CN111477310A - Triage data processing method, device, computer equipment and storage medium - Google Patents

Triage data processing method, device, computer equipment and storage medium Download PDF

Info

Publication number
CN111477310A
CN111477310A CN202010142969.8A CN202010142969A CN111477310A CN 111477310 A CN111477310 A CN 111477310A CN 202010142969 A CN202010142969 A CN 202010142969A CN 111477310 A CN111477310 A CN 111477310A
Authority
CN
China
Prior art keywords
symptom
result
triage
model
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010142969.8A
Other languages
Chinese (zh)
Inventor
朱昭苇
孙行智
胡岗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Ping An Smart Healthcare Technology Co ltd
Original Assignee
Ping An International Smart City Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ping An International Smart City Technology Co Ltd filed Critical Ping An International Smart City Technology Co Ltd
Priority to CN202010142969.8A priority Critical patent/CN111477310A/en
Priority to PCT/CN2020/099063 priority patent/WO2021174728A1/en
Publication of CN111477310A publication Critical patent/CN111477310A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/35Clustering; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • G06F18/24155Bayesian classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Business, Economics & Management (AREA)
  • Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

本发明公开了一种分诊数据处理方法、装置、计算机设备及存储介质,所述方法包括:接收到分诊请求,获取患者信息;通过最大词匹配法,在患者信息中获取症状信息;将症状信息输入组合预测模型,通过组合预测模型对症状信息进行预测处理,获取第一症状科室集合;将症状信息输入强化学习分诊模型,获取执行第一动作后输出的含有第一症状结果和第一状态结果的第一分诊结果;在第一状态结果为第一状态时,将第一分诊结果中的第一症状结果确定为最终症状结果;最终症状结果为患者就诊的科室。本发明实现了通过概率模型和深度神经网络模型进行降维的预处理,以及基于强化学习方法进行自动分诊,以确定患者就症的科室,提升就诊准确率,提升患者体验。

Figure 202010142969

The invention discloses a triage data processing method, device, computer equipment and storage medium. The method includes: receiving a triage request, obtaining patient information; obtaining symptom information from the patient information through a maximum word matching method; The symptom information is input into the combined prediction model, and the symptom information is predicted and processed by the combined prediction model, and the first symptom department set is obtained; the symptom information is input into the reinforcement learning triage model, and the output containing the first symptom result and the first symptom output after performing the first action is obtained. The first triage result of a state result; when the first state result is the first state, the first symptom result in the first triage result is determined as the final symptom result; the final symptom result is the department where the patient visits. The invention realizes the preprocessing of dimensionality reduction through the probability model and the deep neural network model, and the automatic triage based on the reinforcement learning method, so as to determine the department where the patient seeks the disease, improve the diagnosis accuracy rate and improve the patient experience.

Figure 202010142969

Description

分诊数据处理方法、装置、计算机设备及存储介质Triage data processing method, device, computer equipment and storage medium

技术领域technical field

本发明涉及数据处理领域,尤其涉及一种分诊数据处理方法、装置、计算机设备及存储介质。The invention relates to the field of data processing, in particular to a method, device, computer equipment and storage medium for triage data processing.

背景技术Background technique

目前,患者去医院就诊时,首先需要去分诊台进行人工分诊,在该过程中患者需要消耗大量排队时间,而且对分诊台的服务人员的专业知识深度及广度上有较高的要求,如果服务人员给患者分诊错误,又需要重新进行分诊,大大浪费患者的时间,严重影响患者体验,因此,在现有技术上,患者进行人工分诊过程中耗时长、很难给出合理的就诊科室,从而导致患者体验差,以及就诊准确率低。At present, when patients go to the hospital for treatment, they first need to go to the triage desk for manual triage. During this process, patients need to spend a lot of queuing time, and there are higher requirements for the depth and breadth of professional knowledge of the service personnel of the triage desk. , if the service staff makes a wrong triage for the patient, it is necessary to re-triage the patient, which greatly wastes the patient's time and seriously affects the patient's experience. Reasonable consultation departments, resulting in poor patient experience and low diagnosis accuracy.

发明内容SUMMARY OF THE INVENTION

本发明提供一种分诊数据处理方法、装置、计算机设备及存储介质,实现了通过概率模型和深度神经网络模型进行降维的预处理,以及基于强化学习方法进行自动分诊,能够快速地、准确地确定患者需要就症的科室,提升了就诊准确率,提升了患者体验。The invention provides a triage data processing method, device, computer equipment and storage medium, which realizes preprocessing of dimension reduction through probability model and deep neural network model, and automatic triage based on reinforcement learning method, which can quickly, Accurately determine the department where the patient needs to seek medical treatment, which improves the accuracy of medical treatment and improves the patient experience.

一种分诊数据处理方法,包括:A triage data processing method, comprising:

接收到分诊请求,获取患者信息;Receive a triage request and obtain patient information;

通过最大词匹配法,在所述患者信息中获取症状信息;Obtain symptom information from the patient information through a maximum word matching method;

将所述症状信息输入组合预测模型,通过所述组合预测模型对所述症状信息进行预测处理,获取所述组合预测模型输出的第一症状科室集合;Inputting the symptom information into a combined prediction model, performing prediction processing on the symptom information through the combined prediction model, and obtaining the first symptom department set output by the combined prediction model;

将所述症状信息输入强化学习分诊模型,获取所述强化学习分诊模型执行第一动作后输出的第一分诊结果;其中,所述第一动作为所述强化学习分诊模型对输入的所述症状信息进行分析处理之后自所述第一动作空间集合中选取,所述第一动作空间集合为预设的动作空间总集被所述第一症状科室集合激活后输出;所述第一分诊结果包括第一症状结果和第一状态结果;Input the symptom information into the reinforcement learning triage model, and obtain the first triage result output by the reinforcement learning triage model after executing the first action; wherein, the first action is the input of the reinforcement learning triage model to the triage model. After analyzing and processing the symptom information, it is selected from the first action space set, and the first action space set is a preset action space set that is activated after being activated by the first symptom department set; the first action space set is output; A triage result includes the first symptom result and the first state result;

在所述第一状态结果为第一状态时,将所述第一分诊结果中的所述第一症状结果确定为最终症状结果;所述最终症状结果为患者就诊的科室。When the first state result is the first state, the first symptom result in the first triage result is determined as the final symptom result; the final symptom result is the department where the patient visits.

一种分诊数据处理装置,包括:A triage data processing device, comprising:

接收模块,用于接收到分诊请求,获取患者信息;The receiving module is used to receive the triage request and obtain the patient information;

获取模块,用于通过最大词匹配法,在所述患者信息中获取症状信息;an acquisition module for acquiring symptom information from the patient information through a maximum word matching method;

预测模块,用于将所述症状信息输入组合预测模型,通过所述组合预测模型对所述症状信息进行预测处理,获取所述组合预测模型输出的第一症状科室集合;a prediction module, configured to input the symptom information into a combined prediction model, perform prediction processing on the symptom information through the combined prediction model, and obtain the first symptom department set output by the combined prediction model;

激活模块,用于将所述症状信息输入强化学习分诊模型,获取所述强化学习分诊模型执行第一动作后输出的第一分诊结果;其中,所述第一动作为所述强化学习分诊模型对输入的所述症状信息进行分析处理之后自所述第一动作空间集合中选取,所述第一动作空间集合为预设的动作空间总集被所述第一症状科室集合激活后输出;所述第一分诊结果包括第一症状结果和第一状态结果;An activation module, configured to input the symptom information into a reinforcement learning triage model, and obtain a first triage result output by the reinforcement learning triage model after performing a first action; wherein the first action is the reinforcement learning The triage model analyzes and processes the input symptom information and selects it from the first action space set, where the first action space set is a preset action space set activated by the first symptom department set output; the first triage result includes a first symptom result and a first state result;

输出模块,用于在所述第一状态结果为第一状态时,将所述第一分诊结果中的所述第一症状结果确定为最终症状结果;所述最终症状结果为患者就诊的科室。An output module, configured to determine the first symptom result in the first triage result as the final symptom result when the first state result is the first state; the final symptom result is the department where the patient visits a doctor .

一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述分诊数据处理方法的步骤。A computer device includes a memory, a processor, and a computer program stored in the memory and executable on the processor, the processor implementing the steps of the triage data processing method when the processor executes the computer program.

一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述分诊数据处理方法的步骤。A computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the above triage data processing method.

本发明提供的分诊数据处理方法、装置、计算机设备及存储介质,通过最大词匹配法从所述患者信息中获取准确的症状信息,将所述症状信息输入由训练完成的症状预测概率模型和训练完成的科室深度卷积神经网络模型组合构成的组合预测模型,获取所述第一症状科室集合,通过所述第一症状科室集合对所述动作空间总集进行激活输出所述第一动作空间集合,实现了对所述动作空间总集进行降维处理后作为所述强化学习分诊模型中的所述第一动作空间集合,再通过将所述症状信息输入所述强化学习分诊模型,获取执行所述第一动作后输出的所述第一分诊结果,若所述分诊结果中的第一状态结果为第一状态时,将所述分诊结果中的第一症状结果确定为最终症状结果。实现了通过概率模型和深度神经网络模型进行降维的预处理,以及基于强化学习方法进行自动分诊,能够快速地、准确地确定患者需要就症的科室,节省了患者时间,提升了就诊准确率,提升了患者体验。In the triage data processing method, device, computer equipment and storage medium provided by the present invention, accurate symptom information is obtained from the patient information by the maximum word matching method, and the symptom information is input into the symptom prediction probability model completed by training and A combined prediction model composed of a combination of deep convolutional neural network models of departments that have been trained, obtains the first symptom department set, and activates the action space collection through the first symptom department set to output the first action space set, which realizes that the action space set is subjected to dimensionality reduction processing as the first action space set in the reinforcement learning triage model, and then by inputting the symptom information into the reinforcement learning triage model, Obtain the first triage result output after the first action is performed, and if the first state result in the triage result is the first state, determine the first symptom result in the triage result as Final symptom results. It realizes dimensionality reduction preprocessing through probability model and deep neural network model, as well as automatic triage based on reinforcement learning method, which can quickly and accurately determine the departments that patients need to seek medical treatment, which saves patients' time and improves the accuracy of medical treatment. rate and improve the patient experience.

附图说明Description of drawings

为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the drawings that are used in the description of the embodiments of the present invention. Obviously, the drawings in the following description are only some embodiments of the present invention. , for those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative labor.

图1是本发明一实施例中分诊数据处理方法的应用环境示意图;1 is a schematic diagram of an application environment of a triage data processing method in an embodiment of the present invention;

图2是本发明一实施例中分诊数据处理方法的流程图;2 is a flowchart of a method for processing triage data in an embodiment of the present invention;

图3是本发明另一实施例中分诊数据处理方法的流程图;3 is a flowchart of a triage data processing method in another embodiment of the present invention;

图4是本发明一实施例中分诊数据处理方法的步骤S10的流程图;4 is a flowchart of step S10 of the triage data processing method in an embodiment of the present invention;

图5是本发明一实施例中分诊数据处理方法的步骤S20的流程图;5 is a flowchart of step S20 of the triage data processing method in an embodiment of the present invention;

图6是本发明一实施例中分诊数据处理方法的步骤S30的流程图;6 is a flowchart of step S30 of the triage data processing method in an embodiment of the present invention;

图7是本发明一实施例中分诊数据处理方法的步骤S301的流程图;7 is a flowchart of step S301 of the triage data processing method in an embodiment of the present invention;

图8是本发明一实施例中分诊数据处理方法的步骤S302的流程图;8 is a flowchart of step S302 of the triage data processing method in an embodiment of the present invention;

图9是本发明一实施例中分诊数据处理装置的原理框图;9 is a schematic block diagram of a triage data processing device according to an embodiment of the present invention;

图10是本发明一实施例中计算机设备的示意图。FIG. 10 is a schematic diagram of a computer device in an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

本发明提供的分诊数据处理方法,可应用在如图1的应用环境中,其中,客户端(计算机设备)通过网络与服务器进行通信。其中,客户端(计算机设备)包括但不限于为各种个人计算机、笔记本电脑、智能手机、平板电脑、摄像头和便携式可穿戴设备。服务器可以用独立的服务器或者是多个服务器组成的服务器集群来实现。The triage data processing method provided by the present invention can be applied in the application environment as shown in FIG. 1 , wherein the client (computer device) communicates with the server through the network. Among them, the client (computer equipment) includes but is not limited to various personal computers, notebook computers, smart phones, tablet computers, cameras and portable wearable devices. The server can be implemented as an independent server or a server cluster composed of multiple servers.

在一实施例中,如图2所示,提供一种分诊数据处理方法,其技术方案主要包括以下步骤S10-S50:In one embodiment, as shown in FIG. 2 , a method for processing triage data is provided, and its technical solution mainly includes the following steps S10-S50:

S10,接收到分诊请求,获取患者信息。S10, a triage request is received, and patient information is acquired.

可理解地,接收到所述分诊请求之后,获取所述患者信息,所述分诊请求为选择并确认需要进行分诊的所述患者信息之后触发的请求,所述触发方式可以根据需求进行设定,比如在应用程序平台界面提供一个可以通过点击、滑动等方式进行触发的触发按键、在执行完预设的程序后自动触发等等。Understandably, after the triage request is received, the patient information is obtained, and the triage request is a request triggered after selecting and confirming the patient information that needs to be triaged, and the triggering method can be performed according to requirements. Settings, such as providing a trigger button on the application platform interface that can be triggered by clicking, sliding, etc., automatically triggering after executing a preset program, and so on.

其中,所述患者信息为患者输入与患者的症状相关的信息。Wherein, the patient information is the information related to the symptoms of the patient input by the patient.

在一实施例中,如图4所示,所述步骤S10之前,即所述接收到分诊请求,获取患者信息之前,包括:In one embodiment, as shown in FIG. 4 , before the step S10, that is, before the triage request is received and the patient information is obtained, the steps include:

S101,接收到患者输入指令,获取患者输入信息。S101, a patient input instruction is received, and patient input information is acquired.

可理解地,接收所述患者输入指令,获取所述患者输入信息,所述患者输入指令为在应用程序的显示界面上输入完所述患者输入信息之后触发的指令,接收到所述患者输入指令之后,获取所述患者输入信息,其获取方式可以根据需要进行设定,比如获取方式可以为通过所述患者输入指令获取所述患者输入信息、根据所述患者输入指令中包含的所述患者输入信息的存储路径获取所述患者输入信息等等。Understandably, receive the patient input instruction, obtain the patient input information, and the patient input instruction is an instruction triggered after the patient input information is input on the display interface of the application program, and the patient input instruction is received. After that, the patient input information is acquired, and the acquisition method can be set as required. For example, the acquisition method can be to acquire the patient input information through the patient input instruction, and obtain the patient input information according to the patient input instruction included in the patient input instruction. A storage path for information captures the patient input information, and the like.

S102,将所述患者输入信息输入预设的预处理模型,所述预处理模型对所述患者输入信息进行识别,得到识别结果;其中所述识别结果包括文本、语音和图像。S102: Input the patient input information into a preset preprocessing model, and the preprocessing model recognizes the patient input information to obtain a recognition result; wherein the recognition result includes text, voice and image.

可理解地,所述预处理模型为对所述患者输入信息进行识别的预设的模型,将所述患者输入信息输入至所述预处理模型,所述预处理模型可以根据所述患者输入信息的格式确定所述识别结果,所述识别结果包括文本、语音和图像。Understandably, the preprocessing model is a preset model for identifying the patient input information, the patient input information is input into the preprocessing model, and the preprocessing model can be based on the patient input information. The format of , determines the recognition result, and the recognition result includes text, speech, and image.

S103,获取与所述识别结果对应的转换模型。S103: Acquire a conversion model corresponding to the recognition result.

可理解地,根据所述识别结果确定与所述识别结果对应的转换模型,所述转换模型包括文本转换模型、语音转换模型和图像转换模型,即若所述识别结果为文本时,则获取文本转换模型,若所述识别结果为语音时,则获取语音转换模型,若所述识别结果为图像时,则获取图像转换模型,所述转换模型为训练完成的神经网络模型,如此,获取更具针对性的转换模型能够提升转换效率和准确率。Understandably, a conversion model corresponding to the recognition result is determined according to the recognition result, and the conversion model includes a text conversion model, a speech conversion model, and an image conversion model, that is, if the recognition result is text, the text is obtained. Conversion model, if the recognition result is a voice, then obtain a voice conversion model, if the recognition result is an image, then obtain an image conversion model, and the conversion model is a neural network model that has been trained. Targeted conversion models can improve conversion efficiency and accuracy.

S104,将所述患者输入信息输入所述转换模型,所述转换模型将所述患者输入信息进行文本转换,输出转换结果。S104: Input the patient input information into the conversion model, and the conversion model performs text conversion on the patient input information, and outputs a conversion result.

可理解地,将所述患者输入信息输入至与所述识别结果对应的转换模型,通过所述转换模型进行转换成所述转换结果。Understandably, the patient input information is input into a conversion model corresponding to the recognition result, and the conversion model is used for conversion into the conversion result.

S105,将所述转换结果确定为所述患者信息。S105: Determine the conversion result as the patient information.

如此,通过对患者输入的所述患者输入信息进行文本、语音和图像的识别,根据不同的识别结果对应不同的转换模型,从所述患者输入信息中获取出所述患者信息,提供了多种输入渠道给患者,提升了患者体验。In this way, by performing text, voice and image recognition on the patient input information input by the patient, and corresponding to different conversion models according to different recognition results, the patient information is obtained from the patient input information, providing a variety of The input channel is given to the patient, which improves the patient experience.

S20,通过最大词匹配法,在所述患者信息中获取症状信息。S20, obtain symptom information from the patient information through a maximum word matching method.

可理解地,通过所述最大词匹配法,对所述患者信息进行拆分多个单文本,对多个所述单文本进行最大词化,即将所述单文本与对应前及后的单文本进行组合,生成前置文本、后置文本以及全置文本,获取所述单文本、所述前置文本、所述后置文本、所述全置文本与预设的症状词库中的文本的匹配值最高的文本,将匹配值最高的所述文本确定为与所述单文本对应的最大词组,对所有所述最大词组进行清零处理,即将匹配值为零的最大词组进行去除,将清零处理后的所有所述最大词组确定为所述症状信息。Understandably, through the maximum word matching method, the patient information is split into multiple single texts, and the multiple single texts are maximalized, that is, the single text and the corresponding single text before and after. Combining, generating pre-text, post-text and full-text, and obtaining the relationship between the single text, the pre-text, the post-text, the full-text and the text in the preset symptom thesaurus. For the text with the highest matching value, the text with the highest matching value is determined as the largest phrase corresponding to the single text, and all the largest phrases are cleared, that is, the largest phrase with zero matching value is removed, and the clearing process is performed. All the largest phrases after zero processing are determined as the symptom information.

在一实施例中,如图5所示,所述步骤S20中,即所述通过最大词匹配法,在所述患者信息中获取症状信息,包括:In one embodiment, as shown in FIG. 5 , in the step S20, that is, the maximum word matching method is used to obtain symptom information from the patient information, including:

S201,获取预设的症状词库;所述症状词库包括多个症状词。S201: Acquire a preset symptom thesaurus; the symptom thesaurus includes a plurality of symptom words.

可理解地,所述症状词库为存储所有症状词的仓库,即所述症状词库中包含了多个症状词,所述症状词库可以根据需求进行添加所述症状词,而且所述症状词库可以随着时间的变化进行添加,所述症状词为给予一种症状命名的词语,例如:所述症状词库可以在symcat公开数据中筛选出常见症状的症状词。Understandably, the symptom thesaurus is a warehouse that stores all symptom words, that is, the symptom thesaurus contains a plurality of symptom words, and the symptom words can be added to the symptom thesaurus according to requirements, and the symptoms The thesaurus can be added over time, and the symptom word is a word that gives a symptom a name. For example, the symptom word database can filter out the symptom words of common symptoms in the public data of symcat.

S202,将所述患者信息进行拆分成多个单文本。S202, splitting the patient information into multiple single texts.

可理解地,所述单文本可以为单个文字,亦可以为单个词组,例如:患者信息为“昨天到今天一直咳嗽”,则拆分为“昨天”、“到”、“今天”、“一直”、“咳嗽”。Understandably, the single text can be a single word or a single phrase, for example, if the patient information is "coughing from yesterday to today", it can be divided into "yesterday", "to", "today", "always". ","cough".

S203,获取所述单文本的开始位置和结束位置,将所述开始位置的前一个单文本与所述单文本进行组合生成前置文本,将所述结束位置的后一个单文本与所述单文本进行组合生成后置文本,将所述开始位置的前一个单文本、所述单文本和所述结束位置的后一个单文本进行组合生成全置文本。S203: Obtain the start position and the end position of the single text, combine the previous single text at the start position with the single text to generate pre-text, and combine the last single text at the end position with the single text The text is combined to generate the post text, and the previous single text at the start position, the single text and the next single text at the end position are combined to generate the full text.

可理解地,所述开始位置可以根据需求进行设定,比如所述开始位置可以为所述单文本在所述患者信息中从左到右的第一位开始数位数后可以抵达该单文本,则该位数为所述单文本的所述开始位置;所述结束位置也可以根据需求进行设定,比如所述结束位置可以为所述开始位置后增加所述单文本的位数获得;将所述开始位置的前一个单文本与所述单文本进行组合生成前置文本,将所述结束位置的后一个单文本与所述单文本进行组合生成后置文本,将所述开始位置的前一个单文本、所述单文本和所述结束位置的后一个单文本进行组合生成全置文本,例如:所述患者信息为上腹痛三天,拆分后的多个单文本为上、腹痛、三天,以腹痛作为单文本,则前置文本为上腹痛,后置文本为腹痛三天,全置文本为上腹痛三天。Understandably, the starting position can be set according to requirements, for example, the starting position can be that the single text can reach the single text after the first digit from the left to the right in the patient information starts. Then the number of digits is the start position of the single text; the end position can also be set according to requirements, for example, the end position can be obtained by adding the number of digits of the single text after the start position; the The previous single text at the start position is combined with the single text to generate pre-text, the next single text at the end position is combined with the single text to generate post-text, and the previous single text at the start position is combined. A single text, the single text and the last single text at the end position are combined to generate a full text, for example: the patient information is epigastric pain for three days, and the split multiple single texts are upper, abdominal pain, Three days, with abdominal pain as a single text, the pre-text text is epigastric pain, the back text is abdominal pain three days, and the full text is epigastric pain three days.

S204,获取所述单文本、所述前置文本、所述后置文本和所述全置文本中与所述症状词库中的文本的匹配值,并将匹配值最高的所述文本确定为与所述单文本对应的最大词组。S204: Obtain the matching value of the single text, the pre-text, the post-text and the full text with the text in the symptom lexicon, and determine the text with the highest matching value as The largest phrase corresponding to the single text.

可理解地,所述匹配值为匹配一致的文字的个数值,将所述单文本与所述症状词库中的文本进行查找及匹配,获得与所述单文本对应的匹配值,将所述前置文本与所述症状词库中的文本进行查找及匹配,获得与所述前置文本对应的匹配值,将所述后置文本与所述症状词库中的文本进行查找及匹配,获得与所述后置文本对应的匹配值,将全置文本与所述症状词库中的文本进行查找及匹配,获得与所述全置文本对应的匹配值,例如:上述例子中,腹痛对应的匹配值为2,上腹痛对应的匹配值为3,腹痛三天对应的匹配值为0,上腹痛三天对应的匹配值为0。Understandably, the matching value is the number of words that match the same text, search and match the single text with the text in the symptom lexicon, obtain a matching value corresponding to the single text, and use the The pre-text is searched and matched with the text in the symptom lexicon to obtain a matching value corresponding to the pre-text, and the post-text is searched and matched with the text in the symptom lexicon to obtain For the matching value corresponding to the post text, search and match the full text with the text in the symptom lexicon to obtain the matching value corresponding to the full text, for example: in the above example, the corresponding The matching value is 2, the matching value corresponding to epigastric pain is 3, the matching value corresponding to three days of abdominal pain is 0, and the matching value corresponding to three days of abdominal pain is 0.

S205,将所述患者信息中的各所述单文本对应的所有所述最大词组进行清零处理,将清零处理后的所有所述最大词组确定为所述症状信息。S205: Perform zero-clearing processing on all the largest phrases corresponding to each of the single texts in the patient information, and determine all the largest phrases after zero-clearing processing as the symptom information.

可理解地,将各所述单文本对应的所有所述最大词组中存在匹配值为零的所述最大词组进行去除,将去除后的所有所述最大词组确定为所述症状信息。Understandably, among all the largest phrases corresponding to each of the single texts, the largest phrases with a matching value of zero are removed, and all the removed largest phrases are determined as the symptom information.

如此,通过最大词匹配法能够确保症状获取的准确性,提高了症状获取的正确性和准确性。In this way, the maximum word matching method can ensure the accuracy of symptom acquisition, and improve the correctness and accuracy of symptom acquisition.

S30,将所述症状信息输入组合预测模型,通过所述组合预测模型对所述症状信息进行预测处理,获取所述组合预测模型输出的第一症状科室集合。S30: Input the symptom information into a combined prediction model, perform prediction processing on the symptom information by using the combined prediction model, and obtain a first symptom department set output by the combined prediction model.

可理解地,所述组合预测模型为由训练完成的症状预测概率模型和训练完成的科室深度卷积神经网络模型组合构成的模型,所述症状预测概率模型为将第一症状样本输入贝叶斯概率模型进行训练获得,所述科室深度卷积神经网络模型为将第二症状样本输入深度神经网络模型进行训练获得,所述第一症状科室集合为由所述症状预测概率模型输出的预测概率分布结果与所述科室深度卷积神经网络模型输出的科室预测分布结果进行拼接以及归一化处理后获得,所述预测概率分布结果所有所述症状词对应的概率值的分布图,所述科室预测分布结果为所有科室对应的概率值的分布图,所述科室为根据需求进行设置的科室名称,比如外科、内科、骨科等等,所述预测概率分布为一组数据,所述科室预测分布结果也为一组数据,所述第一症状科室集合为所述预测概率分布和所述科室预测分布结果处理后的一组数组。Understandably, the combined prediction model is a model composed of a combination of a trained symptom prediction probability model and a trained department deep convolutional neural network model, and the symptom prediction probability model is to input the first symptom sample into the Bayesian model. The probability model is trained and obtained, the department deep convolutional neural network model is obtained by inputting the second symptom sample into the deep neural network model for training, and the first symptom department set is the predicted probability distribution output by the symptom prediction probability model The result is obtained by splicing and normalizing the department prediction distribution results output by the department deep convolutional neural network model. The predicted probability distribution results are the distribution map of the probability values corresponding to all the symptom words, and the department prediction The distribution result is the distribution map of the probability values corresponding to all departments. The department is the department name set according to the needs, such as surgery, internal medicine, orthopedics, etc. The predicted probability distribution is a set of data, and the department predicts the distribution result. It is also a set of data, and the first symptom department set is a set of arrays after the prediction probability distribution and the department prediction distribution result are processed.

在一实施例中,如图6所示,所述步骤S30中,即所述将所述症状信息输入组合预测模型,通过所述组合预测模型对所述症状信息进行预测处理,获取所述组合预测模型输出的第一症状科室集合,包括:In one embodiment, as shown in FIG. 6 , in step S30, that is, inputting the symptom information into a combination prediction model, performing prediction processing on the symptom information through the combination prediction model, and obtaining the combination The first symptom department set output by the prediction model, including:

S301,将所述症状信息输入训练完成的症状预测概率模型,通过所述症状预测概率模型对所述症状信息进行预测,获取所述症状预测概率模型输出的预测概率分布结果;其中,所述预测概率分布结果表征了在症状集合中与所述症状信息相关的症状的匹配概率分布。S301: Input the symptom information into a trained symptom prediction probability model, predict the symptom information by using the symptom prediction probability model, and obtain a prediction probability distribution result output by the symptom prediction probability model; wherein the prediction The probability distribution result characterizes a matching probability distribution of symptoms in the symptom set associated with the symptom information.

可理解地,所述症状预测概率模型为训练完成的贝叶斯概率模型,通过将所述症状信息输入所述症状预测概率模型进行先验分布处理,可以获得所述预测概率分布结果,所述预测概率分布结果为在所述症状集合中与所述症状信息相关的症状的匹配概率分布,所述预测概率分布结果为一组由0%至100%范围的百分比值组成的数组,所述症状集合为所有症状词的总集合。Understandably, the symptom prediction probability model is a trained Bayesian probability model, and by inputting the symptom information into the symptom prediction probability model for prior distribution processing, the prediction probability distribution result can be obtained, and the A predicted probability distribution result is a matching probability distribution of symptoms in the symptom set associated with the symptom information, the predicted probability distribution result is an array of percentage values ranging from 0% to 100%, the symptom The set is the total set of all symptom words.

在一实施例中,如图7所示,所述步骤S301之前,即所述将所述症状信息输入训练完成的症状预测概率模型之前,包括:In one embodiment, as shown in FIG. 7 , before the step S301, that is, before the symptom information is input into the trained symptom prediction probability model, it includes:

S3011,获取第一症状样本;其中,每一个所述第一症状样本均与一个症状类别标签关联。S3011: Obtain a first symptom sample; wherein each of the first symptom samples is associated with a symptom category label.

其中,所述第一症状样本为收集的症状信息,每个所述第一症状样本都经过人工确定而关联一个症状类别标签,即对每个所述第一症状样本打标签,所述症状类别标签为所述症状集合中的症状词。The first symptom sample is collected symptom information, and each first symptom sample is manually determined and associated with a symptom category label, that is, each first symptom sample is labeled, and the symptom category Labels are symptom words in the symptom set.

S3012,将所述第一症状样本输入包含第一初始参数的贝叶斯概率模型。S3012: Input the first symptom sample into a Bayesian probability model including a first initial parameter.

可理解地,所述贝叶斯概率模型为基于贝叶斯算法构成的神经网络结构的模型,所述贝叶斯概率模型中包含所述第一初始参数,其中,所述第一初始参数可以根据需求进行设定,比如设置所述第一初始参数为默认一个预设的值、或者随机的参数值等等。Understandably, the Bayesian probability model is a model based on a neural network structure formed by a Bayesian algorithm, and the Bayesian probability model includes the first initial parameter, wherein the first initial parameter may be Set according to requirements, for example, set the first initial parameter to a default value by default, or a random parameter value, and so on.

S3013,通过所述贝叶斯概率模型对所述第一症状样本进行先验分布处理。S3013: Perform prior distribution processing on the first symptom sample by using the Bayesian probability model.

可理解地,所述先验分布处理为所述贝叶斯算法中的概率分布处理,对所述第一症状样本进行所述先验分布处理。Understandably, the prior distribution processing is the probability distribution processing in the Bayesian algorithm, and the prior distribution processing is performed on the first symptom sample.

S3014,获取所述贝叶斯概率模型输出的分布结果,并根据所述分布结果和所述症状类别标签的匹配程度确定第一损失值。S3014: Obtain the distribution result output by the Bayesian probability model, and determine a first loss value according to the degree of matching between the distribution result and the symptom category label.

可理解地,根据所述贝叶斯概率模型进行先验分布处理后的概率分布,所述概率分布为所述症状集合中的所有所述症状词对应的概率值的分布图,获取得到所述贝叶斯概率模型的分布结果,所述分布结果为所有所述症状词对应的概率值的分布图,获取所述分布结果中的所有概率值对应的所述症状词,通过所有所述症状词对应的概率值与所述第一症状样本的症状类别标签进行比对,确定出与之相对应的损失值,即通过所述贝叶斯概率模型的损失函数计算出所述第一损失值。S3015,在所述第一损失值达到预设的第一收敛条件时,将收敛之后的所述贝叶斯概率模型记录为训练完成的症状预测概率模型。Understandably, according to the probability distribution processed by the prior distribution according to the Bayesian probability model, the probability distribution is a distribution diagram of the probability values corresponding to all the symptom words in the symptom set, and the obtained The distribution result of the Bayesian probability model, the distribution result is the distribution map of the probability values corresponding to all the symptom words, and the symptom words corresponding to all the probability values in the distribution result are obtained. The corresponding probability value is compared with the symptom category label of the first symptom sample to determine the corresponding loss value, that is, the first loss value is calculated through the loss function of the Bayesian probability model. S3015, when the first loss value reaches a preset first convergence condition, record the Bayesian probability model after convergence as a trained symptom prediction probability model.

其中,所述预设的第一收敛条件可以为所述损失值经过了500次计算后值为很小且不会再下降的条件,即在所述损失值经过500次计算后值为很小且不会再下降时,停止训练,并将收敛之后的所述贝叶斯概率模型记录为训练完成的症状预测概率模型;所述预设的第一收敛条件也可以为所述损失值小于设定阈值的条件,即在所述损失值小于设定阈值时,停止训练,并将收敛之后的所述贝叶斯概率模型记录为训练完成的症状预测概率模型。The preset first convergence condition may be a condition that the loss value is small after 500 calculations and will not decrease again, that is, the loss value is small after 500 calculations And when it does not drop any more, stop training, and record the Bayesian probability model after convergence as the symptom prediction probability model after training; the preset first convergence condition can also be that the loss value is less than the set value. The condition of setting a threshold value, that is, when the loss value is less than the set threshold value, stop training, and record the Bayesian probability model after convergence as the symptom prediction probability model after training.

如此,通过输入所述第一症状样本对所述贝叶斯概率模型进行训练,能够提升分布结果的准确率和可靠性。In this way, by inputting the first symptom sample to train the Bayesian probability model, the accuracy and reliability of the distribution result can be improved.

在一实施例中,所述步骤S3014之后,即所述获取所述贝叶斯概率模型输出的分布结果,并根据所述分布结果和所述症状类别标签的匹配程度确定损失值之后,包括:In one embodiment, after step S3014, that is, after obtaining the distribution result output by the Bayesian probability model, and determining the loss value according to the degree of matching between the distribution result and the symptom category label, the method includes:

S3016,在所述第一损失值未达到预设的第一收敛条件时,迭代更新所述贝叶斯概率模型的第一初始参数,直至所述第一损失值达到所述预设的第一收敛条件时,将收敛之后的所述贝叶斯概率模型记录为训练完成的症状预测概率模型。S3016, when the first loss value does not reach the preset first convergence condition, iteratively update the first initial parameter of the Bayesian probability model until the first loss value reaches the preset first When the convergence conditions are met, the Bayesian probability model after convergence is recorded as the symptom prediction probability model after training.

如此,在所述第一损失值未达到预设的第一收敛条件时,不断更新迭代所述贝叶斯概率模型的第一初始参数,可以不断向准确的分布结果靠拢,让分布结果的准确率越来越高。In this way, when the first loss value does not reach the preset first convergence condition, the first initial parameter of the iterative Bayesian probability model is continuously updated, so as to continuously move closer to the accurate distribution result and make the distribution result more accurate. rate is getting higher.

S302,将所述症状信息输入训练完成的科室深度卷积神经网络模型,通过所述科室深度卷积神经网络模型对所述症状信息进行文字特征提取,获取所述科室深度卷积神经网络模型输出的科室预测分布结果;其中,所述科室预测分布结果表征了在科室集合中与所述症状信息相关的科室的匹配概率分布。S302, input the symptom information into the trained department deep convolutional neural network model, perform text feature extraction on the symptom information through the department deep convolutional neural network model, and obtain the department deep convolutional neural network model output The department prediction distribution result; wherein the department prediction distribution result represents the matching probability distribution of the departments related to the symptom information in the department set.

可理解地,所述科室深度卷积神经网络模型为训练完成的深度神经网络模型,通过将所述症状信息输入所述深度卷积神经网络模型进行文字特征提取,可以获得所述科室预测分布结果,所述科室预测分布结果为在所述科室集合中与所述症状信息相关的科室的匹配概率分布,所述科室集合为所有医院的科室的总集合,所述科室预测分布结果为一组由0%至100%范围的百分比值组成的数组。Understandably, the department deep convolutional neural network model is a trained deep neural network model, and by inputting the symptom information into the deep convolutional neural network model for text feature extraction, the predicted distribution result of the department can be obtained. , the department prediction distribution result is the matching probability distribution of the departments related to the symptom information in the department set, the department set is the total set of departments in all hospitals, and the department prediction distribution result is a group consisting of An array of percentage values in the range 0% to 100%.

在一实施例中,如图8所示,所述步骤S302之前,即所述将所述症状信息输入训练完成的科室深度卷积神经网络模型之前,包括:In one embodiment, as shown in FIG. 8 , before the step S302, that is, before the input of the symptom information into the trained department deep convolutional neural network model, the method includes:

S3021,获取第二症状样本;其中,每一个所述第二症状样本均与一个科室标签关联。S3021: Obtain a second symptom sample; wherein each of the second symptom samples is associated with a department label.

其中,所述第二症状样本为收集的症状信息,每个所述第二症状样本都经过人工确定而关联一个科室标签,即对每个所述第二症状样本打标签,所述科室标签为所有所述科室对应的名称。The second symptom sample is collected symptom information, and each second symptom sample is manually determined and associated with a department label, that is, each second symptom sample is labeled, and the department label is All the corresponding names of the departments mentioned.

S3022,将所述第二症状样本输入包含第二初始参数的深度神经网络模型。S3022: Input the second symptom sample into a deep neural network model including second initial parameters.

可理解地,所述深度神经网络模型为基于多分类识别的神经网络结构的模型,所述深度神经网络模型的网络结构可以根据需求进行设定,比如神经网络结构可以选择为VGG、GoogLeNet等等,所述深度神经网络模型中包含所述第二初始参数,其中,所述第二初始参数可以根据需求进行设定,比如设置所述第二初始参数为默认一个预设的值、或者随机的参数值等等。Understandably, the deep neural network model is a model based on a multi-classified neural network structure, and the network structure of the deep neural network model can be set according to requirements, for example, the neural network structure can be selected as VGG, GoogLeNet, etc. , the deep neural network model includes the second initial parameter, where the second initial parameter can be set according to requirements, for example, setting the second initial parameter to a default preset value, or a random parameter values, etc.

S3023,通过所述深度神经网络模型提取所述症状样本中的文字特征。S3023, extracting text features in the symptom samples by using the deep neural network model.

可理解地,所述文字特征为将文本数据转化成特征向量,比较常用的提取文字特征的方法为词袋法提取,根据出现的频率获取该文字对应的特征向量。Understandably, the text feature is to convert text data into a feature vector, and a commonly used method for extracting text features is the bag-of-words extraction, and the feature vector corresponding to the text is obtained according to the frequency of occurrence.

S3024,获取所述深度神经网络模型根据所述文字特征输出的识别结果,并根据所述识别结果和所述科室标签的匹配程度确定第二损失值。S3024: Obtain the recognition result output by the deep neural network model according to the text feature, and determine a second loss value according to the matching degree between the recognition result and the department label.

可理解地,根据所述深度神经网络模型提取的所述文字特征,获取得到所述深度神经网络模型的识别结果,所述识别结果为所有所述科室对应的概率值的分布图,获取所述识别结果中的所有概率值,通过所有所述科室对应的概率值与所述第二症状样本的科室标签进行比对,确定出与之相对应的损失值,即通过所述深度神经网络模型的损失函数计算出所述第二损失值。Understandably, according to the text features extracted by the deep neural network model, the recognition result of the deep neural network model is obtained, and the recognition result is the distribution map of the probability values corresponding to all the departments, and the For all probability values in the identification results, the probability values corresponding to all the departments are compared with the department labels of the second symptom samples, and the corresponding loss values are determined, that is, through the deep neural network model. A loss function calculates the second loss value.

S3025,在所述第二损失值达到预设的第二收敛条件时,将收敛之后的所述深度神经网络模型记录为训练完成的科室深度卷积神经网络模型。S3025, when the second loss value reaches a preset second convergence condition, record the deep neural network model after convergence as a trained department deep convolutional neural network model.

其中,所述预设的第二收敛条件可以为所述第二损失值经过了5000次计算后值为很小且不会再下降的条件,即在所述第二损失值经过5000次计算后值为很小且不会再下降时,停止训练,并将收敛之后的所述深度神经网络模型记录为训练完成的科室深度卷积神经网络模型;所述预设的第二收敛条件也可以为所述第二损失值小于设定阈值的条件,即在所述第二损失值小于设定阈值时,停止训练,并收敛之后的所述深度神经网络模型记录为训练完成的科室深度卷积神经网络模型。The preset second convergence condition may be a condition that the second loss value is small and will not decrease after 5,000 calculations, that is, after the second loss is calculated 5,000 times When the value is very small and will not drop any more, stop training, and record the deep neural network model after convergence as the department deep convolutional neural network model after training; the preset second convergence condition can also be The condition that the second loss value is less than the set threshold, that is, when the second loss value is less than the set threshold, the training is stopped, and the deep neural network model after convergence is recorded as the department deep convolutional neural network after training. network model.

如此,通过根据所述训练图像样本中的证件类型标签值,并训练所述初始神经网络模型,能够通过提取纹理特征进行识别并提升识别结果的准确率和可靠性。In this way, by training the initial neural network model according to the document type label value in the training image sample, it is possible to perform recognition by extracting texture features and improve the accuracy and reliability of the recognition result.

在一实施例中,所述步骤S3024之后,包括:In one embodiment, after step S3024, it includes:

S3026,在所述第二损失值未达到预设的第二收敛条件时,迭代更新所述深度神经网络模型的第二初始参数,直至所述第二损失值达到所述预设的第二收敛条件时,将收敛之后的所述深度神经网络模型记录为训练完成的科室深度卷积神经网络模型。S3026, when the second loss value does not reach a preset second convergence condition, iteratively update a second initial parameter of the deep neural network model until the second loss value reaches the preset second convergence condition When conditions are met, the deep neural network model after convergence is recorded as the department deep convolutional neural network model after training.

如此,在所述第二损失值未达到预设的第二收敛条件时,不断更新迭代深度神经网络模型的第二初始参数,可以不断向准确的识别结果靠拢,让识别结果的准确率越来越高。In this way, when the second loss value does not reach the preset second convergence condition, the second initial parameter of the iterative deep neural network model is continuously updated, which can continuously move closer to the accurate recognition result, so that the accuracy of the recognition result becomes more and more accurate. higher.

S303,将所述预测概率分布结果与所述科室预测分布结果进行拼接以及归一化处理,得到所述第一症状科室集合。S303, splicing and normalizing the predicted probability distribution result and the predicted distribution result of the department to obtain the first symptom department set.

可理解地,将所述预测概率分布结果与所述科室预测分布结果进行拼接,即将所述预测概率分布结果对应的数组与所述科室预测分布结果对应的数组进行拼接将得到与所述动作空间总集同维度的拼接数组,对所述拼接数组进行归一化处理,即将所述拼接数组中的大于或等于预设的百分比阈值的百分比值归一化为1,将所述拼接数组中的小于所述预设的百分比阈值的百分比值归一化为0,将归一化后的所述拼接数组确定为所述第一症状科室集合。Understandably, splicing the predicted probability distribution result with the predicted distribution result of the department, that is, splicing the array corresponding to the predicted probability distribution result with the array corresponding to the predicted distribution result of the department will obtain the result of the action space. The splicing array of the same dimension is collected, and the splicing array is normalized, that is, the percentage value in the splicing array that is greater than or equal to the preset percentage threshold is normalized to 1, and the percentage value in the splicing array is normalized to 1. The percentage value smaller than the preset percentage threshold is normalized to 0, and the normalized splicing array is determined as the first symptom department set.

如此,通过所述症状预测概率模型对所述症状信息进行预测,获得与所述症状信息相关的症状的匹配概率分布的所述预测概率分布结果,以及通过所述科室深度度卷积神经网络模型对所述症状信息进行预测,获得与所述症状信息相关的科室的匹配概率分布的所述科室预测分布结果,再将所述预测概率分布结果和所述科室预测分布结果进行拼接和归一化处理,得到所述第一症状科室集合,实现了对所述症状信息进行合理的预测,为所述动作空间总集提供了激活因子。In this way, the symptom information is predicted by the symptom prediction probability model, the predicted probability distribution result of the matching probability distribution of the symptoms related to the symptom information is obtained, and the deep convolutional neural network model of the department is used Predict the symptom information, obtain the department prediction distribution result of the matching probability distribution of the department related to the symptom information, and then splicing and normalizing the predicted probability distribution result and the department prediction distribution result After processing, the first symptom department set is obtained, which realizes reasonable prediction of the symptom information, and provides an activation factor for the action space total set.

S40,将所述症状信息输入强化学习分诊模型,获取所述强化学习分诊模型执行第一动作后输出的第一分诊结果;其中,所述第一动作为所述强化学习分诊模型对输入的所述症状信息进行分析处理之后自所述第一动作空间集合中选取,所述第一动作空间集合为预设的动作空间总集被所述第一症状科室集合激活后输出;所述第一分诊结果包括第一症状结果和第一状态结果。S40: Input the symptom information into a reinforcement learning triage model, and obtain a first triage result output by the reinforcement learning triage model after executing a first action; wherein the first action is the reinforcement learning triage model After analyzing and processing the input symptom information, it is selected from the first action space set, and the first action space set is output after the preset action space set is activated by the first symptom department set; The first triage result includes a first symptom result and a first state result.

可理解地,所述强化学习分诊模型可以根据需求进行设置学习方法,作为优选,所述强化学习分诊模型设置为DQN学习方法,将所述症状信息作为所述强化学习分诊模型的Agent(代理者),所述强化学习分诊模型对输入的所述症状信息进行指导,自所述第一动作空间集合中选取出第一动作,所述第一动作为将对所述症状信息执行的动作,所述动作空间总集为含有所有动作的集合,所述动作空间总集为一组数组,其中,所述动作空间总集与所述第一症状科室集合的数组维度相同,所述动作空间总集被所述第一症状科室集合激活处理后输出所述第一动作空间集合,所述激活处理为将所述动作空间总集与所述第一症状科室集合按照激活原则方式进行匹配获得,将所述激活原则方式为两数组一一对应的数组内容进行匹配保留或删除,即所述动作空间总集的数组内容根据所述第一症状科室集合的数组中对应的值进行判断出保留或删除,若所述第一症状科室集合的数值的值为1,则与所述症状科室集合的数值对应的所述动作空间总集中的数组内容进行保留,若所述第一症状科室集合的数值的值为0,则与所述症状科室集合的数值对应的所述动作空间总集中的数组内容进行删除,最终获得的所述第一动作空间集合,即为预设的动作空间总集被所述第一症状科室集合激活后获得,所述第一动作空间集合提供了所有指导的动作的集合,所述强化学习分诊模型通过对所述症状信息执行所述第一动作之后输出的所述第一分诊结果。Understandably, the reinforcement learning triage model can be set as a learning method according to requirements. Preferably, the reinforcement learning triage model is set to the DQN learning method, and the symptom information is used as the Agent of the reinforcement learning triage model. (agent), the reinforcement learning triage model guides the input symptom information, selects a first action from the first action space set, and the first action is to execute the symptom information The action space collection is a collection containing all actions, and the action space collection is a set of arrays, wherein the action space collection is the same as the array dimension of the first symptom department collection, and the After the action space set is activated by the first symptom department set, the first action space set is output, and the activation process is to match the action space set and the first symptom department set according to the activation principle. Obtain, the activation principle mode is to match and retain or delete the array contents corresponding to two arrays one-to-one, that is, the array contents of the action space total set are judged according to the corresponding value in the array of the first symptom department set. Retain or delete, if the value of the first symptom department set is 1, then the contents of the array in the action space total set corresponding to the value of the symptom department set will be retained, if the first symptom department set If the value is 0, the contents of the array in the action space set corresponding to the value of the symptom department set are deleted, and the first action space set finally obtained is the preset action space set Obtained after being activated by the first symptom department set, the first action space set provides a set of all guided actions, and the reinforcement learning triage model outputs the output after performing the first action on the symptom information. The first triage result.

如此,通过所述第一症状科室集合对所述动作空间总集进行激活输出所述第一动作空间集合,实现了对所述动作空间总集进行降维处理后作为所述强化学习分诊模型中的所述第一动作空间集合,可以提升所述强化学习分诊模型的学习效果,提升了所述强化学习分诊模型的准确率。In this way, the first action space set is activated by the first symptom department set to output the first action space set, so that the dimensionality reduction process of the action space set is realized as the reinforcement learning triage model The first action space set in can improve the learning effect of the reinforcement learning triage model, and improve the accuracy of the reinforcement learning triage model.

S50,在所述第一状态结果为第一状态时,将所述第一分诊结果中的所述第一症状结果确定为最终症状结果;所述最终症状结果为患者就诊的科室。S50, when the first state result is the first state, determine the first symptom result in the first triage result as the final symptom result; the final symptom result is the department where the patient seeks a doctor.

可理解地,所述第一状态可以设置为终止状态,即与所述强化学习分诊模型交互对话后达到了最终状态,在所述第一状态结果为所述第一状态时,将所述第一症状结果确定为最终症状结果,所述症状结果就是患者需要就诊的科室。Understandably, the first state can be set as a terminal state, that is, the final state is reached after the interactive dialogue with the reinforcement learning triage model, and when the result of the first state is the first state, the The first symptom result is determined as the final symptom result, and the symptom result is the department to which the patient needs to see a doctor.

本发明通过最大词匹配法从所述患者信息中获取准确的症状信息,将所述症状信息输入所述组合预测模型(由训练完成的症状预测概率模型和训练完成的科室深度卷积神经网络模型组合构成的模型),获取所述第一症状科室集合,通过所述第一症状科室集合对所述动作空间总集进行激活输出所述第一动作空间集合,实现了对所述动作空间总集进行降维处理后作为所述强化学习分诊模型中的所述第一动作空间集合(可以提升所述强化学习分诊模型的学习效果,提升了所述强化学习分诊模型的准确率),再通过将所述症状信息输入所述强化学习分诊模型,获取执行所述第一动作(对症状信息分析处理后从所述第一动作空间集合中选取)后输出的所述第一分诊结果,若所述分诊结果中的第一状态结果为第一状态(终止状态)时,将所述分诊结果中的第一症状结果确定为最终症状结果(患者就诊的科室)。In the present invention, accurate symptom information is obtained from the patient information through the maximum word matching method, and the symptom information is input into the combined prediction model (a symptom prediction probability model completed by training and a department deep convolutional neural network model completed by training). The model composed of combination), obtain the first symptom department set, activate the action space set through the first symptom department set, output the first action space set, and realize the action space set After dimensionality reduction processing is performed, it is used as the first action space set in the reinforcement learning triage model (the learning effect of the reinforcement learning triage model can be improved, and the accuracy of the reinforcement learning triage model can be improved), Then, by inputting the symptom information into the reinforcement learning triage model, obtain the first triage output after executing the first action (selected from the first action space set after analyzing and processing the symptom information). As a result, if the first state result in the triage result is the first state (termination state), the first symptom result in the triage result is determined as the final symptom result (department where the patient visits).

如此,本发明实现了通过概率模型和深度神经网络模型进行降维的预处理,以及基于强化学习方法进行自动分诊,能够快速地、准确地确定患者需要就症的科室,节省了患者时间,提升了就诊准确率,提升了患者体验。In this way, the present invention realizes the preprocessing of dimensionality reduction through the probability model and the deep neural network model, and the automatic triage based on the reinforcement learning method, which can quickly and accurately determine the department where the patient needs to seek medical treatment, and saves the patient's time. Improve the accuracy of diagnosis and improve the patient experience.

在一实施例中,所述第一分诊结果还包括第一奖励结果;如图3所示,所述步骤S40之后,即所述获取所述强化学习分诊模型执行第一动作后输出的第一分诊结果之后,包括:In one embodiment, the first triage result further includes a first reward result; as shown in FIG. 3 , after the step S40, that is, the acquired result output after the reinforcement learning triage model performs the first action. After the first triage results, including:

S60,在所述第一状态结果为第二状态时,将所述第一分诊结果中的所述第一症状结果作为下一个症状信息,同时将所述第一奖励结果与所述下一个症状信息关联。S60, when the first state result is the second state, use the first symptom result in the first triage result as the next symptom information, and at the same time use the first reward result and the next Symptom information association.

可理解地,所述第二状态可以为非终止状态,即与所述强化学习分诊模型交互对话后未达到了最终状态,此时,需将所述第一症状结果作为下一次与所述强化学习分诊模型交互对话的输入,即将所述第一症状结果作为下一个症状信息,所述第一分诊结果还包括所述第一奖励结果,所述第一奖励结果为所述强化学习分诊模型通过执行所述第一动作后对所述第一动作给予的奖励值,所述奖励值可以每次赋予的值,亦可以为根据交互对话次数不断累计的值,通过所述奖励值可以提供给所述强化学习分诊模型向准确的就诊科室靠拢(奖励值最大化方向),将所述第一奖励结果与所述下一个症状信息关联。Understandably, the second state may be a non-terminal state, that is, the final state has not been reached after the interactive dialogue with the reinforcement learning triage model. The input of the interactive dialogue of the reinforcement learning triage model, that is, the first symptom result is used as the next symptom information, and the first triage result also includes the first reward result, and the first reward result is the reinforcement learning The reward value given to the first action by the triage model after performing the first action, the reward value can be the value given each time, or the value that is continuously accumulated according to the number of interactive dialogues, through the reward value The reinforcement learning triage model can be provided to move closer to the accurate diagnosis department (in the direction of maximizing reward value), and associate the first reward result with the next symptom information.

S70,将所述下一个症状信息输入所述组合预测模型,通过所述组合预测模型对所述症状信息进行预测处理,获取所述组合预测模型输出的第二症状科室集合。S70: Input the next symptom information into the combined prediction model, perform prediction processing on the symptom information by using the combined prediction model, and obtain a second symptom department set output by the combined prediction model.

可理解地,通过将所述下一个症状信息输入所述组合预测模型,得出所述第二症状科室集合,所述第二症状科室集合也为一组数组,所述第二症状科室集合与所述第一症状科室集合有相同的维数。Understandably, by inputting the next symptom information into the combined prediction model, the second symptom department set is obtained, the second symptom department set is also an array, and the second symptom department set is the same as The first symptom department sets have the same dimension.

S80,将所述下一个症状信息以及与所述下一个症状信息关联的所述第一奖励结果输入所述强化学习分诊模型,获取所述强化学习分诊模型执行第二动作后输出的第二分诊结果;其中,所述第二动作为所述强化学习分诊模型对输入的所述第一症状信息以及所述第一奖励结果进行分析处理之后自所述第二动作空间集合中选取,所述第二动作空间集合为所述动作空间总集被所述第二症状科室集合激活后输出;所述第二分诊结果包括第二症状结果和第二状态结果。S80: Input the next symptom information and the first reward result associated with the next symptom information into the reinforcement learning triage model, and obtain the first reward output after the reinforcement learning triage model performs the second action. Two triage results; wherein, the second action is that the reinforcement learning triage model analyzes and processes the input first symptom information and the first reward result and selects it from the second action space set , the second action space set is output after the action space total set is activated by the second symptom department set; the second triage result includes a second symptom result and a second state result.

可理解地,所述强化学习分诊模型对输入的所述下一个症状信息以及与所述下一个症状信息关联的所述第一奖励结果进行分析,从而对所述下一个症状信息进行指导,自所述第二动作空间集合中选取出第二动作,所述第二动作为将对所述症状信息执行的动作,其中,所述动作空间总集与所述第二症状科室集合的数组维度相同,所述动作空间总集被所述第二症状科室集合激活处理后输出所述第二动作空间集合,所述第二动作空间集合提供了所有指导的动作的集合,所述强化学习分诊模型通过对所述症状信息执行所述第二动作之后输出的所述第二分诊结果。Understandably, the reinforcement learning triage model analyzes the inputted next symptom information and the first reward result associated with the next symptom information, so as to guide the next symptom information, A second action is selected from the second action space set, and the second action is an action to be performed on the symptom information, wherein the array dimension of the action space set and the second symptom department set In the same way, the action space set is activated and processed by the second symptom department set, and the second action space set is output. The second action space set provides a set of all guided actions, and the reinforcement learning triage The model outputs the second triage result after performing the second action on the symptom information.

S90,在所述第二状态结果为第一状态时,将所述第二分诊结果中的所述第二症状结果确定为最终症状结果;所述最终症状结果为患者就诊的科室。S90, when the second state result is the first state, determine the second symptom result in the second triage result as the final symptom result; the final symptom result is the department where the patient seeks a doctor.

如此,通过强化学习分诊模型从交互对话中学习并指导最优策略的方向进行靠拢,在处于所述第二状态(非终止状态)时,所述强化学习分诊模型不断学习和交互对话,直到处于所述第一状态(终止状态),从而输出最终症状结果,提升了就诊准确率。In this way, the reinforcement learning triage model learns from the interactive dialogue and guides the direction of the optimal strategy to move closer, and when in the second state (non-terminal state), the reinforcement learning triage model continuously learns and interacts with dialogue, Until it is in the first state (termination state), the final symptom result is output, and the accuracy of medical treatment is improved.

在一实施例中,提供一种分诊数据处理装置,该分诊数据处理装置与上述实施例中分诊数据处理方法一一对应。如图9所示,该分诊数据处理装置包括接收模块11、获取模块12、预测模块13、激活模块14和输出模块15。In one embodiment, a triage data processing apparatus is provided, and the triage data processing apparatus is in one-to-one correspondence with the triage data processing method in the above embodiment. As shown in FIG. 9 , the triage data processing apparatus includes a receiving module 11 , an acquisition module 12 , a prediction module 13 , an activation module 14 and an output module 15 .

各功能模块详细说明如下:The detailed description of each functional module is as follows:

接收模块11,用于接收到分诊请求,获取患者信息;The receiving module 11 is used to receive a triage request and obtain patient information;

获取模块12,用于通过最大词匹配法,在所述患者信息中获取症状信息;an acquisition module 12 for acquiring symptom information in the patient information through a maximum word matching method;

预测模块13,用于将所述症状信息输入组合预测模型,通过所述组合预测模型对所述症状信息进行预测处理,获取所述组合预测模型输出的第一症状科室集合;A prediction module 13, configured to input the symptom information into a combined prediction model, perform prediction processing on the symptom information through the combined prediction model, and obtain the first symptom department set output by the combined prediction model;

激活模块14,用于将所述症状信息输入强化学习分诊模型,获取所述强化学习分诊模型执行第一动作后输出的第一分诊结果;其中,所述第一动作为所述强化学习分诊模型对输入的所述症状信息进行分析处理之后自所述第一动作空间集合中选取,所述第一动作空间集合为预设的动作空间总集被所述第一症状科室集合激活后输出;所述第一分诊结果包括第一症状结果和第一状态结果;The activation module 14 is configured to input the symptom information into the reinforcement learning triage model, and obtain the first triage result output after the reinforcement learning triage model performs the first action; wherein, the first action is the reinforcement The learning triage model analyzes and processes the input symptom information and selects it from the first action space set, and the first action space set is a preset action space set activated by the first symptom department set and then output; the first triage result includes a first symptom result and a first state result;

输出模块15,用于在所述第一状态结果为第一状态时,将所述第一分诊结果中的所述第一症状结果确定为最终症状结果;所述最终症状结果为患者就诊的科室。The output module 15 is configured to, when the first state result is the first state, determine the first symptom result in the first triage result as the final symptom result; the final symptom result is the result of the patient's consultation department.

在一实施例中,所述激活模块14包括:In one embodiment, the activation module 14 includes:

奖励单元,用于在所述第一状态结果为第二状态时,将所述第一分诊结果中的所述第一症状结果作为下一个症状信息,同时将所述第一奖励结果与所述下一个症状信息关联;The reward unit is configured to use the first symptom result in the first triage result as the next symptom information when the first state result is the second state, and at the same time combine the first reward result with all associated with the next symptom information;

输入单元,用于将所述下一个症状信息输入所述组合预测模型,通过所述组合预测模型对所述症状信息进行预测处理,获取所述组合预测模型输出的第二症状科室集合;an input unit, configured to input the next symptom information into the combined prediction model, perform prediction processing on the symptom information through the combined prediction model, and obtain a second symptom department set output by the combined prediction model;

激活单元,用于将所述下一个症状信息以及与所述下一个症状信息关联的所述第一奖励结果输入所述强化学习分诊模型,获取所述强化学习分诊模型执行第二动作后输出的第二分诊结果;其中,所述第二动作为所述强化学习分诊模型对输入的所述第一症状信息以及所述第一奖励结果进行分析处理之后自所述第二动作空间集合中选取,所述第二动作空间集合为所述动作空间总集被所述第二症状科室集合激活后输出;所述第二分诊结果包括第二症状结果和第二状态结果;An activation unit, configured to input the next symptom information and the first reward result associated with the next symptom information into the reinforcement learning triage model, and obtain after the reinforcement learning triage model performs the second action The output of the second triage result; wherein, the second action is that the reinforcement learning triage model analyzes and processes the input first symptom information and the first reward result from the second action space Selected from the set, the second action space set is output after the action space total set is activated by the second symptom department set; the second triage result includes the second symptom result and the second state result;

确定单元,用于在所述第二状态结果为第一状态时,将所述第二分诊结果中的所述第二症状结果确定为最终症状结果;所述最终症状结果为患者就诊的科室。A determination unit, configured to determine the second symptom result in the second triage result as the final symptom result when the second state result is the first state; the final symptom result is the department where the patient visits a doctor .

在一实施例中,所述接收模块11包括:In one embodiment, the receiving module 11 includes:

接收单元,用于接收到患者输入指令,获取患者输入信息;a receiving unit, configured to receive the patient input instruction and obtain the patient input information;

识别单元,用于将所述患者输入信息输入预设的预处理模型,所述预处理模型对所述患者输入信息进行识别,得到识别结果;其中所述识别结果包括文本、语音和图像;a recognition unit, configured to input the patient input information into a preset preprocessing model, and the preprocessing model recognizes the patient input information to obtain a recognition result; wherein the recognition result includes text, voice and image;

选取单元,用于获取与所述识别结果对应的转换模型;a selection unit for obtaining a conversion model corresponding to the recognition result;

转换单元,用于将所述患者输入信息输入所述转换模型,所述转换模型将所述患者输入信息进行文本转换,输出转换结果;a conversion unit, configured to input the patient input information into the conversion model, and the conversion model performs text conversion on the patient input information, and outputs a conversion result;

结果输出单元,用于将所述转换结果确定为所述患者信息。A result output unit, configured to determine the conversion result as the patient information.

在一实施例中,所述获取模块12包括:In one embodiment, the obtaining module 12 includes:

第一获取单元,用于获取预设的症状词库;所述症状词库包括多个症状词;a first obtaining unit, configured to obtain a preset symptom thesaurus; the symptom thesaurus includes a plurality of symptom words;

拆分单元,用于将所述患者信息进行拆分成多个单文本;a splitting unit for splitting the patient information into multiple single texts;

第二获取单元,用于获取所述单文本的开始位置和结束位置,将所述开始位置的前一个单文本与所述单文本进行组合生成前置文本,将所述结束位置的后一个单文本与所述单文本进行组合生成后置文本,将所述开始位置的前一个单文本、所述单文本和所述结束位置的后一个单文本进行组合生成全置文本;The second obtaining unit is configured to obtain the start position and the end position of the single text, combine the previous single text at the start position with the single text to generate the pre-text, and obtain the last single text at the end position. The text is combined with the single text to generate post-text, and the previous single text at the start position, the single text and the next single text at the end position are combined to generate a full text;

匹配单元,用于获取所述单文本、所述前置文本、所述后置文本和所述全置文本中与所述症状词库中的文本的匹配值,并将匹配值最高的所述文本确定为与所述单文本对应的最大词组;The matching unit is used to obtain the matching value of the text in the single text, the pre-text, the post-text and the full text with the text in the symptom lexicon, and select the one with the highest matching value. The text is determined as the largest phrase corresponding to the single text;

清零单元,用于将所述患者信息中的各所述单文本对应的所有所述最大词组进行清零处理,将清零处理后的所有所述最大词组确定为所述症状信息。A clearing unit, configured to perform clearing processing on all the largest phrases corresponding to each of the single texts in the patient information, and determine all the largest phrases after clearing processing as the symptom information.

在一实施例中,所述预测模块13包括:In one embodiment, the prediction module 13 includes:

第一模型单元,用于将所述症状信息输入训练完成的症状预测概率模型,通过所述症状预测概率模型对所述症状信息进行预测,获取所述症状预测概率模型输出的预测概率分布结果;其中,所述预测概率分布结果表征了在症状集合中与所述症状信息相关的症状的匹配概率分布;a first model unit, configured to input the symptom information into a trained symptom prediction probability model, predict the symptom information by using the symptom prediction probability model, and obtain a prediction probability distribution result output by the symptom prediction probability model; Wherein, the predicted probability distribution result represents a matching probability distribution of symptoms in the symptom set related to the symptom information;

第二模型单元,用于将所述症状信息输入训练完成的科室深度卷积神经网络模型,通过所述科室深度卷积神经网络模型对所述症状信息进行文字特征提取,获取所述科室深度卷积神经网络模型输出的科室预测分布结果;其中,所述科室预测分布结果表征了在科室集合中与所述症状信息相关的科室的匹配概率分布;The second model unit is used to input the symptom information into the department deep convolutional neural network model that has been trained, and perform text feature extraction on the symptom information through the department deep convolutional neural network model, and obtain the department deep volume The department prediction distribution result output by the cumulative neural network model; wherein, the department prediction distribution result represents the matching probability distribution of the department related to the symptom information in the department set;

拼接单元,用于将所述预测概率分布结果与所述科室预测分布结果进行拼接以及归一化处理,得到所述第一症状科室集合。A splicing unit, configured to splicing and normalizing the predicted probability distribution result and the predicted distribution result of the department to obtain the first symptom department set.

在一实施例中,所述第一模型单元包括:In one embodiment, the first model unit includes:

第一获取子单元,用于获取第一症状样本;其中,每一个所述第一症状样本均与一个症状类别标签关联;a first obtaining subunit, used to obtain a first symptom sample; wherein each of the first symptom samples is associated with a symptom category label;

第一输入子单元,用于将所述第一症状样本输入包含第一初始参数的贝叶斯概率模型;a first input subunit, configured to input the first symptom sample into a Bayesian probability model including a first initial parameter;

第一处理子单元,用于通过所述贝叶斯概率模型对所述第一症状样本进行先验分布处理;a first processing subunit, configured to perform prior distribution processing on the first symptom sample by using the Bayesian probability model;

第一输出子单元,用于获取所述贝叶斯概率模型输出的分布结果,并根据所述分布结果和所述症状类别标签的匹配程度确定第一损失值;a first output subunit, configured to obtain a distribution result output by the Bayesian probability model, and determine a first loss value according to the degree of matching between the distribution result and the symptom category label;

第一收敛子单元,用于在所述第一损失值达到预设的第一收敛条件时,将收敛之后的所述贝叶斯概率模型记录为训练完成的症状预测概率模型。A first convergence subunit, configured to record the Bayesian probability model after convergence as a trained symptom prediction probability model when the first loss value reaches a preset first convergence condition.

在一实施例中,所述第二模型单元包括:In one embodiment, the second model unit includes:

第二获取子单元,用于获取第二症状样本;其中,每一个所述第二症状样本均与一个科室标签关联;a second acquisition subunit, configured to acquire a second symptom sample; wherein each of the second symptom samples is associated with a department label;

第二输入子单元,用于将所述第二症状样本输入包含第二初始参数的深度神经网络模型;a second input subunit, configured to input the second symptom sample into the deep neural network model including the second initial parameter;

第二处理子单元,用于通过所述深度神经网络模型提取所述症状样本中的文字特征;a second processing subunit, configured to extract text features in the symptom samples through the deep neural network model;

第二输出子单元,用于获取所述深度神经网络模型根据所述文字特征输出的识别结果,并根据所述识别结果和所述科室标签的匹配程度确定第二损失值;The second output subunit is used to obtain the recognition result output by the deep neural network model according to the text feature, and determine the second loss value according to the degree of matching between the recognition result and the department label;

第二收敛子单元,用于在所述第二损失值达到预设的第二收敛条件时,将收敛之后的所述深度神经网络模型记录为训练完成的科室深度卷积神经网络模型。The second convergence subunit is configured to record the deep neural network model after convergence as a trained department deep convolutional neural network model when the second loss value reaches a preset second convergence condition.

关于分诊数据处理装置的具体限定可以参见上文中对于分诊数据处理方法的限定,在此不再赘述。上述分诊数据处理装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For the specific limitation of the triage data processing apparatus, reference may be made to the above limitation on the triage data processing method, which will not be repeated here. Each module in the above triage data processing device can be implemented in whole or in part by software, hardware and combinations thereof. The above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.

在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图10所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种分诊数据处理方法。In one embodiment, a computer device is provided, and the computer device may be a server, and its internal structure diagram may be as shown in FIG. 10 . The computer device includes a processor, memory, a network interface, and a database connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system, a computer program, and a database. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The network interface of the computer device is used to communicate with an external terminal through a network connection. The computer program implements a triage data processing method when executed by the processor.

在一个实施例中,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述实施例中分诊数据处理方法。In one embodiment, a computer device is provided, including a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor implements the triage data processing method in the above embodiment when the processor executes the computer program .

在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述实施例中分诊数据处理方法。In one embodiment, a computer-readable storage medium is provided, and a computer program is stored thereon, and when the computer program is executed by a processor, the method for processing triage data in the foregoing embodiment is implemented.

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage In the medium, when the computer program is executed, it may include the processes of the above-mentioned method embodiments. Wherein, any reference to memory, storage, database or other medium used in the various embodiments provided by the present invention may include non-volatile and/or volatile memory. Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory. Volatile memory may include random access memory (RAM) or external cache memory. By way of illustration and not limitation, RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。Those skilled in the art can clearly understand that, for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example. Module completion, that is, dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above.

以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。The above-mentioned embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it is still possible to implement the foregoing implementations. The technical solutions described in the examples are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention, and should be included in the within the protection scope of the present invention.

Claims (10)

1.一种分诊数据处理方法,其特征在于,包括:1. a triage data processing method, is characterized in that, comprises: 接收到分诊请求,获取患者信息;Receive a triage request and obtain patient information; 通过最大词匹配法,在所述患者信息中获取症状信息;Obtain symptom information from the patient information through a maximum word matching method; 将所述症状信息输入组合预测模型,通过所述组合预测模型对所述症状信息进行预测处理,获取所述组合预测模型输出的第一症状科室集合;Inputting the symptom information into a combined prediction model, performing prediction processing on the symptom information through the combined prediction model, and obtaining the first symptom department set output by the combined prediction model; 将所述症状信息输入强化学习分诊模型,获取所述强化学习分诊模型执行第一动作后输出的第一分诊结果;其中,所述第一动作为所述强化学习分诊模型对输入的所述症状信息进行分析处理之后自所述第一动作空间集合中选取,所述第一动作空间集合为预设的动作空间总集被所述第一症状科室集合激活后输出;所述第一分诊结果包括第一症状结果和第一状态结果;Input the symptom information into the reinforcement learning triage model, and obtain the first triage result output by the reinforcement learning triage model after executing the first action; wherein, the first action is the input of the reinforcement learning triage model to the triage model. After analyzing and processing the symptom information, it is selected from the first action space set, and the first action space set is a preset action space set that is activated after being activated by the first symptom department set; the first action space set is output; A triage result includes the first symptom result and the first state result; 在所述第一状态结果为第一状态时,将所述第一分诊结果中的所述第一症状结果确定为最终症状结果;所述最终症状结果为患者就诊的科室。When the first state result is the first state, the first symptom result in the first triage result is determined as the final symptom result; the final symptom result is the department where the patient visits. 2.如权利要求1所述的分诊数据处理方法,其特征在于,所述第一分诊结果还包括第一奖励结果;2. The triage data processing method according to claim 1, wherein the first triage result further comprises a first reward result; 即所述获取所述强化学习分诊模型执行第一动作后输出的第一分诊结果之后,包括:That is, after obtaining the first triage result output after the reinforcement learning triage model performs the first action, it includes: 在所述第一状态结果为第二状态时,将所述第一分诊结果中的所述第一症状结果作为下一个症状信息,同时将所述第一奖励结果与所述下一个症状信息关联;When the first state result is the second state, the first symptom result in the first triage result is used as the next symptom information, and the first reward result and the next symptom information are used simultaneously. association; 将所述下一个症状信息输入所述组合预测模型,通过所述组合预测模型对所述症状信息进行预测处理,获取所述组合预测模型输出的第二症状科室集合;Inputting the next symptom information into the combined prediction model, performing prediction processing on the symptom information through the combined prediction model, and obtaining the second symptom department set output by the combined prediction model; 将所述下一个症状信息以及与所述下一个症状信息关联的所述第一奖励结果输入所述强化学习分诊模型,获取所述强化学习分诊模型执行第二动作后输出的第二分诊结果;其中,所述第二动作为所述强化学习分诊模型对输入的所述第一症状信息以及所述第一奖励结果进行分析处理之后自所述第二动作空间集合中选取,所述第二动作空间集合为所述动作空间总集被所述第二症状科室集合激活后输出;所述第二分诊结果包括第二症状结果和第二状态结果;Input the next symptom information and the first reward result associated with the next symptom information into the reinforcement learning triage model, and obtain the second score output after the reinforcement learning triage model performs the second action. diagnosis result; wherein, the second action is that the reinforcement learning triage model analyzes and processes the input first symptom information and the first reward result and selects it from the second action space set. The second action space set is output after the action space total set is activated by the second symptom department set; the second triage result includes a second symptom result and a second state result; 在所述第二状态结果为第一状态时,将所述第二分诊结果中的所述第二症状结果确定为最终症状结果;所述最终症状结果为患者就诊的科室。When the second state result is the first state, the second symptom result in the second triage result is determined as the final symptom result; the final symptom result is the department where the patient visits. 3.如权利要求1所述的分诊数据处理方法,其特征在于,所述接收到分诊请求,获取患者信息之前,包括:3. triage data processing method as claimed in claim 1, is characterized in that, described receiving triage request, before obtaining patient information, comprising: 接收到患者输入指令,获取患者输入信息;Receive patient input instructions, and obtain patient input information; 将所述患者输入信息输入预设的预处理模型,所述预处理模型对所述患者输入信息进行识别,得到识别结果;其中所述识别结果包括文本、语音和图像;Inputting the patient input information into a preset preprocessing model, and the preprocessing model recognizes the patient input information to obtain a recognition result; wherein the recognition result includes text, voice and image; 获取与所述识别结果对应的转换模型;obtaining a conversion model corresponding to the recognition result; 将所述患者输入信息输入所述转换模型,所述转换模型将所述患者输入信息进行文本转换,输出转换结果;Inputting the patient input information into the conversion model, and the conversion model performs text conversion on the patient input information, and outputs a conversion result; 将所述转换结果确定为所述患者信息。The conversion result is determined as the patient information. 4.如权利要求1所述的分诊数据处理方法,其特征在于,所述通过最大词匹配法,在所述患者信息中获取症状信息,包括:4. The triage data processing method according to claim 1, characterized in that, obtaining symptom information in the patient information by a maximum word matching method, comprising: 获取预设的症状词库;所述症状词库包括多个症状词;obtaining a preset symptom thesaurus; the symptom thesaurus includes a plurality of symptom words; 将所述患者信息进行拆分成多个单文本;splitting the patient information into multiple single texts; 获取所述单文本的开始位置和结束位置,将所述开始位置的前一个单文本与所述单文本进行组合生成前置文本,将所述结束位置的后一个单文本与所述单文本进行组合生成后置文本,将所述开始位置的前一个单文本、所述单文本和所述结束位置的后一个单文本进行组合生成全置文本;Obtain the start position and the end position of the single text, combine the previous single text at the start position with the single text to generate a pre-text, and perform the last single text at the end position with the single text. Combining to generate post text, combining the previous single text at the start position, the single text and the last single text at the end position to generate a full text; 获取所述单文本、所述前置文本、所述后置文本和所述全置文本中与所述症状词库中的文本的匹配值,并将匹配值最高的所述文本确定为与所述单文本对应的最大词组;Obtain the matching value of the single text, the pre-text, the post-text and the full text with the text in the symptom lexicon, and determine the text with the highest matching value as the text with the highest matching value. The largest phrase corresponding to the single text; 将所述患者信息中的各所述单文本对应的所有所述最大词组进行清零处理,将清零处理后的所有所述最大词组确定为所述症状信息。Perform zero clearing processing on all the largest phrases corresponding to each of the single texts in the patient information, and determine all the largest phrases after zero clearing as the symptom information. 5.如权利要求1所述的分诊数据处理方法,其特征在于,所述将所述症状信息输入组合预测模型,通过所述组合预测模型对所述症状信息进行预测处理,获取所述组合预测模型输出的第一症状科室集合,包括:5 . The triage data processing method according to claim 1 , wherein the symptom information is input into a combined prediction model, the symptom information is predicted and processed by the combined prediction model, and the combination is obtained. 6 . The first symptom department set output by the prediction model, including: 将所述症状信息输入训练完成的症状预测概率模型,通过所述症状预测概率模型对所述症状信息进行预测,获取所述症状预测概率模型输出的预测概率分布结果;其中,所述预测概率分布结果表征了在症状集合中与所述症状信息相关的症状的匹配概率分布;Input the symptom information into the trained symptom prediction probability model, predict the symptom information through the symptom prediction probability model, and obtain the prediction probability distribution result output by the symptom prediction probability model; wherein, the prediction probability distribution the result characterizes the matching probability distribution of symptoms in the symptom set related to the symptom information; 将所述症状信息输入训练完成的科室深度卷积神经网络模型,通过所述科室深度卷积神经网络模型对所述症状信息进行文字特征提取,获取所述科室深度卷积神经网络模型输出的科室预测分布结果;其中,所述科室预测分布结果表征了在科室集合中与所述症状信息相关的科室的匹配概率分布;Input the symptom information into the trained department deep convolutional neural network model, perform text feature extraction on the symptom information through the department deep convolutional neural network model, and obtain the department output by the department deep convolutional neural network model a prediction distribution result; wherein the department prediction distribution result represents the matching probability distribution of the departments related to the symptom information in the department set; 将所述预测概率分布结果与所述科室预测分布结果进行拼接以及归一化处理,得到所述第一症状科室集合。The predicted probability distribution result and the department predicted distribution result are spliced and normalized to obtain the first symptom department set. 6.如权利要求5所述的分诊数据处理方法,其特征在于,所述将所述症状信息输入训练完成的症状预测概率模型之前,包括:6. The triage data processing method according to claim 5, characterized in that, before the described symptom information is input into the trained symptom prediction probability model, the method comprises: 获取第一症状样本;其中,每一个所述第一症状样本均与一个症状类别标签关联;obtaining a first symptom sample; wherein each of the first symptom samples is associated with a symptom category label; 将所述第一症状样本输入包含第一初始参数的贝叶斯概率模型;inputting the first symptom sample into a Bayesian probability model including a first initial parameter; 通过所述贝叶斯概率模型对所述第一症状样本进行先验分布处理;Perform prior distribution processing on the first symptom sample by using the Bayesian probability model; 获取所述贝叶斯概率模型输出的分布结果,并根据所述分布结果和所述症状类别标签的匹配程度确定第一损失值;obtaining a distribution result output by the Bayesian probability model, and determining a first loss value according to the degree of matching between the distribution result and the symptom category label; 在所述第一损失值达到预设的第一收敛条件时,将收敛之后的所述贝叶斯概率模型记录为训练完成的症状预测概率模型。When the first loss value reaches a preset first convergence condition, the Bayesian probability model after convergence is recorded as a trained symptom prediction probability model. 7.如权利要求5所述的分诊数据处理方法,其特征在于,所述将所述症状信息输入训练完成的科室深度卷积神经网络模型之前,包括:7. The triage data processing method according to claim 5, characterized in that, before the described symptom information is input into the department deep convolutional neural network model that has been trained, the method comprises: 获取第二症状样本;其中,每一个所述第二症状样本均与一个科室标签关联;obtaining second symptom samples; wherein each of the second symptom samples is associated with a department label; 将所述第二症状样本输入包含第二初始参数的深度神经网络模型;inputting the second symptom sample into a deep neural network model including second initial parameters; 通过所述深度神经网络模型提取所述症状样本中的文字特征;Extract text features in the symptom samples through the deep neural network model; 获取所述深度神经网络模型根据所述文字特征输出的识别结果,并根据所述识别结果和所述科室标签的匹配程度确定第二损失值;Obtain the recognition result output by the deep neural network model according to the text feature, and determine the second loss value according to the degree of matching between the recognition result and the department label; 在所述第二损失值达到预设的第二收敛条件时,将收敛之后的所述深度神经网络模型记录为训练完成的科室深度卷积神经网络模型。When the second loss value reaches a preset second convergence condition, the deep neural network model after convergence is recorded as a trained department deep convolutional neural network model. 8.一种分诊数据处理装置,其特征在于,包括:8. A triage data processing device, comprising: 接收模块,用于接收到分诊请求,获取患者信息;The receiving module is used to receive the triage request and obtain the patient information; 获取模块,用于通过最大词匹配法,在所述患者信息中获取症状信息;an acquisition module for acquiring symptom information from the patient information through a maximum word matching method; 预测模块,用于将所述症状信息输入组合预测模型,通过所述组合预测模型对所述症状信息进行预测处理,获取所述组合预测模型输出的第一症状科室集合;a prediction module, configured to input the symptom information into a combined prediction model, perform prediction processing on the symptom information through the combined prediction model, and obtain the first symptom department set output by the combined prediction model; 激活模块,用于将所述症状信息输入强化学习分诊模型,获取所述强化学习分诊模型执行第一动作后输出的第一分诊结果;其中,所述第一动作为所述强化学习分诊模型对输入的所述症状信息进行分析处理之后自所述第一动作空间集合中选取,所述第一动作空间集合为预设的动作空间总集被所述第一症状科室集合激活后输出;所述第一分诊结果包括第一症状结果和第一状态结果;An activation module, configured to input the symptom information into a reinforcement learning triage model, and obtain a first triage result output by the reinforcement learning triage model after performing a first action; wherein the first action is the reinforcement learning The triage model analyzes and processes the input symptom information and selects it from the first action space set, where the first action space set is a preset action space set activated by the first symptom department set output; the first triage result includes a first symptom result and a first state result; 输出模块,用于在所述第一状态结果为第一状态时,将所述第一分诊结果中的所述第一症状结果确定为最终症状结果;所述最终症状结果为患者就诊的科室。An output module, configured to determine the first symptom result in the first triage result as the final symptom result when the first state result is the first state; the final symptom result is the department where the patient visits a doctor . 9.一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述分诊数据处理方法。9. A computer device comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the computer program as claimed in the claims The triage data processing method according to any one of 1 to 7. 10.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述分诊数据处理方法。10. A computer-readable storage medium storing a computer program, wherein the computer program realizes the triage data according to any one of claims 1 to 7 when the computer program is executed by a processor Approach.
CN202010142969.8A 2020-03-04 2020-03-04 Triage data processing method, device, computer equipment and storage medium Pending CN111477310A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010142969.8A CN111477310A (en) 2020-03-04 2020-03-04 Triage data processing method, device, computer equipment and storage medium
PCT/CN2020/099063 WO2021174728A1 (en) 2020-03-04 2020-06-30 Triage data processing method and apparatus, computer device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010142969.8A CN111477310A (en) 2020-03-04 2020-03-04 Triage data processing method, device, computer equipment and storage medium

Publications (1)

Publication Number Publication Date
CN111477310A true CN111477310A (en) 2020-07-31

Family

ID=71747991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010142969.8A Pending CN111477310A (en) 2020-03-04 2020-03-04 Triage data processing method, device, computer equipment and storage medium

Country Status (2)

Country Link
CN (1) CN111477310A (en)
WO (1) WO2021174728A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111951943A (en) * 2020-09-27 2020-11-17 平安科技(深圳)有限公司 Intelligent triage method and device, electronic equipment and storage medium
CN112017742A (en) * 2020-09-08 2020-12-01 平安科技(深圳)有限公司 Triage data processing method and device, computer equipment and storage medium
CN112016295A (en) * 2020-09-04 2020-12-01 平安科技(深圳)有限公司 Symptom data processing method and device, computer equipment and storage medium
CN112164454A (en) * 2020-10-10 2021-01-01 联仁健康医疗大数据科技股份有限公司 Diagnosis prediction method and device and electronic equipment
CN112927787A (en) * 2021-03-22 2021-06-08 塔米智能科技(北京)有限公司 Diagnosis method, diagnosis device, diagnosis equipment and diagnosis storage medium
CN112951394A (en) * 2021-03-10 2021-06-11 中电健康云科技有限公司 Method for hospital triage and medical examination item prediction based on deep learning
WO2021151327A1 (en) * 2020-09-09 2021-08-05 平安科技(深圳)有限公司 Triage data processing method and apparatus, and device and medium
WO2021164388A1 (en) * 2020-09-25 2021-08-26 平安科技(深圳)有限公司 Triage fusion model training method, triage method, apparatus, device, and medium
CN113409932A (en) * 2021-07-21 2021-09-17 挂号网(杭州)科技有限公司 Triage method, triage device, computer equipment and storage medium
WO2022227203A1 (en) * 2021-04-30 2022-11-03 平安科技(深圳)有限公司 Triage method, apparatus and device based on dialogue representation, and storage medium
CN116936080A (en) * 2023-07-27 2023-10-24 中日友好医院(中日友好临床医学研究所) Preliminary diagnosis guiding method and device based on dialogue and electronic medical record

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114724691B (en) * 2022-04-25 2024-09-24 中国科学院自动化研究所 Intelligent emergency diagnosis and sub-diagnosis system based on psychological model
CN115132303A (en) * 2022-04-28 2022-09-30 腾讯科技(深圳)有限公司 Physiological label prediction method, model training method, device, equipment and medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922608A (en) * 2018-06-13 2018-11-30 平安医疗科技有限公司 Intelligent hospital guide's method, apparatus, computer equipment and storage medium
CN108986907A (en) * 2018-07-24 2018-12-11 郑州大学第附属医院 A kind of tele-medicine based on KNN algorithm divides the method for examining automatically
CN109192300A (en) * 2018-08-17 2019-01-11 百度在线网络技术(北京)有限公司 Intelligent way of inquisition, system, computer equipment and storage medium
US20190355471A1 (en) * 2018-05-18 2019-11-21 Htc Corporation Control method and reinforcement learning for medical system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109829038A (en) * 2018-12-11 2019-05-31 平安科技(深圳)有限公司 Question and answer feedback method, device, equipment and storage medium based on deep learning
CN110085308B (en) * 2019-04-23 2022-02-25 挂号网(杭州)科技有限公司 Diagnosis and treatment department classification method based on fusion deep learning
CN110047584A (en) * 2019-04-23 2019-07-23 清华大学 Hospital distributing diagnosis method, system, device and medium based on deep learning
CN110675944A (en) * 2019-09-20 2020-01-10 京东方科技集团股份有限公司 Triage method and device, computer equipment and medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190355471A1 (en) * 2018-05-18 2019-11-21 Htc Corporation Control method and reinforcement learning for medical system
CN108922608A (en) * 2018-06-13 2018-11-30 平安医疗科技有限公司 Intelligent hospital guide's method, apparatus, computer equipment and storage medium
CN108986907A (en) * 2018-07-24 2018-12-11 郑州大学第附属医院 A kind of tele-medicine based on KNN algorithm divides the method for examining automatically
CN109192300A (en) * 2018-08-17 2019-01-11 百度在线网络技术(北京)有限公司 Intelligent way of inquisition, system, computer equipment and storage medium

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112016295A (en) * 2020-09-04 2020-12-01 平安科技(深圳)有限公司 Symptom data processing method and device, computer equipment and storage medium
CN112016295B (en) * 2020-09-04 2024-02-23 平安科技(深圳)有限公司 Symptom data processing method, symptom data processing device, computer equipment and storage medium
WO2021151328A1 (en) * 2020-09-04 2021-08-05 平安科技(深圳)有限公司 Symptom data processing method and apparatus, and computer device and storage medium
WO2021151356A1 (en) * 2020-09-08 2021-08-05 平安科技(深圳)有限公司 Triage data processing method and apparatus, and computer device and storage medium
CN112017742A (en) * 2020-09-08 2020-12-01 平安科技(深圳)有限公司 Triage data processing method and device, computer equipment and storage medium
CN112017742B (en) * 2020-09-08 2024-05-24 平安科技(深圳)有限公司 Triage data processing method, triage data processing device, computer equipment and storage medium
WO2021151327A1 (en) * 2020-09-09 2021-08-05 平安科技(深圳)有限公司 Triage data processing method and apparatus, and device and medium
WO2021164388A1 (en) * 2020-09-25 2021-08-26 平安科技(深圳)有限公司 Triage fusion model training method, triage method, apparatus, device, and medium
CN111951943B (en) * 2020-09-27 2021-01-05 平安科技(深圳)有限公司 Intelligent triage method and device, electronic equipment and storage medium
WO2021179625A1 (en) * 2020-09-27 2021-09-16 平安科技(深圳)有限公司 Smart diagnosis guide method and apparatus, electronic device, and storage medium
CN111951943A (en) * 2020-09-27 2020-11-17 平安科技(深圳)有限公司 Intelligent triage method and device, electronic equipment and storage medium
CN112164454A (en) * 2020-10-10 2021-01-01 联仁健康医疗大数据科技股份有限公司 Diagnosis prediction method and device and electronic equipment
CN112951394A (en) * 2021-03-10 2021-06-11 中电健康云科技有限公司 Method for hospital triage and medical examination item prediction based on deep learning
CN112927787A (en) * 2021-03-22 2021-06-08 塔米智能科技(北京)有限公司 Diagnosis method, diagnosis device, diagnosis equipment and diagnosis storage medium
WO2022227203A1 (en) * 2021-04-30 2022-11-03 平安科技(深圳)有限公司 Triage method, apparatus and device based on dialogue representation, and storage medium
CN113409932A (en) * 2021-07-21 2021-09-17 挂号网(杭州)科技有限公司 Triage method, triage device, computer equipment and storage medium
CN116936080A (en) * 2023-07-27 2023-10-24 中日友好医院(中日友好临床医学研究所) Preliminary diagnosis guiding method and device based on dialogue and electronic medical record

Also Published As

Publication number Publication date
WO2021174728A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
CN111477310A (en) Triage data processing method, device, computer equipment and storage medium
CN108986908B (en) Method and device for processing inquiry data, computer equipment and storage medium
CN106874643B (en) Method and system for automatically constructing knowledge base based on word vector to realize auxiliary diagnosis and treatment
KR102298330B1 (en) System for generating medical consultation summary and electronic medical record based on speech recognition and natural language processing algorithm
CN112016295B (en) Symptom data processing method, symptom data processing device, computer equipment and storage medium
CN112036154B (en) Electronic medical record generation method and device based on inquiry dialogue and computer equipment
CN111984851B (en) Medical data searching method, device, electronic device and storage medium
US11742087B2 (en) Processing clinical notes using recurrent neural networks
CN111627512A (en) Recommendation method and device for similar medical records, electronic equipment and storage medium
WO2021208444A1 (en) Method and apparatus for automatically generating electronic cases, a device, and a storage medium
WO2021151356A1 (en) Triage data processing method and apparatus, and computer device and storage medium
CN112530550A (en) Image report generation method and device, computer equipment and storage medium
CN112037904A (en) Online diagnosis and treatment data processing method and device, computer equipment and storage medium
WO2020093720A1 (en) Speech recognition-based information query method and device
CN112837772A (en) Pre-inquiry case history generation method and device
CN114186070A (en) Medical term normalization method and device based on artificial intelligence model
CN116719840B (en) Medical information pushing method based on post-medical-record structured processing
CN114830230A (en) Automatic speech recognizer using keyboard macro function and speech recognition method
CN113658690B (en) Intelligent medical guiding method and device, storage medium and electronic equipment
US20220075964A1 (en) Hybrid translation system using a general-purpose neural network machine translator
CN112231556B (en) User image drawing method, device, equipment and medium based on dialogue scene
CN113590842A (en) Medical term standardization method and system
CN113282761A (en) Department information pushing method, device, equipment and storage medium
CN117875319A (en) Medical field labeling data acquisition method and device and electronic equipment
CN113761899A (en) A method, device, device and storage medium for generating medical text

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220922

Address after: Room 2601 (Unit 07), Qianhai Free Trade Building, No. 3048, Xinghai Avenue, Nanshan Street, Qianhai Shenzhen-Hong Kong Cooperation Zone, Shenzhen, Guangdong 518000

Applicant after: Shenzhen Ping An Smart Healthcare Technology Co.,Ltd.

Address before: 1-34 / F, Qianhai free trade building, 3048 Xinghai Avenue, Mawan, Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen, Guangdong 518000

Applicant before: Ping An International Smart City Technology Co.,Ltd.