CN111478738B - 基于多音信号的阵列接收机通道失配测量方法 - Google Patents

基于多音信号的阵列接收机通道失配测量方法 Download PDF

Info

Publication number
CN111478738B
CN111478738B CN202010279500.9A CN202010279500A CN111478738B CN 111478738 B CN111478738 B CN 111478738B CN 202010279500 A CN202010279500 A CN 202010279500A CN 111478738 B CN111478738 B CN 111478738B
Authority
CN
China
Prior art keywords
channel
signal
signals
array receiver
tone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010279500.9A
Other languages
English (en)
Other versions
CN111478738A (zh
Inventor
陈飞强
鲁祖坤
黄龙
刘哲
李柏渝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202010279500.9A priority Critical patent/CN111478738B/zh
Publication of CN111478738A publication Critical patent/CN111478738A/zh
Application granted granted Critical
Publication of CN111478738B publication Critical patent/CN111478738B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请涉及一种基于多音信号的阵列接收机通道失配测量方法。所述方法包括:根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号,将多音信号转化为多路多音信号,并分别注入阵列接收机通道,根据阵列接收机通道针对多音信号的输出信号,分别计算输出信号的信号幅值与信号相位,选择任意一个阵列接收机通道作为参考通道,根据通道幅度失配公式以及通道相位失配公式,对阵列接收机通道中其他通道的通道失配进行测量。采用本方法能够提高失配测量的效率。

Description

基于多音信号的阵列接收机通道失配测量方法
技术领域
本申请涉及阵列信号处理技术领域,特别是涉及一种基于多音信号的阵列接收机通道失配测量方法。
背景技术
阵列接收机能够通过灵活控制天线阵的方向图,自适应形成零点和主波束,有效抑制干扰、增强期望信号,因而在雷达、导航、声纳等领域获得了广泛的应用。阵列接收机包含多个阵列通道,每个通道均由低噪放、滤波器、混频器等模拟器件组成,由于模拟器件及其构成电路不可避免地存在特性上的差异,因此不同的通道间必然存在幅相特性不一致,即通道失配。
以一个由两阵元组成的阵列接收机为例,设通道1和通道2的频率响应分别为H1(f)和H2(f),其中:
Figure BDA0002446027130000011
式中,Ak(f)为通道k的幅频响应,φk(f)为通道k的相频响应。
若以通道1作为参考,则通道2的幅度失配和相位失配分别定义为:
Figure BDA0002446027130000012
Δφ2(f)=φ2(f)-φ1(f)
通道失配会导致干扰抑制、数字波束形成(Digital Beam Forming,DBF)及到达角(Direction Of Arrival,DOA)估计等阵列处理的性能恶化,在工程中必须予以校正。目前主流的校正方法是在各阵列通道后添加一个数字滤波器来进行通道均衡,通道均衡需要先测量出通道失配,然后根据测量结果设计均衡滤波器。
通道失配的测量通过注入信号法实现,即将测试信号经功分器功分后同时注入各个通道,然后根据通道输出信号估计通道失配。常用的测试信号有高斯宽带信号和线性扫频信号两种。高斯宽带信号的能量在整个通道带内均匀分布,不能集中到感兴趣的频点,因此在同样的信噪比条件下测量精度低。线性扫频信号虽然可以将能量集中于感兴趣的频点,但为了提高精度,需求增加每个频点的驻留时间,大大增加了测试时间。
发明内容
基于此,有必要针对上述技术问题,提供一种能够解决阵列接收机通道失配测量为了保证精度所需试验时间过长问题的基于多音信号的阵列接收机通道失配测量方法。
一种基于多音信号的阵列接收机通道失配测量方法,所述方法包括:
根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号;
将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道;
根据所述阵列接收机通道针对所述多音信号的输出信号,分别计算所述输出信号的信号幅值与信号相位;
选择任意一个所述阵列接收机通道作为参考通道,根据通道幅度失配公式以及通道相位失配公式,对所述阵列接收机通道中其他通道的通道失配进行测量。
在其中一个实施例中,还包括:根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号为:
Figure BDA0002446027130000021
其中,x(t)表示生成的多音信号,M表示单频信号数量,fi表示感兴趣频点,i=1,2,…,M,φ00表示M个单频信号共同的初相位。
在其中一个实施例中,还包括:采用功分器将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道。
在其中一个实施例中,还包括:根据所述阵列接收机通道针对所述多音信号的输出信号,计算所述输出信号的信号幅值为:
Figure BDA0002446027130000022
根据所述阵列接收机通道针对所述多音信号的输出信号,计算所述输出信号的信号相位为:
Figure BDA0002446027130000031
其中,k表示第k个阵列接收机通道,yk(n)表示第k个阵列接收机通道的输出信号,
Figure BDA0002446027130000032
f0表示阵列接收机通道下变频器的本振频率,为已知常数,Ts表示为阵列接收机采样周期,N表示计算信号幅度所用的数据长度。
在其中一个实施例中,还包括:选择任意一个所述阵列接收机通道作为参考通道,设置为通道1;
根据通道幅度失配公式,计算通道k的通道幅度失配为:
Figure BDA0002446027130000033
根据通道相位失配公式,计算通道k的通道相位失配为:
Figure BDA0002446027130000034
其中,i=1,2,…,M。
一种基于多音信号的阵列接收机通道失配测量装置,所述装置包括:
信号生成模块,用于根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号;
信号注入模块,用于将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道;
计算模块,用于根据所述阵列接收机通道针对所述多音信号的输出信号,分别计算所述输出信号的信号幅值与信号相位;
测量模块,用于选择任意一个所述阵列接收机通道作为参考通道,根据通道幅度失配公式以及通道相位失配公式,对所述阵列接收机通道中其他通道的通道失配进行测量。
在其中一个实施例中,所述信号生成模块还用于根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号为:
Figure BDA0002446027130000035
其中,x(t)表示生成的多音信号,M表示单频信号数量,fi表示感兴趣频点,i=1,2,…,M,φ00表示M个单频信号共同的初相位。
在其中一个实施例中,所述信号注入模块还用于采用功分器将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号;
将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道;
根据所述阵列接收机通道针对所述多音信号的输出信号,分别计算所述输出信号的信号幅值与信号相位;
选择任意一个所述阵列接收机通道作为参考通道,根据通道幅度失配公式以及通道相位失配公式,对所述阵列接收机通道中其他通道的通道失配进行测量。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号;
将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道;
根据所述阵列接收机通道针对所述多音信号的输出信号,分别计算所述输出信号的信号幅值与信号相位;
选择任意一个所述阵列接收机通道作为参考通道,根据通道幅度失配公式以及通道相位失配公式,对所述阵列接收机通道中其他通道的通道失配进行测量。
上述基于多音信号的阵列接收机通道失配测量方法、装置、计算机设备和存储介质,能够将测试信号的能量一次性集中于所有感兴趣的频点,精确测量出阵列接收机通道间的幅度失配和相位失配,克服了传统方法不能兼顾测量精度和测量时间的缺点,为通道均衡滤波器的设计以及进一步的通道校正提供参考。
附图说明
图1为一个实施例中基于多音信号的阵列接收机通道失配测量方法的流程示意图;
图2为一个实施例中基于多音信号的阵列接收机通道失配测量装置的结构框图;
图3为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种基于多音信号的阵列接收机通道失配测量方法,包括以下步骤:
步骤102,根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号。
感兴趣频点指的是通过人工标注,确定需要进行试验的频点。
本步骤中,将一次试验的测试信号,集中于所有感兴趣频点,可以提高试验的效率。
具体的,多音信号可以采用通用的信号源生成,例如:安捷伦公司的矢量信号发生器E4438C。
步骤104,将多音信号转化为多路多音信号,并分别注入阵列接收机通道。
阵列接收机包含有多条通道,根据试验场景、阵列接收机设备的不同,试验的通道数不同,需要注意的是,需要同时将多音信号输入阵列接收机的各个通道中。
步骤106,根据阵列接收机通道针对多音信号的输出信号,分别计算输出信号的信号幅值与信号相位。
需要进行通道失配测量,首先需要对每个通道的信号幅值以及信号相位进行估计。
步骤108,选择任意一个阵列接收机通道作为参考通道,根据通道幅度失配公式以及通道相位失配公式,对阵列接收机通道中其他通道的通道失配进行测量。
对于包含多个通道的阵列接收机,可以选择其中任意一个阵列接收机通道作为参考通道,然后将其他阵列接收机与参考通道进行匹配,从而计算出所有阵列接收机通道的通道失配。
上述基于多音信号的阵列接收机通道失配测量方法中,能够将测试信号的能量一次性集中于所有感兴趣的频点,精确测量出阵列接收机通道间的幅度失配和相位失配,克服了传统方法不能兼顾测量精度和测量时间的缺点,为通道均衡滤波器的设计以及进一步的通道校正提供参考。
在其中一个实施例中,根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号为:
Figure BDA0002446027130000061
其中,x(t)表示生成的多音信号,M表示单频信号数量,fi表示感兴趣频点,i=1,2,…,M,φ0表示M个单频信号共同的初相位。
值得说明的是,多音信号可以采用通用的信号源生成,例如:安捷伦公司的矢量信号发生器E4438C。
在其中一个实施例中,采用功分器将多音信号转化为多路多音信号,并分别注入阵列接收机通道。
例如,对于包含N条通道的阵列接收机,则采用功分器将多音信号转化为N路多音信号。
在其中一个实施例中,根据阵列接收机通道针对多音信号的输出信号,计算输出信号的信号幅值为:
Figure BDA0002446027130000062
根据阵列接收机通道针对多音信号的输出信号,计算输出信号的信号相位为:
Figure BDA0002446027130000071
其中,k表示第k个阵列接收机通道,yk(n)表示第k个阵列接收机通道的输出信号,
Figure BDA0002446027130000072
f0表示阵列接收机通道下变频器的本振频率,为已知常数,Ts表示为阵列接收机采样周期,N表示计算信号幅度所用的数据长度。
在其中一个实施例中,选择任意一个阵列接收机通道作为参考通道,设置为通道1;根据通道幅度失配公式,计算通道k的通道幅度失配为:
Figure BDA0002446027130000073
根据通道相位失配公式,计算通道k的通道相位失配为:
Figure BDA0002446027130000074
其中,i=1,2,…,M。
至此,完成了所有通道的失配测量,上述方法中,仅采用了一个测试信号,就完成了所有通道的失配测量,从而在保证测量精度的同时,大大提升的测试的效率。
应该理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图2所示,提供了一种基于多音信号的阵列接收机通道失配测量装置,包括:信号生成模块202、信号注入模块204、计算模块206和测量模块208,其中:
信号生成模块202,用于根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号;
信号注入模块204,用于将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道;
计算模块206,用于根据所述阵列接收机通道针对所述多音信号的输出信号,分别计算所述输出信号的信号幅值与信号相位;
测量模块208,用于选择任意一个所述阵列接收机通道作为参考通道,根据通道幅度失配公式以及通道相位失配公式,对所述阵列接收机通道中其他通道的通道失配进行测量。
在其中一个实施例中,信号生成模块202还用于根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号为:
Figure BDA0002446027130000081
其中,x(t)表示生成的多音信号,M表示单频信号数量,fi表示感兴趣频点,i=1,2,…,M,φ00表示M个单频信号共同的初相位。
在其中一个实施例中,信号注入模块204还包括:采用功分器将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道。
在其中一个实施例中,计算模块206还用于根据所述阵列接收机通道针对所述多音信号的输出信号,计算所述输出信号的信号幅值为:
Figure BDA0002446027130000082
根据所述阵列接收机通道针对所述多音信号的输出信号,计算所述输出信号的信号相位为:
Figure BDA0002446027130000083
其中,k表示第k个阵列接收机通道,yk(n)表示第k个阵列接收机通道的输出信号,
Figure BDA0002446027130000084
f0表示阵列接收机通道下变频器的本振频率,为已知常数,Ts表示为阵列接收机采样周期,N表示计算信号幅度所用的数据长度。
在其中一个实施例中,测量模块208还用于选择任意一个所述阵列接收机通道作为参考通道,设置为通道1;根据通道幅度失配公式,计算通道k的通道幅度失配为:
Figure BDA0002446027130000091
根据通道相位失配公式,计算通道k的通道相位失配为:
Figure BDA0002446027130000092
其中,i=1,2,…,M。
关于基于多音信号的阵列接收机通道失配测量装置的具体限定可以参见上文中对于基于多音信号的阵列接收机通道失配测量方法的限定,在此不再赘述。上述基于多音信号的阵列接收机通道失配测量装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图3所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种基于多音信号的阵列接收机通道失配测量方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图3中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,该存储器存储有计算机程序,该处理器执行计算机程序时实现上述实施例中方法的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述实施例中方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种基于多音信号的阵列接收机通道失配测量方法,所述方法包括:
根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号;
将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道;
根据所述阵列接收机通道针对所述多音信号的输出信号,分别计算所述输出信号的信号幅值与信号相位;
选择任意一个所述阵列接收机通道作为参考通道,根据通道幅度失配公式以及通道相位失配公式,对所述阵列接收机通道中其他通道的通道失配进行测量;
所述根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号包括:
根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号为:
Figure FDA0003711852930000011
其中,x(t)表示生成的多音信号,M表示单频信号数量,fi表示感兴趣频点,i=1,2,…,M,φ0表示M个单频信号共同的初相位;
根据所述阵列接收机通道针对所述多音信号的输出信号,分别计算所述输出信号的信号幅值与信号相位,包括:
根据所述阵列接收机通道针对所述多音信号的输出信号,计算所述输出信号的信号幅值为:
Figure FDA0003711852930000012
根据所述阵列接收机通道针对所述多音信号的输出信号,计算所述输出信号的信号相位为:
Figure FDA0003711852930000013
其中,k表示第k个阵列接收机通道,yk(n)表示第k个阵列接收机通道的输出信号,
Figure FDA0003711852930000014
f0表示阵列接收机通道下变频器的本振频率,为已知常数,Ts表示为阵列接收机采样周期,N表示计算信号幅度所用的数据长度;
将测试信号的能量一次性集中于所有感兴趣的频点,仅采用了一个测试信号,就完成了所有通道的失配测量。
2.根据权利要求1所述的方法,其特征在于,将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道,包括:
采用功分器将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道。
3.根据权利要求2所述的方法,其特征在于,选择任意一个所述阵列接收机通道作为参考通道,根据通道幅度失配公式以及通道相位失配公式,对所述阵列接收机通道中其他通道的通道失配进行测量,包括:
选择任意一个所述阵列接收机通道作为参考通道,设置为通道1;
根据通道幅度失配公式,计算通道k的通道幅度失配为:
Figure FDA0003711852930000021
根据通道相位失配公式,计算通道k的通道相位失配为:
Figure FDA0003711852930000022
其中,i=1,2,…,M。
4.一种基于多音信号的阵列接收机通道失配测量装置,其特征在于,所述装置包括:
信号生成模块,用于根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号;
信号注入模块,用于将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道;
计算模块,用于根据所述阵列接收机通道针对所述多音信号的输出信号,分别计算所述输出信号的信号幅值与信号相位;
测量模块,用于选择任意一个所述阵列接收机通道作为参考通道,根据通道幅度失配公式以及通道相位失配公式,对所述阵列接收机通道中其他通道的通道失配进行测量。
5.根据权利要求4所述的装置,其特征在于,所述信号生成模块还用于根据感兴趣频点,生成感兴趣频点对应单频信号组成的多音信号为:
Figure FDA0003711852930000031
其中,x(t)表示生成的多音信号,M表示单频信号数量,fi表示感兴趣频点,i=1,2,…,M,φ0表示M个单频信号共同的初相位。
6.根据权利要求4所述的装置,其特征在于,所述信号注入模块还用于采用功分器将所述多音信号转化为多路多音信号,并分别注入阵列接收机通道。
7.一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至3中任一项所述方法的步骤。
8.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至3中任一项所述的方法的步骤。
CN202010279500.9A 2020-04-10 2020-04-10 基于多音信号的阵列接收机通道失配测量方法 Active CN111478738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010279500.9A CN111478738B (zh) 2020-04-10 2020-04-10 基于多音信号的阵列接收机通道失配测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010279500.9A CN111478738B (zh) 2020-04-10 2020-04-10 基于多音信号的阵列接收机通道失配测量方法

Publications (2)

Publication Number Publication Date
CN111478738A CN111478738A (zh) 2020-07-31
CN111478738B true CN111478738B (zh) 2022-08-02

Family

ID=71752442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010279500.9A Active CN111478738B (zh) 2020-04-10 2020-04-10 基于多音信号的阵列接收机通道失配测量方法

Country Status (1)

Country Link
CN (1) CN111478738B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402956A (zh) * 1999-10-04 2003-03-12 Srs实验室公司 声校正装置
CN103323862A (zh) * 2013-06-28 2013-09-25 武汉大学 多模多频和阵列处理相结合的抗干扰gnss接收机装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088765B1 (en) * 2000-03-15 2006-08-08 Ndsu Research Foundation Vector calibration system
US7158586B2 (en) * 2002-05-03 2007-01-02 Atheros Communications, Inc. Systems and methods to provide wideband magnitude and phase imbalance calibration and compensation in quadrature receivers
US8135094B2 (en) * 2008-08-27 2012-03-13 Freescale Semiconductor, Inc. Receiver I/Q group delay mismatch correction
CN106199187B (zh) * 2016-07-18 2018-11-13 电子科技大学 一种多音信号相对相位的测试方法
US9985812B1 (en) * 2016-12-21 2018-05-29 Keysight Technologies, Inc. Systems and methods for IQ demodulation with error correction
US11121784B2 (en) * 2017-05-11 2021-09-14 Keysight Technologies, Inc. Method and device for detecting power of a periodic signal in a band of interest
CN110149157A (zh) * 2018-02-11 2019-08-20 西南电子技术研究所(中国电子科技集团公司第十研究所) 阵列天线宽频带通道并行校准方法
CN109100755B (zh) * 2018-07-10 2021-01-29 中国人民解放军国防科技大学 高精度gnss接收机射频前端群时延畸变的校正方法
CN109104389A (zh) * 2018-09-14 2018-12-28 中国人民解放军国防科技大学 一种gnss天线阵通道失配的自适应校正方法
CN110703234B (zh) * 2019-10-29 2021-07-02 杭州瑞利海洋装备有限公司 一种三维摄像声纳阵列信号接收机幅相校正装置及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402956A (zh) * 1999-10-04 2003-03-12 Srs实验室公司 声校正装置
CN103323862A (zh) * 2013-06-28 2013-09-25 武汉大学 多模多频和阵列处理相结合的抗干扰gnss接收机装置

Also Published As

Publication number Publication date
CN111478738A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
CN102426300B (zh) 一种星载波束形成接收通道幅相误差校准系统及其方法
CN108776330B (zh) 一种fmcw雷达多接收通道的高精度校准方法和装置
CN111289950B (zh) 一种基于相关与最小二乘的信号通道校准方法和装置
CN109541558A (zh) 一种全流程全系统主动相控阵雷达导引头的校准方法
US10845401B2 (en) Nonlinear distortion detection
JP2021524721A (ja) アンテナの校正方法および装置
CN110031811B (zh) 多通道宽频带信号相参特性快速校准系统
US10615891B2 (en) Receiver testing
CN103226170A (zh) 用于测量残余相位噪声的系统
CN110824466A (zh) 一种多目标跟踪系统及其dbf通道校准fpga实现方法
CN102426350A (zh) 一种星载阵列天线测向通道幅相误差的确定方法
US20200158821A1 (en) Phase rotator calibration of a multichannel radar transmitter
CN104635035A (zh) 基于分块式结构实现信号源功率快速校准的系统及方法
CN110708127A (zh) 相控阵天线的并行幅相校准方法及系统
Dunsmore OTA G/T measurements of active phased array antenna noise using a vector network analyzer
CN114647178B (zh) 基于北斗和地面基准传递的原子钟自动校准方法和系统
CN111478738B (zh) 基于多音信号的阵列接收机通道失配测量方法
US6456235B1 (en) Method of predicting the far field pattern of a slotted planar array at extreme angles using planar near field data
US9632122B2 (en) Determining operating characteristics of signal generator using measuring device
CN110417485B (zh) 驻波比检测方法、装置、计算机设备和可读存储介质
CN110988786B (zh) 一种阵列测向校准方法
CN114325531A (zh) 磁共振系统延迟的校正方法、装置、计算机设备和介质
Corbella et al. New calibration technique for interferometric radiometers
CN117706255B (zh) 一种同轴电缆测试方法、装置以及系统
EP3876437B1 (en) System and method for calibrating antenna array

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant