若(SFN,slot number in the frame)满足下列公式(6),则终端设备确定(SFN,slot number in the frame)为下行SPS资源的时域位置(SPS资源占据整数个slot):
(numberOfSlotsPerFrame*(SFN+counter*1024)+slot number in the frame)=[(numberOfSlotsPerFrame*SFNstart time+slotstart time)+N*periodicity*numberOfSlotsPerFrame/10]modulo(1024*K*numberOfSlotsPerFrame),……公式(6)
其中,counter值和K值含义定义如上。其他参数的定义可以参考介绍公式(1)时的相关定义,这里不再赘述。
2、HARQ进程的确定方法
对于一个具体的SPS资源,终端设备通过如下公式(7)确定HARQ进程的标识(ID),从而确定用哪个HARQ进程处理或使用该SPS资源,即确定和该SPS资源关联的HARQ进程ID:
HARQ Process ID=[floor(CURRENT_slot*10/(numberOfSlotsPerFrame*periodicity))]modulo nrofHARQ-Processes,……公式(7)
其中,HARQ Process ID为确定的HARQ进程的标识,floor表示下取整函数,nrofHARQ-Processes为配置的用于处理SPS资源的HARQ进程的数量,CURRENT_slot为下行SPS资源的时域起始位置,且CURRENT_slot=((SFN+counter*1024)*numberOfSlotsPerFrame)+slot number in the frame。
作为又一种实现方式,也可以通过上述公式(2)所描述的方式计算HARQ进程ID。
当终端设备配置了多套SPS配置,且多套SPS配置同时激活,根据上述公式(7),不同SPS配置的SPS资源能够使用的HARQ进程都从0开始,可能对利用SPS资源进行数据传输造成影响。例如,SPS配置1和SPS配置2的两块资源相隔1个slot到达,终端设备在SPS配置1的资源上利用HARQ process 0接收处理基站调度的数据之后,由于信道质量较差数据没有解析成功,需要基站进行重传,并将重传数据与之前的数据进行合并解码,但是终端设备需要同样利用HARQ process 0对紧跟到达的SPS配置2资源进行处理,导致HARQ process 0对应的buffer中保存的数据被清空。为减少上述问题,可以对不同SPS配置可用的HARQ进程进行区分。因此作为又一种确定处理SPS资源的HARQ进程的实现方式,还可以通过如下公式(7a)计算HARQ进程ID:
HARQ Process ID=[floor(CURRENT_slot*10/(numberOfSlotsPerFrame*periodicity))]modulo nrofHARQ-Processes+△……公式(7a)
其中,在配置每套SPS/CG时,在配置信令中可以指示相应的一个索引值ConfigurationIndex,例如索引值可以为0,1,2…。CURRENT_slot=[(SFN*numberOfSlotsPerFrame)+slot number in the frame]为该SPS资源的时域起始位置。其中△可以通过如下方式之一确定:
方式一:△=ConfigurationIndex*nrofHARQ-Processes,例如当前SPS/CG配置的ConfigurationIndex=1,nrofHARQ-Processes=2,则△=2。
方式二:△=索引值小于当前SPS/CG对应的ConfigurationIndex的所有SPS/CG配置的nrofHARQ-Processes之和,例如,网络配置了两套SPS,对应索引值分别为0和1,nrofHARQ-Processes分别为2和3,则对于第一套SPS配置的资源,没有索引值小于0的SPS配置,则相应的△=0,对于第二套SPS配置的资源,索引值小于1的SPS配置即为第一套SPS配置,因此相应的△=2。
可选的,为了避免通过该方式计算出来的HARQ process ID超过HARQ process ID最大值,可以对计算后的HARQ process ID进行取模操作(例如,模最大下行HARQ process数目,或模终端设备在当前小区上能够使用的HARQ process数目)。
作为又一种实现方式,也可以通过以下公式(7b)所描述的方式计算HARQ进程ID。
HARQ Process ID=[floor(CURRENT_slot*10/(numberOfSlotsPerFrame*periodicity))]modulo nrofHARQ-Processes+△,……公式(7b)
其中CURRENT_slot为下行SPS资源的时域起始位置,且CURRENT_slot=((SFN+counter*1024)*numberOfSlotsPerFrame)+slot number in the frame。△和公式7(a)中相同。
可选的,为了避免通过该方式计算出来的HARQ process ID超过HARQ process ID最大值,可以对计算后的HARQ process ID进行取模操作(例如,模最大下行HARQ process数目,或模终端设备在当前小区上能够使用的下行HARQ process数目)。
二、上行方向
1、配置的周期性资源的位置的确定方法
1.1、CG类型1
对于CG类型1,终端设备在确定周期性资源的位置时,需要考虑counter值以及K值,例如,可以通过如下公式(8)确定第N块CG类型1资源的时域位置,即从哪个SFN的哪个slot的哪个symbol开始,或者理解为:若(SFN,slot number in the frame,symbol numberin the slot)满足下列公式(8),则终端设备确定(SFN,slot number in the frame,symbol number in the slot)为CG类型1资源的时域位置:
((SFN+counter*1024)*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+(slot number in the frame*numberOfSymbolsPerSlot)+symbol number in the slot)=(timeDomainOffset*numberOfSymbolsPerSlot+S+N*periodicity)modulo(1024*K*
numberOfSlotsPerFrame*numberOfSymbolsPerSlot),N=1,2,3……,……公式(8)
其中,counter值和K值含义定义如上。其他参数的定义可以参考介绍公式(3)时的相关定义,这里不再赘述。
作为又一种实现方式,对于下行方向也可以采用RRC配置+RRC指示资源的方式,相应的计算下行周期性资源的位置,以及确定处理相应下行周期性资源的HARQ进程ID的计算方法也可以与该实施例中的CG类型1的方法相同。
1.2、CG类型2
对于CG类型2,终端设备在确定周期性资源的位置时,需要考虑counter值以及K值,例如,可以通过如下公式(9)确定第N块CG类型2资源的时域位置,即从哪个SFN的哪个slot的哪个symbol开始,或者理解为:若(SFN,slot number in the frame,symbol numberin the slot)满足下列公式(9),则终端设备确定(SFN,slot number in the frame,symbol number in the slot)为CG类型2资源的时域位置:
((SFN+counter*1024)*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+(slot number in the frame*numberOfSymbolsPerSlot)+symbol number in the slot)=[(numberOfSlotsPerFrame*numberOfSymbolsPerSlot*SFNstart time+slotstart time*numberOfSymbolsPerSlot+symbolstart time)+N*periodicity]modulo(1024*K*
numberOfSlotsPerFrame*numberOfSymbolsPerSlot),N=1,2,3……,……公式(9)
其中,counter值和K值含义定义如上。其他参数的定义可以参考介绍公式(4)时的相关定义,这里不再赘述。
当一个SPS资源占据的时域位置可以小于一个slot时,例如可以为2/7个symbol时,可以利用公式(9)确定第N块SPS资源出现的时域位置。
2、HARQ进程的确定方法
对于一个具体的configured uplink grant资源(CG类型1的资源或CG类型2的资源),终端设备通过如下公式(10)确定HARQ进程的标识(ID),从而确定用哪个HARQ进程处理或使用该CG类型1的资源或CG类型2的资源,即确定和该CG类型1的资源或CG类型2的资源关联度HARQ的进程ID:
HARQ Process ID=[floor(CURRENT_symbol/periodicity))]modulo nrofHARQ-Processes,……公式(10)
其中,HARQ Process ID为确定的HARQ进程的标识,floor表示下取整函数,nrofHARQ-Processes为配置的HARQ进程的数量,CURRENT_symbol为configured uplinkgrant资源的时域起始位置,且CURRENT_symbol=((SFN+counter*1024)*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+slot number in the frame*numberOfSymbolsPerSlot+symbol number in the slot)。
作为又一种实现方式,也可以通过上述公式(5)所描述的方式计算HARQ进程ID。
作为又一种实现方式,也可以通过上述公式(7a)所描述的方式计算HARQ进程ID,其中公式(7a)中CURRENT_slot需要替换为CURRENT_symbol=(SFN*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+slot number in the frame*numberOfSymbolsPerSlot+symbol number in the slot)。为了避免通过该方式计算出来的HARQ process ID超过HARQ process ID最大值,可以对计算后的HARQ process ID进行取模操作(例如,模最大上行HARQ process数目,或模终端设备在当前小区上能够使用的上行HARQ process数目)。
作为又一种实现方式,也可以通过上述公式(7b)所描述的方式计算HARQ进程ID,其中公式(7b)中CURRENT_slot需要替换为CURRENT_symbol=((SFN+counter*1024)*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+slot number in the frame*numberOfSymbolsPerSlot+symbol number in the slot)。为了避免通过该方式计算出来的HARQ process ID超过HARQ process ID最大值,可以对计算后的HARQ process ID进行取模操作(例如,模最大上行HARQ process数目,或模终端设备在当前小区上能够使用的上行HARQ process数目)。
当一个SPS资源占据的时域位置可以小于一个slot时,例如可以为2/7个symbol时,可以利用上述几种可选方式中的一种确定处理一块具体的SPS资源的HARQ进程标识。
对于CG类型1或CG类型2,当终端设备收到RRC专用信令配置CG时,终端设备将相应的counter值置为0,此后counter值的处理和configured uplink grant的资源位置的确定方式如前所述。
基于该实施例,每套SPS/CG配置一个K值,并且维护一个counter值,利用counter值和K计算SPS/CG资源位置。网络根据周期性业务的特性配置了SPS/CG资源后,终端设备根据业务特性所需要的资源位置和根据公式(如公式(6)、(8)或(9)))确定网络配置的资源位置相一致,不受SFN翻转带来的影响,网络可以配置任意整数倍symbol/slot/ms的周期。
实施例二
该实施例中,资源周期(periodicity)不能被10240ms整除,但可以被symbol/slot/ms整除。以资源周期可以被ms整除为例,如资源周期可以为3ms,6ms,15ms等。
该实施例与上述实施例一的主要区别是:K值是协议预定义的,且可以是per MAC/per小区(cell)配置的,即基于MAC粒度或cell粒度配置。
counter的取值范围是协议预定义好的,或通过RRC信令per MAC实体/per cell进行配置。Per MAC实体配置counter取值范围是指一个MAC实体有一个counter取值范围,该MAC实体维护的所有周期性资源配置对应的counter取值范围相同;per cell配置counter取值范围是指终端设备的一个服务小区有一个counter取值范围,该服务小区上配置的周期性资源配置对应的counter取值范围相同。以per cell配置为例,网络通过RRC信令配置一个cell上的SPS/CG维护的counter长度为L个bit,则该cell上所有SPS/CG维护的counter值的取值范围为:0,1,2,…,K-1,且K=2L,可选的,网络可以通过RRC信令配置一个cell上的SPS/CG维护的counter的取值数目为K,则该cell上所有SPS/CG维护的counter值的取值范围为:0,1,2,…,K-1。当然,counter取值范围也可以有其他表示方式,比如counter取值范围为1,2,3,……,K。具体的,counter取值范围可以是任意数开始至该任意数+K-1(该任意数表示为t,则counter取值范围为t,t+1,t+2,……,t+K-1)。
相较于实施例一,相当于对该cell上的所有SPS/CG配置了相同的K,而实施例一是针对每套SPS/CG配置了一个K值。
counter值可以由终端设备的MAC层实体进行维护,也可以由终端设备的RRC层实体进行维护。
当网络通过DCI激活一套SPS/CG配置时,该套SPS/CG配置对应的counter重置为0。当SFN发生翻转时,即一个无线帧对应SFN=1023,到下一个无线帧对应的SFN翻转为0时,相应的counter值按照如下方式进行更新:counter=(counter+1)modulo K,即当SFN翻转时,counter值累加1,为避免取值超过允许的取值范围,对累加后的结果进行取模操作。
基于该实施例,配置的周期性资源的位置的确定方法以及使用的HARQ进程的确定方法,与上述实施例一中的公式(6)-公式(10)相同,可参考前述描述。但K的定义不同,例如,实施例二中的K为per cell配置的且等于2L,而实施例一中的K为满足如下条件的最小正整数:K*10240ms=periodicity的整数倍。
基于该实施例,每套SPS/CG维护一个counter值,并预定义或配置per MAC/cell的counter取值范围K,例如基于MAC粒度或cell粒度配置相同的L值、或K值,且K=2L。该实施例,当SFN翻转时仍存在通过上述公式(6)、(8)或(9)计算出来的SPS/CG资源位置和终端设备所需要的资源位置不匹配的情况,但是相比于现有技术计算方法每隔1024个无线帧出现一次该情况,该实施例二的计算方法可以使得每隔1024*L个无线帧才出现一次该情况,因而可以有效降低出现不匹配的频率。此外,该方法使得终端设备不需要针对每套SPS/CG维护计数值,而是基于MAC粒度或小区粒度维护计数值,因而终端设备实现复杂度较低。
实施例三
该实施例中,资源周期(periodicity)不能被10240ms整除,但可以被symbol/slot/ms整除。以资源周期可以被ms整除为例,如资源周期可以为3ms,6ms,15ms等。
该实施例与上述实施例一的主要区别是:引入超系统帧号(Hyper-System FrameNumber,H-SFN),与SFN结合确定SPS/CG资源位置,相当于终端设备维护H-SFN,而非维护perSPS/CG的counter值。
基站通过SIB信令广播H-SFN,H-SFN每隔1024个无线帧进行累加1操作,例如H-SFN为M bit长度,则<H-SFN,SFN>可以标识1024*2M个无线帧。其中,可以定义K=2M
基于该实施例,配置的周期性资源的位置的确定方法以及使用的HARQ进程的确定方法分别如下:
一、下行方向
1、配置的周期性资源的位置的确定方法
在SFN从0到1023的无线帧内,终端设备通过如下公式(11)确定第N块SPS资源出现的时域位置,即出现在哪个SFN的哪个slot内,或者理解为:若(H-SFN,SFN,slot number inthe frame)满足下列公式(11),则终端设备确定(H-SFN,SFN,slot number in the frame)为下行SPS资源的时域位置(SPS资源占据整数个slot):
(numberOfSlotsPerFrame*(SFN+H-SFN*1024)+slot number in the frame)=[(numberOfSlotsPerFrame*(SFNstart time+H-SFNstart time*1024)+slotstart time)+N*periodicity*numberOfSlotsPerFrame/10]modulo(1024*K*numberOfSlotsPerFrame),……公式(11)
其中,H-SFN值和K值含义定义如上,H-SFNstart time为指定的第一个SPS资源的所在的超系统帧号。其他参数的定义可以参考介绍公式(1)时的相关定义,这里不再赘述。
2、HARQ进程的确定方法
对于一个具体的SPS资源,终端设备通过如下公式(12)确定HARQ进程的标识(ID),从而确定用哪个HARQ进程处理或使用该SPS资源,即确定和该SPS资源关联的HARQ进程ID:
HARQ Process ID=[floor(CURRENT_slot*10/(numberOfSlotsPerFrame*periodicity))]modulo nrofHARQ-Processes,……公式(12)
其中,HARQ Process ID为确定的HARQ进程的标识,floor表示下取整函数,nrofHARQ-Processes为配置的HARQ进程的数量,CURRENT_slot为下行SPS资源的时域起始位置,且CURRENT_slot=((SFN+H-SFN*1024)*numberOfSlotsPerFrame)+slot number inthe frame。
作为又一种实现方式,也可以通过上述公式(2)所描述的方式计算HARQ进程ID。
作为又一种实现方式,也可以通过上述公式(7a)所描述的方式计算HARQ进程ID。
作为又一种实现方式,也可以通过上述公式(7b)所描述的方式计算HARQ进程ID,其中CURRENT_slot=((SFN+H-SFN*1024)*numberOfSlotsPerFrame)+slot number in theframe。
二、上行方向
1、配置的周期性资源的位置的确定方法
1.1、CG类型1
对于CG类型1,终端设备通过如下公式(13)确定第N块CG类型1资源的时域位置,即从哪个SFN的哪个slot的哪个symbol开始,或者理解为:若(H-SFN,SFN,slot number inthe frame,symbol number in the slot)满足下列公式(13),则终端设备确定(H-SFN,SFN,slot number in the frame,symbol number in the slot)为CG类型1资源的时域位置:
((SFN+H-SFN*1024)*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+(slotnumber in the frame*numberOfSymbolsPerSlot)+symbol number in the slot)=(timeDomainOffset*numberOfSymbolsPerSlot+S+N*periodicity)modulo(1024*K*numberOfSlotsPerFrame*numberOfSymbolsPerSlot),N=1,2,3……,……公式(13)
其中,H-SFN值和K值含义定义如上,timeDomainOffset是“第一块”configureduplink grant相对于H-SFN=0且SFN=0时刻的偏移值,偏移值以时隙为单位。其他参数的定义可以参考介绍公式(3)时的相关定义,这里不再赘述。
对于CG类型1,RRC专用信令在配置CG时,所配置的timeDomainOffset为相对于H-SFN=0且SFN=0位置的时域offset,或者在配置信令中指示H-SFN值,timeDomainOffset为相对于所指示的H-SFN且SFN=0位置的时域offset,或者timeDomainOffset为相对于终端设备接收到该RRC信令的时刻所属H-SFN的SFN=0位置的时域offset。
作为又一种实现方式,对于下行方向也可以采用RRC配置+RRC指示资源的方式,相应的计算下行周期性资源的位置,以及确定处理相应下行周期性资源的HARQ进程ID的计算方法也可以与该实施例中的CG类型1的方法相同。
1.2、CG类型2
对于CG类型2,终端设备通过如下公式(14)确定第N块CG类型2资源的时域位置,即从哪个SFN的哪个slot的哪个symbol开始,或者理解为:若(H-SFN,SFN,slot number inthe frame,symbol number in the slot)满足下列公式(14),则终端设备确定(H-SFN,SFN,slot number in the frame,symbol number in the slot)为CG类型2资源的时域位置:((SFN+H-SFN*1024)*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+(slotnumber in the frame*numberOfSymbolsPerSlot)+symbol number in the slot)=[(numberOfSlotsPerFrame*numberOfSymbolsPerSlot*(SFNstart time+H-SFNstart time*1024)+slotstart time*numberOfSymbolsPerSlot+symbolstart time)+N*periodicity]modulo(1024*K*numberOfSlotsPerFrame*numberOfSymbolsPerSlot),N=1,2,3……,……公式(14)
其中,H-SFN值和K值含义定义如上,H-SFNstart time为指定的第一个SPS资源所在的超系统帧号。其他参数的定义可以参考介绍公式(4)时的相关定义,这里不再赘述。
当一个SPS资源占据的时域位置可以小于一个slot时,例如可以为2/7个symbol时,可以利用公式(14)确定第N块SPS资源出现的时域位置。
2、HARQ进程的确定方法
对于一个具体的configured uplink grant资源(CG类型1的资源或CG类型2的资源),终端设备通过如下公式(15)确定HARQ进程的标识(ID),从而确定用哪个HARQ进程处理或使用该CC类型1的资源或CG类型2的资源,即确定和该CC类型1的资源或CG类型2的资源关联的HARQ进程ID:
HARQ Process ID=[floor(CURRENT_symbol/periodicity))]modulo nrofHARQ-Processes,……公式(15)
其中,HARQ Process ID为确定的HARQ进程的标识,floor表示下取整函数,nrofHARQ-Processes为配置的HARQ进程的数量,CURRENT_symbol为configured uplinkgrant资源的时域起始位置,且CURRENT_symbol=((SFN+H-SFN*1024)*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+slot number in the frame*numberOfSymbolsPerSlot+symbol number in the slot)。
作为又一种实现方式,也可以通过上述公式(5)所描述的方式计算HARQ进程ID。
作为又一种实现方式,也可以通过上述公式(7a)所描述的方式计算HARQ进程ID,其中公式(7a)中CURRENT_slot需要替换为CURRENT_symbol=(SFN*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+slot number in the frame*numberOfSymbolsPerSlot+symbol number in the slot)。为了避免通过该方式计算出来的HARQ process ID超过HARQ process ID最大值,可以对计算后的HARQ process ID进行取模操作(例如,模最大上行HARQ process数目,或模终端设备在当前小区上能够使用的上行HARQ process数目)。
作为又一种实现方式,也可以通过上述公式(7b)所描述的方式计算HARQ进程ID,其中公式(7b)中CURRENT_slot需要替换为CURRENT_symbol=((SFN+H-SFN*1024)*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+slot number in the frame*numberOfSymbolsPerSlot+symbol number in the slot)。为了避免通过该方式计算出来的HARQ process ID超过HARQ process ID最大值,可以对计算后的HARQ process ID进行取模操作(例如,模最大上行HARQ process数目,或模终端设备在当前小区上能够使用的上行HARQ process数目)。
当一个SPS/CG资源占据的时域位置可以小于一个slot时,例如可以为2/7个symbol时,可以利用上述几种可选方式中的一种确定处理一块具体的SPS/CG资源的HARQ进程标识。
该实施例,引入H-SFN后,当SFN翻转时仍存在通过上述公式(11)、(13)或(14)计算出来的SPS/CG资源位置和终端设备所需要的资源位置不匹配的情况,但是相比于现有技术计算方法每隔1024个无线帧出现一次该情况,该实施例三的计算方法可以使得每隔1024*2M个无线帧才出现一次该情况,因而可以有效降低出现不匹配的频率。此外,该方法使得终端设备不需要针对每套SPS/CG维护计数值,而是基于MAC粒度或小区粒度维护计数值,因而终端设备实现复杂度较低。
实施例四
该实施例中,终端设备需要使用资源的周期不能被10240ms整除,也不能被symbol/slot/ms整除。以不能被10240ms整除且也不能被ms整除为例,如终端设备需要使用资源的周期例如可以是1.6ms,1.7ms,3.2ms等等。
下面以终端设备需要使用资源的周期例如为1.6ms为例进行说明。
如图3所示,当终端设备的下行/上行traffic pattern为从SFN=0位置开始,每隔1.6ms生成待传输数据包。因此,在0ms,1.6ms,3.2ms,4.8ms,6.4ms,8.0ms,…等位置终端设备有待传输数据,而1.6ms,3.2ms等时刻并不落在slot或symbol的边界位置,网络无法配置周期性SPS/CG资源严格匹配终端设备的下行/上行业务的传输。
以下行SPS为例,为了保证每个数据包生成后,总能在特定时间内传输出去,如1ms以内,网络需要配置periodicity=1ms的SPS资源,但部分子帧内的SPS资源无法被使用,例如在子帧1内,由于数据在子帧1中间位置到达,子帧1内的SPS资源无法用于传输该数据。因此,periodicity=1ms的SPS配置会带来资源浪费。而配置periodicity=2ms的SPS资源,将会导致部分子帧内到达的数据在1ms以后才能有可用SPS资源,导致数据过时。
一种解决该问题的方式是通过比特位图(bitmap)的方式配置非周期性资源。bitmap包括Q比特,Q比特中的每比特对应于一个时间区域,且每个比特用于指示对应的时间区域内是否配置有资源,时间区域为X slot/symbol/ms,X为正整数,则终端设备根据bitmap,确定配置资源。
例如,以图3为例,从子帧0开始的8个子帧中,在子帧0,2,4,5,7配置下行传输资源,这8个子帧内的资源配置情况用8个bit的bitmap表示为{10101101},‘1’表示对应子帧配置有下行传输资源,‘0’表示对应子帧未配置下行传输资源。从子帧8开始的8个子帧,资源配置情况可以同样表示为{10101101}。因此,每隔8个子帧,资源配置情况重复一次。在这种资源配置情况下,可以保证每个生成的数据总能在最近的可用子帧内配置有资源进行使用。
因此,该方法下,bitmap表示的资源是周期性出现的,而bitmap内每bit表示的资源是非周期性出现的。在RRC配置bitmap方式的资源配置时,可以指示第一个bitmap起点位置相对于SFN=0的timeDomainOffset,可用HARQ进程数目nrofHARQ-Processes,以及每个bit所指示的时间长度,如可以是:1slot/symbol/ms,或3slot/ms等。在此配置下,终端设备并不按照公式(如上述实施例一、或实施例二、或实施例三的公式)方式确定下行配置资源位置,而是从第一个bitmap起点位置开始,认为bitmap表示的资源周期性出现,周期为bitmap代表的时域长度。
对于处理下行资源的HARQ进程,终端设备从bitmap方式指示的第一个下行传输资源开始,终端设备可以对相继出现的下行传输资源轮询使用HARQ进程0,1,…,nrofHARQ-Processes-1;可选的,终端设备也可以自行选择HARQ进程,并通过上行控制信令(UCI)的方式指示给网络(network,NW)。
bitmap方式也可以和上述实施例一到实施例三的方案结合。终端设备可以通过实施例一到三的方式确定每个SFN内bitmap起点出现的位置,其中periodicity为bitmap代表的时域长度。例如,bitmap={101},每个bit表示1slot,timeDomainOffset=0,此时终端设备可以认为periodicity=3slot,则在当前SFN=0的无线帧内,终端设备根据实施例一可以确定子帧0/3/6/9都分别表示一个bitmap的起点位置。
通过bitmap方式为终端设备配置资源,可以支持按非整数个symbol/slot/ms的周期生成数据的业务的传输需求,减少按照现有或上述实施例一至三的SPS/CG的周期性资源配置方式时带来的资源浪费,或部分业务数据的传输需求得不到满足的情况。以bitmap方式为终端设备配置资源,bitmap表示的资源是周期性出现的,而bitmap内每bit表示的资源是非周期性出现的。
实施例五
该实施例中,终端设备需要使用资源的周期不能被10240ms整除,也不能被symbol/slot/ms整除。以不能被10240ms整除且也不能被ms整除为例,如终端设备需要使用资源的周期例如可以是1.6ms,1.7ms,3.2ms等等。
该实施例中,终端设备根据资源周期,确定配置资源的生效位置;根据生效位置,确定配置资源。
下面以终端设备需要使用资源的周期例如为1.6ms为例进行说明。
如图4所示,RRC配置SPS/CG周期可以为非整数个slot,终端设备从周期性时间点开始,确定下一个符合条件的资源为SPS/CG资源。
网络在配置SPS/CG时,周期可以是非整数个symbol/slot/ms,例如可以配置periodicity=1.6slot/ms。如图4(图中,1ms=1slot)所示,网络指示SPS/CG资源时,指示的第一块资源在子帧0中,且资源时域长度为1个slot(例如对CG类型1,RRC指示的资源时域位置的参数配置为S=0,L=14),periodicity=1.6ms。此时,第二块SPS/CG资源出现在相对于SFN=0时域偏移为1.6ms的时间点之后,且为第一个满足条件的可用传输资源,例如在本例中,1.6ms时间点之后第一个可用的传输资源为:
-对SPS/CG类型2,为1.6ms之后第一个从slot边界开始,且占据1个slot长度的下行/上行资源,且频域位置和DCI激活命令中指示的第一块资源的频域位置相同。这里的1.6ms之后第一个从slot边界,即为一个生效位置。
-对于CG类型1,为1.6ms之后第一个S=0,L=14的上行资源,且频域位置和RRC配置信息中指示的第一块资源的频域位置相同。这里的1.6ms之后第一个S=0,L=14的上行资源的位置,即为一个生效位置。
对于一个SPS/CG资源,终端设备可以按照现有技术的上述公式(2)的方式确定HARQ进程ID。可选的,也可以通过如下方式计算HARQ进程ID:
HARQ Process ID=[floor(CURRENT_start_time/periodicity)]modulonrofHARQ-Processes,……公式(16)
其中,CURRENT_start_time是该SPS/CG资源是相对于SFN=0位置时间点之后的第一个可用传输资源。例如,以图4为例,第4个SPS/CG资源对应的CURRENT_start_time为4.8ms。可选的,终端设备可以对相继出现的SPS/CG资源轮询使用HARQ进程0,1,…,nrofHARQ-Processes-1。可选的,终端设备也可以自行选择HARQ进程,并通过上行控制信息(Uplink control information,UCI)的方式指示给NW。在UCI中可以携带HARQ进程ID信息,传输UCI的时频资源位置可以由网络设备进行配置,例如对每套SPS/CG资源进行配置时,在配置信令中配置相关联的UCI的时频域资源位置;可选的,传输UCI的时频域资源位置可以与相应的SPS/CG资源位置存在预定义的函数关系,例如在一个确定SPS/CG资源上进行数据传输后,终端设备根据SPS/CG资源位置以及预定义的函数关系,确定传输UCI的时频域资源位置。
该实施例也可以与上述实施例一到实施例三的方案相结合,例如终端设备根据DCI/RRC指示的第一块资源时域位置,periodicity确定每个SFN内合适的时间点。例如,对于CG类型1,timeDomainOffset=0,periodicity=1.6ms,则在当前SFN=0的无线帧内,终端设备根据实施例一可以确定0ms,1.6ms,3.2ms,4.8ms,6.4ms,8.0ms,9.6ms为合适的时间点,在这些时间点后的第一个可用的传输资源为终端设备能够使用的SPS/CG资源。
该实施例,RRC配置SPS/CG周期可以为非整数个symbol/slot/ms,终端设备从周期性时间点开始,确定下一个符合条件的资源为SPS/CG资源,通过该方式可以支持按非整数个symbol/slot/ms的周期生成数据的业务的传输需求,有助于减少按照现有SPS/CG的周期性资源配置带来的资源浪费,或部分业务数据的传输需求得不到满足的情况。
实施例六
该实施例中,终端设备需要使用资源的周期(periodicity)可以是任意周期,比如能被10240ms整除的周期(如10ms,20ms等),或者不能被10240ms整除但可以被symbol/slot/ms整除的周期(如3ms,6ms,15ms),或者不能被10240ms整除也不能被symbol/slot/ms整除的周期(如1.6ms,1.7ms,3.2ms等)。
该实施例中,终端设备从DCI指示的第一块SPS资源位置开始,每隔periodicityms认为相同频域位置的资源为SPS资源,进一步的,终端设备可以对相继出现的SPS资源轮询使用HARQ进程0,1,…,nrofHARQ-Processes-1。
比如对于SPS,当DCI激活一套SPS/CG配置后(例如periodicity为3ms),终端设备并不按照实施例一、或实施例二、或实施例三的方式确定周期性出现的资源位置,而是从DCI指示的第一块SPS/CG资源位置开始,每隔3ms认为相同频域位置的资源为SPS/CG资源,进一步的,终端设备可以对相继出现的SPS/CG资源轮询使用HARQ进程0,1,…,nrofHARQ-Processes-1。
再比如对于SPS/CG,当DCI激活一套SPS/CG配置后(例如periodicity为1.6ms),终端设备并不按照实施例四、或实施例五的方式确定周期性出现的资源位置,而是从DCI指示的第一块SPS/CG资源位置开始,每隔1.6ms认为相同频域位置的资源为SPS/CG资源,进一步的,终端设备可以对相继出现的SPS/CG资源轮询使用HARQ进程0,1,…,nrofHARQ-Processes-1。
基于该实施例,终端设备根据业务特性所需要的资源位置,直接根据配置的周期确定资源的位置,而不是不通过上述公式确定资源的位置,从而不受SFN翻转带来的影响,网络可以配置任意的周期。
实施例七
如图5所示,为本申请提供的一种配置资源的确定方法,该方法包括以下步骤:
步骤501,终端设备获取配置资源的配置信息,该配置信息包括第一参数,该配置资源为周期性资源。
步骤502,终端设备根据第一参数确定配置资源的确定方式。
基于该方案,终端设备可以根据配置信息中的第一参数,确定配置资源的确定方式,从而可以实现使用较为合适的方式确定配置资源,达到降低计算出的配置资源的位置和终端设备实际所需资源之间出现偏差的可能性,进而有助于实现有效地配置资源。在一种实现方法中,第一参数为周期参数,其中,周期参数所指示的资源周期不能被10240ms整除时,终端设备采用的配置资源的确定方式与资源周期能被10240ms整除时不同。如这里的周期参数所指示的资源周期可以是实施例一至实施例三中的资源周期,即不能被10240ms整除,但可以被symbol/slot/ms整除,以资源周期可以被ms整除为例,则资源周期可以为3ms,6ms,15ms等。或者,这里的周期参数所指示的资源周期可以是实施例四至实施例五中的资源周期,即不能被10240ms整除,也不能被symbol/slot/ms整除,以资源周期不可以被ms整除为例,则资源周期可以为1.6ms,1.7ms,3.2ms等。
在又一种实现方法中,第一参数为时间信息或指示信息,时间信息包括SFN信息、或H-SFN信息、或协调世界时(Coordinated Universal Time,UTC),或全球定位系统(Global Positioning System,GPS)时间信息,指示信息用于指示终端设备采用的配置资源的确定方式;其中,当终端设备收到第一参数时,终端设备采用的配置资源的确定方式与终端设备未收到第一参数时不同。
在一种具体实现方式中,可以根据SPS/CG周期值或RRC指示,采用不同方式确定SPS/CG资源位置和/或HARQ进程ID。对于不同的SPS/CG周期,终端设备可以采取不同的方式确定SPS/CG资源位置,和/或HARQ进程ID。当SPS/CG周期可以被10240ms整除时,终端设备根据NR R15所定义的公式确定SPS/CG资源位置,以及HARQ进程ID。当SPS/CG周期不能被10240ms整除时,终端设备可以根据实施例一到实施例六中的方式之一确定SPS/CG资源位置,和/或HARQ进程ID。
可选的,终端设备可以判断是根据现有技术所定义的方式(以下称为方式1)确定SPS/CG资源位置,以及HARQ进程ID,还是根据其他方式(如实施例一到实施例六的任一方式,以下称为方式2)确定SPS/CG资源位置,和/或HARQ进程ID。例如判断条件可以是:
-当RRC配置SPS/CG的信元中包括具体时间信息(该时间信息即为上述第一参数)时,终端设备采用方式2,否则采用方式1。时间信息例如可以是SFN信息,或H-SFN信息,或UTC/GPS时间信息等。进一步的,还可以根据时间信息的具体内容,决定采用方式2中的具体何种方式,即采用上述实施例一至实施例六中的何种方式。
-网络可以定义两类SPS/CG的周期,当RRC配置SPS/CG时,采用第一类周期(例如周期都能够被10240ms整除),则终端设备采用方式1;当RRC配置SPS/CG时,采用第二类周期(例如包含不能被10240ms整除的周期),则终端设备采用方式2。进一步的,还可以根据周期的大小,决定采用方式2中的具体何种方式,即采用上述实施例一至实施例六中的一种方式。
-网络定义两种SPS/CG配置信元,两种配置信元的名称不同,例如,第一种配置信元的名称为SPS-Config,第二种配置信元的名称为SPS-Config-r16,但均包含SPS/CG的各个配置参数,例如第一种配置信元中包括的SPS/CG周期能够被10240ms整除,第二种配置信元中包括的SPS/CG周期可以不能够被10240ms整除。当RRC配置SPS/CG时,采用第一种信元,则终端设备采用方式1;当RRC配置SPS/CG时,采用第二种信元,则终端设备采用方式2。
-网络在配置SPS/CG时,可以显示携带一个指示信息(indicator),用于指示终端设备采用方式1还是方式2。例如,indicator可以是1bit数值,取值为0或1,当indicator=0时,网络指示终端设备采用方式1,当indicator=1时,网络指示终端设备采用方式2。
对于不同SPS/CG配置周期,终端设备根据不同方式确定周期性资源的位置,使得终端设备根据业务特性所需要的资源位置和终端设备确定网络配置的资源位置相一致,不受SFN翻转带来的影响;网络可以配置任意整数倍symbol/slot/ms的周期。终端设备根据预定义条件判断采用哪种方式确定SPS/CG资源的位置,和/或确定HARQ进程ID的方式。
实施例八
针对上述实施例一或实施例二,对于counter的初始值的设定,在某些情况下,若初始化为0,可能会导致出现NW理解的CG资源位置和终端设备理解的CG资源位置不一致的情况。
例如,如图6所示,NW在SFN=1022的无线帧发送了RRC配置信令,根据业务特性配置了一套CG,对应的timeDomainOffset=0,periodicity=3ms;由于HARQ/ARQ重传,终端设备在SFN翻转后的SFN=2的无线帧收到该RRC配置信令,此时终端设备需要的周期性CG资源相对于最近的SFN=0的位置的timeDomainOffset=2,而终端设备仍然认为NW配置的CG对应的timeDomainOffset=0。如果NW按照实施例一或实施例二的方式确定CG资源位置,则会导致NW理解的CG资源位置和终端设备理解的CG资源位置不一致的情况。
此外,在LTE中存在终端设备通过终端设备辅助信息(也称为UE辅助信息)(携带于RRC信令)向NW上报自身traffic pattern(包括业务相对于SFN=0位置的offset,以及业务的周期,最大传输块大小等信息)的方式,同样存在上述问题。例如,终端设备在SFN=1022的无线帧发送了UE辅助信息,NW在SFN=2收到了该UE辅助信息,则会存在NW理解的终端设备traffic pattern和终端设备实际traffic pattern不一致。
为解决上述问题,下面给出不同的解决方法。
方法一,NW在配置CG时或终端设备在上报UE辅助信息时,在RRC信令中携带具体的时间值。NW通过RRC信令配置CG类型1时,在配置信令中指示一个SFN_value1,该SFN_value1可以表示NW生成该RRC信令或发送该RRC信令时刻对应的SFN值。该方式可以和实施例一或二结合,当终端设备收到RRC配置信令时或激活RRC配置信令所配置的CG类型1配置时,对应的SFN值为SFN_value2,如果SFN_value2≥SFN_value1,则counter值置为0,如果当前SFN_value2<SFN_value1,则counter值置为1。
方法二,当网络支持H-SFN时,NW通过RRC信令配置CG类型1时,在配置信令中指示一个H-SFN_value1,该H-SFN_value1可以表示NW生成该RRC信令或发送该RRC信令时刻对应的H-SFN值。该方式可以和实施例一或二结合,当终端设备收到RRC配置信令时或激活RRC配置信令所配置的CG类型1配置时,对应的H-SFN值为H-SFN_value2,如果H-SFN_value2≥H-SFN_value1,则counter值置为0,如果当前H-SFN_value2<H-SFN_value1,则counter值置为1。
对于终端设备上报UE辅助信息的情形,终端设备可以在RRC信令中指示一个SFN_value3(或H-SFN_value3),该SFN_value3(或H-SFN_value3)可以表示终端设备生成该RRC信令或发送该RRC信令时刻对应的SFN值(或H-SFN值)。网络根据接收到终端设备上报的RRC消息时或RRC层解析该RRC消息时的SFN_value4与SFN_value3的比较,或者网络根据接收到终端设备上报的RRC消息时或RRC层解析该RRC消息时的H-SFN_value4与H-SFN_value3的比较,确定终端设备实际的traffic pattern,以及决定如何配置/激活合适的SPS/CG。以终端设备在UE辅助信息中指示SFN值为例,终端设备在该RRC信令中携带SFN_value3=1000,可以表示终端设备生成该RRC信令时刻对应的SFN为1000,此外在该RRC信令中,终端设备指示业务周期=3ms,业务相对于SFN=0的offset=0ms。网络设备成功接收并解析出终端设备上报的RRC消息时对应的SFN_value4=1002,由于SFN_value4>SFN_value3,网络设备可以根据UE上报的traffic pattern信息为终端设备配置:timeDomainOffset=0,periodicity=3ms的Configured Grant资源。又例如,终端设备在该RRC信令中携带SFN_value3=1022,可以表示终端设备生成该RRC信令时刻对应的SFN为1022,此外在该RRC信令中,终端设备指示业务周期=3ms,业务相对于SFN=0的offset=0ms。网络设备成功接收并解析出终端设备上报的RRC消息时对应的SFN_value4=2,由于SFN_value4<SFN_value3,终端设备生成该RRC消息时刻和网络设备成功接收并解析出该RRC消息时刻之间,SFN发生了翻转,网络设备可以确定相对于最近的SFN=0位置,终端设备的traffic pattern应该为:周期=3ms,offset=2ms。因此网络设备可以为终端设备配置:timeDomainOffset=2,periodicity=3ms的Configured Grant资源,以匹配终端设备的实际traffic pattern。
通过在NW配置CG type 1的配置信令/终端设备上报UE辅助信息的信令中携带SFN或H-SFN信息,使得终端设备和NW对实际配置CG资源位置/终端设备实际traffic pattern理解一致。
实施例九
如图7所示,本申请还公开一种配置资源的确定方法,该方法包括以下步骤:
步骤701,终端设备从网络设备获取配置资源的配置信息,配置资源为周期性资源,配置信息包括周期性资源的周期参数;
步骤702,终端设备为配置资源维护序号,其中序号在系统帧号SFN翻转时更新;
步骤703,终端设备根据序号和周期参数,确定配置资源。
基于该方案,终端设备可以根据配置信息中的周期性资源的周期参数和维护的序号,确定配置资源,达到降低计算出的配置资源的位置和终端设备实际所需资源之间出现偏差的可能性,从而实现配置资源的有效配置。
可以理解为,前述实施例一至实施例三是图7所示的实施例(即实施例九)的三种具体应用实施例。此外,以上实施例一至三中的公式设计仅为举例,并非用于限制本申请,也可以采用其它设计,使得终端设备根据序号和周期参数在SFN翻转之前和之后确定的配置资源的时域间隔等于周期性资源的周期。
下面分别介绍该实施例九与上述实施例一至实施例三之间的关联:
一、实施例九与实施例一的关联
该实施例九中的配置信息包括的周期性资源的周期参数例如可以是实施例一中的资源周期(periodicity)。
该实施例九中的终端设备维护的序号可以是实施例一中的计数器(counter)值。
在第一种实现方式中,该序号的取值范围由网络设备配置给终端设备的,即网络设备将序号的取值范围(例如携带于上述配置信息中)发送至终端。该序号的取值范围例如可以是从0至K-1,或者1至K,或者是其他任意数开始至该任意数+K-1(该任意数表示为t,则counter取值范围为t,t+1,t+2,……,t+K-1),例如该K可以为满足如下条件的最小正整数:K*10240ms=periodicity的整数倍。
在第二种实现方式中,网络设备可以在上述配置信息中携带K值发送给终端设备,然后终端设备根据K值确定取值范围。
在第三种实现方式中,该序号的取值范围也可以是由终端设备确定的。比如,终端设备在获取到网络设备发送的周期参数(也称为资源周期)后,然后确定K为满足如下条件的最小正整数:K*10240ms=periodicity的整数倍。
可选的,终端设备为配置资源维护序号,其中序号在SFN翻转时按以下方式更新:更新后的序号=(原序号+1)modulo K,其中modulo为取模操作,K为序号的总数。或者更新方式理解为:counter=(counter+1)modulo K,即当SFN翻转时,counter值累加1,为避免取值超过允许的取值范围,对累加后的结果进行取模操作。
二、实施例九与实施例二的关联
该实施例九中的配置信息包括的周期性资源的周期参数例如可以是实施例二中的资源周期(periodicity)。
该实施例九中的终端设备维护的序号可以是实施例二中的计数器(counter)值。
在第一种实现方式中,该序号的取值范围由网络设备配置给终端设备的,即网络设备将序号的取值范围(例如携带于上述配置信息中)发送至终端。该序号的取值范围例如可以是从0至K-1,或者1至K,或者是其他任意数开始至该任意数+K-1(该任意数表示为t,则counter取值范围为t,t+1,t+2,……,t+K-1),其中K=2L,L由网络设备进行配置,或K为任意正整数,K由网络设备进行配置。
在第二种实现方式中,网络设备可以在上述配置信息中携带K值发送给终端设备,然后终端设备根据K值确定取值范围,其中K=2L或任意正整数。
在第三种实现方式中,该序号的取值范围也可以是由终端设备确定的。比如,终端设备在获取到网络设备发送的序号的取值范围的配置信息,例如,该序号的取值范围的配置信息为L值,则终端设备根据L确定K=2L,进而根据K值确定取值范围。
可选的,终端设备为配置资源维护序号,其中序号在SFN翻转时按以下方式更新:更新后的序号=(原序号+1)modulo K,其中modulo为取模操作,K为序号的总数。或者更新方式理解为:counter=(counter+1)modulo K,即当SFN翻转时,counter值累加1,为避免取值超过允许的取值范围,对累加后的结果进行取模操作。
三、实施例九与实施例三的关联
该实施例九中的终端设备维护的序号可以是实施例三中的超系统帧号H-SFN。
在第一种实现方式中,该序号的取值范围由网络设备配置给终端设备的,即网络设备将序号的取值范围(例如携带于上述配置信息中)发送至终端。该序号的取值范围例如可以是从0至K-1,或者1至K,或者是其他任意数开始至该任意数+K-1(该任意数表示为t,则counter取值范围为t,t+1,t+2,……,t+K-1),其中K=2M,H-SFN为M bit长度。
在第二种实现方式中,网络设备可以在上述配置信息中携带K值发送给终端设备,然后终端设备根据K值确定取值范围,其中K=2M
在第三种实现方式中,该序号的取值范围也可以是由终端设备确定的。比如,终端设备在获取到网络设备发送的序号的取值范围的配置信息,例如,该序号的取值范围的配置信息为M值,则终端设备根据M确定K=2M,进而根据K值确定取值范围。可选的,终端设备通过广播信令从网络设备获取H-SFN的配置信息,即获取到H-SFN的长度M值(单位比特),一个H-SFN标识210+M(即1024*2M)个无线帧。
可选的,终端设备为配置资源维护序号,其中序号在SFN翻转时更新,包括:终端设备每隔1024个无线帧对H-SFN进行累加1操作。
针对该实施例九的其他具体实现细节,可以参考前述实施例一至实施例三的相关描述,这里不再赘述。
需要说明的是,上述各个实施例可以单独实施,也可以组合实施。例如,实施例七与实施例一至六相结合,实施例八与实施例一或二相结合等等。
可以理解的是,上述实现各网元为了实现上述功能,其包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
如图8所示,为本申请所涉及的通信装置的一种可能的示例性框图,该通信装置800可以以软件或硬件的形式存在。通信装置800可以包括:处理单元802和通信单元803。作为一种实现方式,该通信单元803可以包括接收单元和发送单元。处理单元802用于对通信装置800的动作进行控制管理。通信单元803用于支持通信装置800与其他网络实体的通信。通信装置800还可以包括存储单元801,用于存储通信装置800的程序代码和数据。
其中,处理单元802可以是处理器或控制器,例如可以是通用中央处理器(centralprocessing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。存储单元801可以是存储器。通信单元803是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信单元803是该芯片用于从其它芯片或装置接收信号的接口电路,或者,是该芯片用于向其它芯片或装置发送信号的接口电路。
该通信装置800可以为上述任一实施例中的终端设备,还可以为用于终端设备的芯片。例如,当通信装置800为终端设备时,该处理单元802例如可以是处理器,该通信单元803例如可以是收发器。可选的,该收发器可以包括射频电路,该存储单元例如可以是存储器。例如,当通信装置800为用于终端设备的芯片时,该处理单元802例如可以是处理器,该通信单元803例如可以是输入/输出接口、管脚或电路等。该处理单元802可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端设备内的位于该芯片外部的存储单元,如只读存储器(read-onlymemory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在第一个实施例中,通信单元803,用于从网络设备获取配置资源的配置信息,所述配置资源为周期性资源,所述配置信息包括所述周期性资源的周期参数;处理单元802,用于为所述配置资源维护序号,其中所述序号在系统帧号SFN翻转时更新;以及,根据所述序号和所述周期参数,确定所述配置资源。
在一种可能的实现方法中,所述序号的取值范围由所述网络设备配置给所述装置。
在一种可能的实现方法中,所述配置信息包括所述序号的取值范围的配置信息。
在一种可能的实现方法中,所述通信单元803,还用于从所述网络设备获取所述序号的取值范围的配置信息,所述配置信息为L,其中L为正整数;所述处理单元802,还用于根据所述取值范围的配置信息,确定所述序号的取值范围为0至K-1或者1至K,其中,K=2L
在一种可能的实现方法中,所述通信单元803,还用于从所述网络设备获取所述序号的取值范围的配置信息,所述配置信息为K,其中K为正整数;所述处理单元802,还用于根据所述取值范围的配置信息,确定所述序号的取值范围为0至K-1或者1至K。
在一种可能的实现方法中,所述序号的取值范围预设为0至K-1或者1至K,且满足K*10240ms=所述周期性资源的周期的正整数倍。
在一种可能的实现方法中,所述序号的取值范围由预设值L确定,其中,所述序号的取值范围为0至K-1或者1至K,其中,K=2L
在一种可能的实现方法中,所述处理单元802,用于通过计数器维护所述序号,所述序号为计数器的取值。
在一种可能的实现方法中,所述处理单元802,用于为所述配置资源维护序号,其中所述序号在SFN翻转时按以下方式更新:更新后的序号=(原序号+1)modulo K,其中modulo为取模操作,K为所述序号的总数。
在一种可能的实现方法中,所述序号为超系统帧号H-SFN。
在一种可能的实现方法中,所述通信单元803,还用于通过广播信令从网络设备获取所述H-SFN的配置信息。
在一种可能的实现方法中,所述H-SFN的配置信息为所述H-SFN的长度M,所述H-SFN标识210+M个无线帧。
在一种可能的实现方法中,所述处理单元802,还用于为所述配置资源维护序号,其中所述序号在SFN翻转时更新,包括:每隔1024个无线帧对H-SFN进行累加1操作。
在一种可能的实现方法中,SFN翻转之前和之后确定的配置资源的时域间隔等于所述周期性资源的周期。
在第二个实施例中,通信单元803,用于获取配置资源的配置信息,配置信息包括第一参数,配置资源为周期性资源;处理单元802,用于根据第一参数确定配置资源的确定方式。
在一种可能的实现方法中,第一参数为周期参数,其中,周期参数所指示的资源周期不能被10240ms整除时,处理单元802采用的配置资源的确定方式与资源周期能被10240ms整除时不同。
在一种可能的实现方法中,第一参数为时间信息或指示信息,时间信息包括SFN信息、或H-SFN信息、或协调世界时UTC/全球定位系统GPS时间信息,指示信息用于指示终端设备采用的配置资源的确定方式;其中,当通信单元803收到第一参数时,处理单元802采用的配置资源的确定方式与处理单元802未收到第一参数时不同。
在一种可能的实现方法中,处理单元802,用于根据配置资源的资源周期和K值,确定配置资源;其中,配置资源的资源周期为符号symbol/时隙slot/毫秒ms的整数倍;K值为满足K*10240ms=资源周期*M的最小正整数,M为正整数,或者K=2L、且L为配置的正整数,或者K=2M、且M为配置的超系统帧号H-SFN的长度,或者K为配置的正整数。
在一种可能的实现方法中,处理单元802,用于为配置资源维护计数器,计数器的取值范围为0到K-1,或1到K。
在一种可能的实现方法中,当配置资源激活时,计数器置为0,当系统帧号SFN发生翻转时,计数器累加1并进行模K处理。
在一种可能的实现方法中,配置资源为配置授权类型1的时频资源,配置信息还包括网络设备生成配置信息或发送配置信息时的帧号,帧号为系统帧号SFN或超系统帧号H-SFN;若通信单元803收到配置信息时的帧号大于或等于配置信息中的帧号,则处理单元802,用于将计数器置为0,否则置为1。如此,有助于实现为计数器设置正确的初始值。
在一种可能的实现方法中,配置资源为配置授权类型1的时频资源,通信单元803,用于通过RRC信令向网络设备发送辅助信息,辅助信息用于指示终端设备的业务模式(traffic pattern)。
在一种可能的实现方法中,K值携带于配置信息。
在一种可能的实现方法中,K值是MAC粒度或小区粒度(per MAC/per Cell)配置的。
在一种可能的实现方法中,配置信息还包括比特位图bitmap,bitmap包括Q比特,Q比特中的每比特对应于一个时间区域,且每个比特用于指示对应的时间区域内是否配置有资源,时间区域为X slot/symbol/ms,X为正整数;则处理单元802,用于根据bitmap,确定配置资源。
在一种可能的实现方法中,配置资源的资源周期为slot/ms的非整数倍;处理单元802,用于根据资源周期,确定配置资源的生效位置;根据生效位置,确定配置资源。
可以理解的是,该通信装置用于上述配置资源的确定方法时的具体实现过程以及相应的有益效果,可以参考前述方法实施例中的相关描述,这里不再赘述。
参阅图9所示,为本申请提供的一种通信装置示意图,该通信装置可以是上述终端设备。该通信装置900包括:处理器902、通信接口903、存储器901。可选的,通信装置900还可以包括通信线路904。其中,通信接口903、处理器902以及存储器901可以通过通信线路904相互连接;通信线路904可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路904可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器902可以是一个CPU,微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口903,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local areanetworks,WLAN),有线接入网等。
存储器901可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compactdisc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路904与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器901用于存储执行本申请方案的计算机执行指令,并由处理器902来控制执行。处理器902用于执行存储器901中存储的计算机执行指令,从而实现本申请上述实施例提供的配置资源的确定方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (30)

1.一种配置资源的确定方法,其特征在于,包括:
终端设备从网络设备获取配置资源的配置信息,所述配置资源为周期性资源,所述配置信息包括所述周期性资源的周期参数;
所述终端设备为所述配置资源维护序号,其中所述序号在系统帧号SFN翻转时更新;
所述终端设备根据所述序号和所述周期参数,确定所述配置资源;
其中,所述序号的取值范围由所述网络设备配置给所述终端设备;
所述序号的取值范围预设为0至K-1或者1至K,且满足K*10240ms=所述周期性资源的周期的正整数倍。
2.如权利要求1所述的方法,其特征在于,所述配置信息包括所述序号的取值范围的配置信息。
3.如权利要求1或2所述的方法,其特征在于,还包括:
所述终端设备从所述网络设备获取所述序号的取值范围的配置信息,所述配置信息为L,其中L为正整数;
所述终端设备根据所述取值范围的配置信息,确定所述序号的取值范围为0至K-1或者1至K,其中,K=2L
4.如权利要求1或2所述的方法,其特征在于,还包括:
所述终端设备从所述网络设备获取所述序号的取值范围的配置信息,所述配置信息为K,其中K为正整数;
所述终端设备根据所述取值范围的配置信息,确定所述序号的取值范围为0至K-1或者1至K。
5.如权利要求1或2所述的方法,其特征在于,所述序号的取值范围由预设值L确定,其中,所述序号的取值范围为0至K-1或者1至K,其中,K=2L
6.如权利要求1或2任一项所述的方法,其特征在于,所述终端设备通过计数器维护所述序号,所述序号为计数器的取值。
7.如权利要求1或2所述的方法,其特征在于,所述终端设备为所述配置资源维护序号,其中所述序号在SFN翻转时按以下方式更新:
更新后的序号=(原序号+1)modulo K,其中modulo为取模操作,K为所述序号的总数。
8.如权利要求1或2所述的方法,其特征在于,所述序号为超系统帧号H-SFN。
9.如权利要求8所述的方法,其特征在于,所述终端设备通过广播信令从网络设备获取所述H-SFN的配置信息。
10.如权利要求9所述的方法,其特征在于,所述H-SFN的配置信息为所述H-SFN的长度M,所述H-SFN标识210+M个无线帧。
11.如权利要求9或10所述的方法,其特征在于,所述终端设备为所述配置资源维护序号,其中所述序号在SFN翻转时更新,包括:
所述终端设备每隔1024个无线帧对H-SFN进行累加1操作。
12.如权利要求1或2所述的方法,其特征在于,SFN翻转之前和之后确定的配置资源的时域间隔等于所述周期性资源的周期。
13.一种通信装置,其特征在于,包括:
通信单元,用于从网络设备获取配置资源的配置信息,所述配置资源为周期性资源,所述配置信息包括所述周期性资源的周期参数;
处理单元,用于为所述配置资源维护序号,其中所述序号在系统帧号SFN翻转时更新;以及,根据所述序号和所述周期参数,确定所述配置资源;
其中,所述序号的取值范围由所述网络设备配置给所述装置;
所述序号的取值范围预设为0至K-1或者1至K,且满足K*10240ms=所述周期性资源的周期的正整数倍。
14.如权利要求13所述的装置,其特征在于,所述配置信息包括所述序号的取值范围的配置信息。
15.如权利要求13或14所述的装置,其特征在于,所述通信单元,还用于从所述网络设备获取所述序号的取值范围的配置信息,所述配置信息为L,其中L为正整数;
所述处理单元,还用于根据所述取值范围的配置信息,确定所述序号的取值范围为0至K-1或者1至K,其中,K=2L
16.如权利要求13或14所述的装置,其特征在于,所述通信单元,还用于从所述网络设备获取所述序号的取值范围的配置信息,所述配置信息为K,其中K为正整数;
所述处理单元,还用于根据所述取值范围的配置信息,确定所述序号的取值范围为0至K-1或者1至K。
17.如权利要求13或14所述的装置,其特征在于,所述序号的取值范围由预设值L确定,其中,所述序号的取值范围为0至K-1或者1至K,其中,K=2L
18.如权利要求13或14所述的装置,其特征在于,所述处理单元,用于通过计数器维护所述序号,所述序号为计数器的取值。
19.如权利要求13或14所述的装置,其特征在于,所述处理单元,用于为所述配置资源维护序号,其中所述序号在SFN翻转时按以下方式更新:
更新后的序号=(原序号+1)modulo K,其中modulo为取模操作,K为所述序号的总数。
20.如权利要求13或14所述的装置,其特征在于,所述序号为超系统帧号H-SFN。
21.如权利要求20所述的装置,其特征在于,所述通信单元,还用于通过广播信令从网络设备获取所述H-SFN的配置信息。
22.如权利要求21所述的装置,其特征在于,所述H-SFN的配置信息为所述H-SFN的长度M,所述H-SFN标识210+M个无线帧。
23.如权利要求13或14所述的装置,其特征在于,所述处理单元,还用于为所述配置资源维护序号,其中所述序号在SFN翻转时更新,包括:每隔1024个无线帧对H-SFN进行累加1操作。
24.如权利要求13或14所述的装置,其特征在于,SFN翻转之前和之后确定的配置资源的时域间隔等于所述周期性资源的周期。
25.一种通信装置,其特征在于,包括:处理器和接口电路,所述处理器用于通过所述接口电路与网络设备通信,并执行如权利要求1至12任一项所述的方法。
26.一种通信装置,其特征在于,包括处理器,用于与存储器相连,调用所述存储器中存储的程序,以执行如权利要求1至12任一项所述的方法。
27.一种终端设备,其特征在于,包括如权利要求13至24任一项所述的装置。
28.一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得处理器执行如权利要求1至12任一项所述的方法。
29.一种芯片系统,其特征在于,包括:处理器,用于执行如权利要求1至12中任一项所述的方法。
30.一种通信系统,其特征在于,包括:如权利要求27所述的终端设备和网络设备。
CN201910069176.5A 2019-01-24 2019-01-24 一种配置资源的确定方法及装置 Active CN111478784B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201910069176.5A CN111478784B (zh) 2019-01-24 2019-01-24 一种配置资源的确定方法及装置
CN202210176051.4A CN114916077A (zh) 2019-01-24 2019-01-24 一种配置资源的确定方法及装置
PCT/CN2020/073323 WO2020151678A1 (zh) 2019-01-24 2020-01-20 一种配置资源的确定方法及装置
EP20744672.5A EP3917082A4 (en) 2019-01-24 2020-01-20 CONFIGURATION RESOURCE DETERMINATION METHOD AND APPARATUS
BR112021014568-0A BR112021014568A2 (pt) 2019-01-24 2020-01-20 Método para determinar recurso configurado, e aparelho
US17/384,381 US20210352640A1 (en) 2019-01-24 2021-07-23 Method for determining configured resource, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910069176.5A CN111478784B (zh) 2019-01-24 2019-01-24 一种配置资源的确定方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210176051.4A Division CN114916077A (zh) 2019-01-24 2019-01-24 一种配置资源的确定方法及装置

Publications (2)

Publication Number Publication Date
CN111478784A CN111478784A (zh) 2020-07-31
CN111478784B true CN111478784B (zh) 2022-03-11

Family

ID=71735452

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910069176.5A Active CN111478784B (zh) 2019-01-24 2019-01-24 一种配置资源的确定方法及装置
CN202210176051.4A Pending CN114916077A (zh) 2019-01-24 2019-01-24 一种配置资源的确定方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202210176051.4A Pending CN114916077A (zh) 2019-01-24 2019-01-24 一种配置资源的确定方法及装置

Country Status (5)

Country Link
US (1) US20210352640A1 (zh)
EP (1) EP3917082A4 (zh)
CN (2) CN111478784B (zh)
BR (1) BR112021014568A2 (zh)
WO (1) WO2020151678A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220061048A1 (en) * 2020-08-24 2022-02-24 Qualcomm Incorporated Sps and ulcg enhancements
US11570806B2 (en) * 2020-12-04 2023-01-31 Qualcomm Incorporated Conditional configured grant (CG) occasions for uplink transmission
CN115701732A (zh) * 2021-08-02 2023-02-10 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20230068543A1 (en) * 2021-08-18 2023-03-02 Qualcomm Incorporated Measurement reporting enhancements in batch mode reporting
WO2023044808A1 (zh) * 2021-09-24 2023-03-30 北京小米移动软件有限公司 Mbs业务中sps对应hpn的确定方法及其装置
CN113784449B (zh) * 2021-11-12 2022-02-22 深圳传音控股股份有限公司 处理方法、通信设备及存储介质
WO2023178558A1 (en) * 2022-03-23 2023-09-28 Mediatek Singapore Pte. Ltd. Schemes for solving sfn wrapping issues in ntn
WO2023226685A1 (en) * 2022-05-23 2023-11-30 Mediatek Singapore Pte. Ltd. Methods for supporting arbitrary drx cycle and periodicity of sps and cg in mobile communications
CN117792582A (zh) * 2022-09-19 2024-03-29 荣耀终端有限公司 Harq进程标识的确定方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132516A (zh) * 2008-08-21 2011-07-20 高通股份有限公司 在系统时间翻转时处置中断的同步混合自动重复请求(harq)循环
CN102655668A (zh) * 2011-03-02 2012-09-05 中兴通讯股份有限公司 非连续接收方法及装置
CN109218000A (zh) * 2017-06-30 2019-01-15 华为技术有限公司 控制信息传输方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686115B (zh) * 2008-09-23 2012-11-14 电信科学技术研究院 半持续调度的混合自动重传请求进程的处理方法和装置
CN102045850B (zh) * 2010-12-31 2014-07-30 大唐移动通信设备有限公司 一种准空白子帧配置方法及设备
CN102394728B (zh) * 2011-11-17 2014-08-20 电信科学技术研究院 下行进程号的确定方法和设备
WO2015020588A2 (en) * 2013-08-09 2015-02-12 Telefonaktiebolaget L M Ericsson (Publ) A network node and mobile device for use in a communication network, and methods of operating the same and computer program products
CN106257856B (zh) * 2015-06-19 2021-02-02 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
CN106612555B (zh) * 2015-10-23 2019-10-22 普天信息技术有限公司 一种通信系统的系统帧号的发送方法、确定方法及设备
JP6405476B2 (ja) * 2016-01-25 2018-10-17 京セラ株式会社 無線端末及び基地局
CN107770870B (zh) * 2016-08-22 2020-06-12 中国移动通信有限公司研究院 资源指示、确定方法、装置、网络侧设备及接收侧设备
US10382170B2 (en) * 2016-09-25 2019-08-13 Ofinno, Llc HARQ process in semi-persistent scheduling
CN108024215A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种多播业务的传输方法及装置
CN109152075B (zh) * 2017-06-19 2021-02-12 华为技术有限公司 用于传输数据的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132516A (zh) * 2008-08-21 2011-07-20 高通股份有限公司 在系统时间翻转时处置中断的同步混合自动重复请求(harq)循环
CN102655668A (zh) * 2011-03-02 2012-09-05 中兴通讯股份有限公司 非连续接收方法及装置
CN109218000A (zh) * 2017-06-30 2019-01-15 华为技术有限公司 控制信息传输方法和设备

Also Published As

Publication number Publication date
CN114916077A (zh) 2022-08-16
US20210352640A1 (en) 2021-11-11
CN111478784A (zh) 2020-07-31
EP3917082A1 (en) 2021-12-01
BR112021014568A2 (pt) 2021-10-05
WO2020151678A1 (zh) 2020-07-30
EP3917082A4 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
CN111478784B (zh) 一种配置资源的确定方法及装置
CN108882274B (zh) 一种通信方法和装置
US20170034727A1 (en) Method and Apparatus for Channel State Information Measurement
AU2018201792B2 (en) Information transmission method, base station, and user equipment
CN108696919A (zh) 一种发送信息的方法和装置及接收信息的方法和装置
CN111865541B (zh) 一种调度切换方法及装置
CN109600794B (zh) 一种通信方法及设备
US20180041314A1 (en) Data transmission method, feedback information transmission method, and related device
WO2017193869A1 (zh) 系统消息的传输方法及装置
CN107889229B (zh) 一种上行控制信息uci的传输方法和设备
CN112218368B (zh) 一种通信方法及装置
US10892872B2 (en) Method, system and device for determining reference subframe
CN112312525B (zh) 一种节电信号配置和传输方法及装置
EP3934360A1 (en) Synchronous broadcast block configuration method and apparatus, system and storage medium
CN103516490A (zh) Tdd上下行配置的传输反馈方法及装置
CN114424654A (zh) 测量方法、装置及系统
US20190208439A1 (en) Method and apparatus for transmitting and receiving system information, base station, and terminal
CN110741703A (zh) 一种资源配置方法及装置、计算机存储介质
CN113115320B (zh) 一种频谱资源共享方法及其装置
EP4009710A1 (en) Power-saving signal configuration and transmission methods and apparatuses
CN113691481A (zh) 一种新空口系统中帧同步的方法、装置、基站和存储介质
RU2800143C2 (ru) Способ определения сконфигурированного ресурса и аппаратура
US11063721B2 (en) Method and apparatus for sending pilot, and method and apparatus for receiving pilot
JP2023535571A (ja) ページング方法及び装置
CN113271661A (zh) 一种控制信息传输方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant