CN111475884A - Optimization method of foundation pit precipitation based on particle swarm optimization and groundwater model - Google Patents
Optimization method of foundation pit precipitation based on particle swarm optimization and groundwater model Download PDFInfo
- Publication number
- CN111475884A CN111475884A CN202010329632.8A CN202010329632A CN111475884A CN 111475884 A CN111475884 A CN 111475884A CN 202010329632 A CN202010329632 A CN 202010329632A CN 111475884 A CN111475884 A CN 111475884A
- Authority
- CN
- China
- Prior art keywords
- foundation pit
- model
- groundwater
- particle
- optimization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 47
- 239000003673 groundwater Substances 0.000 title claims abstract description 35
- 238000005457 optimization Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000001556 precipitation Methods 0.000 title claims abstract description 15
- 238000010276 construction Methods 0.000 claims abstract description 24
- 238000004088 simulation Methods 0.000 claims abstract description 16
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 11
- 238000005086 pumping Methods 0.000 claims abstract description 11
- 230000008569 process Effects 0.000 claims abstract description 7
- 230000008878 coupling Effects 0.000 claims abstract description 6
- 238000010168 coupling process Methods 0.000 claims abstract description 6
- 238000005859 coupling reaction Methods 0.000 claims abstract description 6
- 238000005516 engineering process Methods 0.000 claims abstract description 5
- 230000008859 change Effects 0.000 claims abstract description 4
- 230000006870 function Effects 0.000 claims description 27
- 230000001133 acceleration Effects 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种基于粒子群算法与地下水模型的基坑降水优化方法,包括以下步骤:步骤S1:构建地下水流模拟模型,刻画基坑区域及其周围的地下水流场的动态变化过程;步骤S2:基于预设目标函数及约束条件,建立优化模型;步骤S3:耦合地下水流模拟模型和优化模型;步骤S4:采用PSO优化技术求解耦合后的模型最优解;步骤S5:根据最优解,得到最优降水井的空间分布和抽水流量。本发明得到的最优降水井的空间分布和抽水流量,不但可以节省大量施工时间,加快施工工期,而且可以大幅提高降水效率。
The present invention relates to a foundation pit precipitation optimization method based on particle swarm algorithm and groundwater model, comprising the following steps: Step S1: constructing a groundwater flow simulation model to describe the dynamic change process of the groundwater flow field in and around the foundation pit area; Step S2 Step S3: coupling the groundwater flow simulation model and the optimization model; Step S4: using the PSO optimization technology to solve the optimal solution of the coupled model; Step S5: according to the optimal solution, The spatial distribution and pumping flow of optimal dewatering wells are obtained. The spatial distribution and pumping flow of the optimal dewatering well obtained by the invention can not only save a lot of construction time, speed up the construction period, but also greatly improve the dewatering efficiency.
Description
技术领域technical field
本发明涉及地下水科学与工程领域,,具体涉及一种基于粒子群算法与地下水模型的基坑降水优化方法。The invention relates to the field of groundwater science and engineering, in particular to a foundation pit precipitation optimization method based on a particle swarm algorithm and a groundwater model.
背景技术Background technique
基坑工程的建设过程中,为满足基坑的开挖要求,需要降低基坑底部的地下水水位。目前在基坑降水过程中,一般间隔一定的距离均匀布置降水井,对所有单井的抽水流量采用解析解计算。此种方法会产生较大的建设费用或者未能达到工程建设的降水要求。因此,需要采用优化技术对降水井的空间分布进行科学的管理,在满足施工要求的前提下,尽可能地减少工程建设的费用。During the construction of the foundation pit, in order to meet the excavation requirements of the foundation pit, the groundwater level at the bottom of the foundation pit needs to be lowered. At present, in the process of foundation pit dewatering, dewatering wells are generally arranged evenly at a certain distance, and analytical solutions are used to calculate the pumping flow of all single wells. This method will generate large construction costs or fail to meet the precipitation requirements of engineering construction. Therefore, it is necessary to use optimization technology to scientifically manage the spatial distribution of dewatering wells, and to reduce the cost of engineering construction as much as possible on the premise of meeting the construction requirements.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提供一种基于粒子群算法与地下水模型的基坑降水优化方法。In view of this, the purpose of the present invention is to provide a foundation pit precipitation optimization method based on particle swarm algorithm and groundwater model.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种基于粒子群算法与地下水模型的基坑降水优化方法,包括以下步骤:A foundation pit precipitation optimization method based on particle swarm algorithm and groundwater model, comprising the following steps:
步骤S1:构建地下水流模拟模型,刻画基坑区域及其周围的地下水流场的动态变化过程;Step S1: build a groundwater flow simulation model, and describe the dynamic change process of the groundwater flow field in the foundation pit area and its surroundings;
步骤S2:基于预设目标函数及约束条件,建立优化模型;Step S2: based on preset objective function and constraints, establish an optimization model;
步骤S3:耦合地下水流模拟模型和优化模型;Step S3: coupling groundwater flow simulation model and optimization model;
步骤S4:采用PSO优化技术求解耦合后的模型最优解;Step S4: adopt PSO optimization technology to solve the optimal solution of the model after coupling;
步骤S5:根据最优解,得到最优降水井的空间分布和抽水流量。Step S5: According to the optimal solution, the spatial distribution and pumping flow of the optimal dewatering wells are obtained.
进一步的,所述预设目标函数及约束条件具体为:Further, the preset objective function and constraints are specifically:
目标函数:Objective function:
最小化 minimize
约束条件:Restrictions:
Qmi≤Qt i≤Qmax (3)Q mi ≤Q t i ≤Q max (3)
其中,C表示基坑降水工程的建设成本;Dw为降水井的数目; yi表示井i是否采用的二进制数;Qi t为井i的在第t管理期内的抽水流量;Dt为总的管理期数;Δtt为第t应力期的时长;αi(i=1,2)表示井安装与抽水的价格系数;hi表示基坑施工作业区的地下水水位;hupper表示基坑施工过程中的要求的地下水水位;hlower表示基坑施工过程中地下水水位降低的下限;R表示基坑施工作业范围。Among them, C is the construction cost of the foundation pit dewatering project; Dw is the number of dewatering wells; y i is the binary number used for well i; Q i t is the pumping flow of well i in the t-th management period; D t is the total number of management periods; Δt t is the duration of the t-th stress period; α i ( i =1, 2) represents the price coefficient of well installation and pumping; hi represents the groundwater level in the foundation pit construction area; h upper represents The required groundwater level during the construction of the foundation pit; h lower represents the lower limit of the groundwater level reduction during the construction of the foundation pit; R represents the scope of the construction of the foundation pit.
进一步的,所述步骤S3具体为:Further, the step S3 is specifically:
步骤S31:耦合后的的模型优化管理的目标是决策变量和状态变量的函数;Step S31: the target of the coupled model optimization management is a function of decision variables and state variables;
步骤S32:通过模拟模型不断更新状态变量,计算目标函数值和判断是否满足约束条件;通过优化模型选择决策变量,返回到模拟模型中更新状态变量;Step S32: continuously update the state variable through the simulation model, calculate the objective function value and judge whether the constraint condition is satisfied; select the decision variable through the optimization model, and return to the simulation model to update the state variable;
上式表示系统在某一时刻t状态变量wt是该时段决策变量Qt及上一时段t-1状态变量wt-1的函数,状态转移函数用fw表示;The above formula indicates that the state variable w t of the system at a certain time t is a function of the decision variable Q t of the period and the state variable w t-1 of the previous period t-1, and the state transition function is represented by f w ;
步骤S32:耦合后的的模型中决策变量和状态变量同时满足模拟模型,且同步更新。Step S32: The decision variables and state variables in the coupled model satisfy the simulation model at the same time, and are updated synchronously.
进一步的,所述步骤S4具体为:Further, the step S4 is specifically:
步骤S41:采用实数编码的方式表示降水井的位置与井流量,对系统的种群大小、加速因子、最大允许迭代次数进行设置,并随机生成每个粒子的初始位置和初始速度信息;Step S41: represent the position of the dewatering well and the well flow rate by means of real number coding, set the population size, acceleration factor, and maximum allowable number of iterations of the system, and randomly generate the initial position and initial velocity information of each particle;
步骤S42:对粒子是否满足约束进行判断,如果不满足约束,则使用修正函数修正粒子,使其成为可行解Step S42: Judging whether the particle satisfies the constraint, if it does not satisfy the constraint, use the correction function to correct the particle to make it a feasible solution
步骤S43:根据目标函数分别计算群体中各个粒子的适应度值Step S43: Calculate the fitness value of each particle in the group according to the objective function
步骤S44:根据粒子的适应度值来确定单位历史最有个体、群体历史最优个体Step S44: Determine the most individual in unit history and the optimal individual in group history according to the fitness value of the particle
步骤S45:对粒子的速度与位置进行更新:Step S45: Update the speed and position of the particles:
步骤S46:更新惯性权重,限制粒子群的速度与范围Step S46: Update the inertia weight to limit the speed and range of the particle swarm
步骤S47:判断是否已经达到终止准则,如果满足终止准则,则终止迭代,输出最优解;如果未满足终止准则,则返回步骤S44:继续进行搜索。Step S47: judge whether the termination criterion has been reached, if the termination criterion is satisfied, the iteration is terminated and the optimal solution is output; if the termination criterion is not satisfied, return to step S44: continue the search.
步骤S48:在全局中显示最优位置,并且给出各指标的定量结果。Step S48: Display the optimal position in the global, and give the quantitative results of each index.
进一步的,所述计算粒子的速度与位置可根据下式计算Further, the velocity and position of the calculated particle can be calculated according to the following formula
νid k+1=ω*νid k+c1r1(pid k-xid k)+c2r2(pgd k-xid k)ν id k+1 =ω*ν id k +c 1 r 1 (p id k -x id k )+c 2 r 2 (p gd k -x id k )
xid k+1=xid k+νid k+1。x id k+1 =x id k +ν id k+1 .
式中:where:
k——(次),程序迭代次数;k——(times), the number of program iterations;
ω——惯性权重;ω - inertia weight;
c1、c2——学习因子,也称加速常数,根据经验,通常取c1=c2=2;c 1 , c 2 - learning factors, also known as acceleration constants, according to experience, usually take c 1 =c 2 =2;
r1、r2——[0,1]范围内的均匀随机数;r 1 , r 2 — uniform random numbers in the range of [0, 1];
pid k——当前个体所搜索到的最优解;p id k - the optimal solution searched by the current individual;
pgd k——整个种群搜索到的最优解;p gd k ——the optimal solution searched by the entire population;
νid k——粒子的运动速度,vid k∈[-vmax,vmax],vmax是常数,由用户设定来限制粒子的速度;ν id k ——the speed of the particle, v id k ∈[-v max ,v max ], v max is a constant, set by the user to limit the speed of the particle;
xid k——粒子的个体参数,即决策变量值。x id k - the individual parameters of the particle, that is, the decision variable value.
进一步的,所述更新惯性权重可由下式计算:Further, the updated inertia weight can be calculated by the following formula:
式中:where:
ωmax——惯性权重初始惯性值;ω max ——Inertia weight initial inertia value;
ωmin——迭代至最大代数时的惯性权值;ω min ——the inertia weight when iterating to the maximum algebra;
k——当前迭代次数;k——current iteration number;
kmax——最大迭代次数。k max - maximum number of iterations.
限制粒子群的速度与范围可由下式计算:The velocity and range of the confinement particle swarm can be calculated as follows:
νmax=(xid,max-xid,min)*P。ν max =(x id,max -x id,min )*P.
式中:xid,max——控制变量的取值上限值;In the formula: x id,max ——the upper limit value of the control variable;
xid,min——控制变量的取值下限值,P=20%x id,min ——the lower limit value of the control variable, P=20%
本发明与现有技术相比具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明不但可以节省大量施工时间,加快施工工期,而且可以大幅提高降水效率。The invention can not only save a lot of construction time and speed up the construction period, but also can greatly improve the precipitation efficiency.
附图说明Description of drawings
图1是本发明一实施例中模拟优化流程图。FIG. 1 is a flow chart of simulation optimization in an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
请参照图1,本发明提供一种基于粒子群算法与地下水模型的基坑降水优化方法,包括,Please refer to FIG. 1, the present invention provides a foundation pit precipitation optimization method based on particle swarm algorithm and groundwater model, including:
步骤1,建立地下水水流模型,刻画基坑区域及其周围的地下水流场的动态变化过程;Step 1, establish a groundwater flow model to describe the dynamic change process of the groundwater flow field in the foundation pit area and its surroundings;
步骤2,确定管理目标,建立优化模型,具体如下:Step 2: Determine the management objectives and establish an optimization model, as follows:
目标函数:Objective function:
最小化 minimize
约束条件:Restrictions:
Qmin≤Qt i≤Qmax Q min ≤Q t i ≤Q max
其中,C表示基坑降水工程的建设成本;Dw为降水井的数目; yi=1时,井i采用的二进制数,yi=0,井i不采用二进制数;Qt i为井i的在第t管理期内的抽水流量;Dt为总的管理期数;Δtt为第t 应力期的时长;αi表示井安装与抽水的价格系数,i=1或2;hi表示基坑施工作业区的地下水水位;hupper表示基坑施工过程中的要求的地下水水位;hlower表示基坑施工过程中地下水水位降低的下限;R 表示基坑施工作业范围,目标函数和约束条件构成了基坑降水优化管理问题的数学模型;Among them, C represents the construction cost of the foundation pit dewatering project; Dw is the number of dewatering wells; when y i =1, the binary number used for well i, y i =0, well i does not use binary numbers; Q t i is the well i The pumping flow of i in the t-th management period; D t is the total number of management periods; Δt t is the duration of the t-th stress period; α i represents the price coefficient of well installation and pumping, i=1 or 2; h i Indicates the groundwater level in the foundation pit construction operation area; h upper represents the required groundwater level during the foundation pit construction process; h lower represents the lower limit of the groundwater level reduction during the foundation pit construction process; R represents the foundation pit construction operation scope, objective function and constraints The conditions constitute the mathematical model of the optimal management of foundation pit precipitation;
步骤3,耦合模拟模型和优化模型;Step 3, coupling the simulation model and the optimization model;
步骤4,选用PSO优化技术求解基坑降水工程管理问题的解;Step 4, select PSO optimization technology to solve the solution of foundation pit dewatering engineering management problem;
步骤5,输出优化结果。Step 5, output the optimization result.
在本实施例中,所述步骤4的求解步骤为:In this embodiment, the solving step of step 4 is:
1)系统初始化1) System initialization
采用实数编码的方式表示降水井的位置与井流量;对系统的种群大小、加速因子、最大允许迭代次数进行设置,并随机生成每个粒子的初始位置和初始速度信息。The position and flow rate of the dewatering well are represented by real number coding; the population size, acceleration factor, and maximum allowable iterations of the system are set, and the initial position and initial velocity information of each particle are randomly generated.
对粒子是否满足约束进行判断,如果不满足约束,则使用修正函数修正粒子,使其成为可行解。It is judged whether the particle satisfies the constraint, and if the constraint is not satisfied, the correction function is used to correct the particle to make it a feasible solution.
2)根据目标函数分别计算群体中各个粒子的适应度值2) Calculate the fitness value of each particle in the group according to the objective function
3)根据粒子的适应度值来确定单位历史最有个体、群体历史最优个体3) According to the fitness value of the particle, determine the most individual in the unit history and the optimal individual in the group history
4)对粒子的速度与位置进行更新4) Update the speed and position of the particle
计算粒子的速度与位置可根据下式计算The velocity and position of the calculated particle can be calculated according to the following formula
νid k+1=ω*νid k+c1r1(pid k-xid k)+c2r2(pgd k-xid k)ν id k+1 =ω*ν id k +c 1 r 1 (p id k -x id k )+c 2 r 2 (p gd k -x id k )
xid k+1=xid k+νid k+1 x id k+1 = x id k +ν id k+1
5)更新惯性权重,限制粒子群的速度与范围5) Update the inertia weight to limit the speed and range of the particle swarm
更新惯性权重可由下式计算:The updated inertia weight can be calculated as:
限制粒子群的速度与范围可由下式计算:The velocity and range of the confinement particle swarm can be calculated as follows:
νmax=(xid,max-xid,min)*Pν max =(x id,max -x id,min )*P
6)判断是否已经达到终止准则,如果满足终止准则(达到最大迭代次数或获得足够好的适应值),则终止迭代,输出最优解。如果未满足终止准则,则返回3继续进行搜索。6) Determine whether the termination criterion has been reached. If the termination criterion is satisfied (the maximum number of iterations is reached or a good enough fitness value is obtained), the iteration is terminated and the optimal solution is output. If the termination criterion is not met, return to 3 to continue the search.
7)在全局中显示最优位置,并且给出各种指标的定量结果。7) Display the optimal position in the whole world, and give the quantitative results of various indicators.
对于步骤4中的1),对粒子是否满足约束进行判断,如果不满足约束,则使用修正函数修正粒子,使其成为可行解。For step 1) in step 4, it is judged whether the particle satisfies the constraint, and if the constraint is not satisfied, the particle is corrected by the correction function to make it a feasible solution.
在本实施例中,决策井流量和状态变量水位的函数需要通过模拟模型不断更新状态变量,计算目标函数值和判断是否满足约束条件In this embodiment, the function of the decision well flow rate and the state variable water level needs to continuously update the state variable through the simulation model, calculate the objective function value and judge whether the constraint condition is satisfied
上式表示系统在某一时刻t状态变量wt是该时段决策变量Qt及上一时段t-1状态The above formula indicates that the state variable w t of the system at a certain time t is the decision variable Q t of the period and the state of the previous period t-1
变量wt-1的函数,状态转移函数用fw表示。The function of variable w t-1 , the state transition function is represented by f w .
优选的,本实施例中hupper在基坑底板以下0.5m-1.5m之间。Preferably, in this embodiment, h upper is between 0.5m-1.5m below the bottom plate of the foundation pit.
优选的,本实施例中采用MODFLOW-2005建立地下水流模拟模型。Preferably, in this embodiment, MODFLOW-2005 is used to establish a groundwater flow simulation model.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010329632.8A CN111475884A (en) | 2020-04-24 | 2020-04-24 | Optimization method of foundation pit precipitation based on particle swarm optimization and groundwater model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010329632.8A CN111475884A (en) | 2020-04-24 | 2020-04-24 | Optimization method of foundation pit precipitation based on particle swarm optimization and groundwater model |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111475884A true CN111475884A (en) | 2020-07-31 |
Family
ID=71761697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010329632.8A Pending CN111475884A (en) | 2020-04-24 | 2020-04-24 | Optimization method of foundation pit precipitation based on particle swarm optimization and groundwater model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111475884A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114564782A (en) * | 2022-03-15 | 2022-05-31 | 深圳宏业基岩土科技股份有限公司 | BIM-based foundation pit site drainage system construction method |
CN114855847A (en) * | 2022-07-06 | 2022-08-05 | 江苏中安建设集团有限公司 | Intelligent control method for construction site foundation pit dewatering system |
CN116060426A (en) * | 2023-02-24 | 2023-05-05 | 山东大成环境修复有限公司 | Soil and groundwater collaborative remediation system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106611951A (en) * | 2015-10-21 | 2017-05-03 | 中国电力科学研究院 | Power distribution network multi-objective reactive power optimization method based on two-stage particle swarm optimization |
CN108064047A (en) * | 2018-01-17 | 2018-05-22 | 北京工商大学 | A kind of water quality sensor network optimization dispositions method based on population |
CN109117517A (en) * | 2018-07-19 | 2019-01-01 | 江苏地基工程有限公司 | A kind of base pit dewatering optimum design method based on genetic algorithm and groundwater model |
-
2020
- 2020-04-24 CN CN202010329632.8A patent/CN111475884A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106611951A (en) * | 2015-10-21 | 2017-05-03 | 中国电力科学研究院 | Power distribution network multi-objective reactive power optimization method based on two-stage particle swarm optimization |
CN108064047A (en) * | 2018-01-17 | 2018-05-22 | 北京工商大学 | A kind of water quality sensor network optimization dispositions method based on population |
CN109117517A (en) * | 2018-07-19 | 2019-01-01 | 江苏地基工程有限公司 | A kind of base pit dewatering optimum design method based on genetic algorithm and groundwater model |
Non-Patent Citations (1)
Title |
---|
吴正科等: "带粒子释放和速度限制的粒子群算法", 《计算机应用研究》, 31 March 2013 (2013-03-31), pages 682 - 683 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114564782A (en) * | 2022-03-15 | 2022-05-31 | 深圳宏业基岩土科技股份有限公司 | BIM-based foundation pit site drainage system construction method |
CN114855847A (en) * | 2022-07-06 | 2022-08-05 | 江苏中安建设集团有限公司 | Intelligent control method for construction site foundation pit dewatering system |
CN114855847B (en) * | 2022-07-06 | 2022-09-20 | 江苏中安建设集团有限公司 | Intelligent control method for construction site foundation pit dewatering system |
CN116060426A (en) * | 2023-02-24 | 2023-05-05 | 山东大成环境修复有限公司 | Soil and groundwater collaborative remediation system |
CN116060426B (en) * | 2023-02-24 | 2024-02-06 | 山东大成环境修复有限公司 | Soil and groundwater collaborative remediation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111475884A (en) | Optimization method of foundation pit precipitation based on particle swarm optimization and groundwater model | |
CN111461457A (en) | A Particle Swarm Optimization BP Neural Network Based Displacement Prediction Method for Foundation Pit | |
CN114792071B (en) | Optimal scheduling method of drainage pumping station based on machine learning technology | |
CN110880773B (en) | Power grid frequency regulation control method based on a combination of data-driven and physical model-driven | |
CN113190945B (en) | Urban drainage pipe network optimization method based on online agent model assisted evolution algorithm | |
CN114444402A (en) | Oil reservoir injection-production optimization method based on deep reinforcement learning | |
CN111237181B (en) | On-line identification and optimal regulation and control method and regulation and control system for operating characteristics of water pump system | |
Tanyimboh et al. | Multiobjective evolutionary optimization of water distribution systems: Exploiting diversity with infeasible solutions | |
CN105574586A (en) | General airplane air-material demand prediction method based on MPSO-BP network | |
CN113266318B (en) | Self-learning-based stroke frequency adjusting method for rod-type pumping unit well | |
CN101799846A (en) | Multi-objective groundwater remediation optimization method | |
CN109460608B (en) | A Method of Predicting the Deformation of High and Steep Slopes Based on Fuzzy Time Series | |
CN115983489A (en) | Heat pump and centralized heating complementary optimization operation method in random fuzzy environment | |
CN116702292A (en) | Pneumatic optimization method for wind nozzle of flat steel box girder based on deep reinforcement learning | |
CN107871157A (en) | Data prediction method, system and related device based on BP and PSO | |
CN113313322B (en) | MOEA/D extrusion process parameter multi-objective optimization method and device | |
CN109117517A (en) | A kind of base pit dewatering optimum design method based on genetic algorithm and groundwater model | |
CN116777135B (en) | Reservoir-impounded flood area refined flood control combined dispatching method based on efficient optimization algorithm | |
CN117150680A (en) | Airfoil profile optimization design method based on deep learning and reinforcement learning | |
CN113886912B (en) | Multi-stage dam break intelligent optimization emergency scheduling method | |
CN109993271A (en) | Grey neural network forecasting based on theory of games | |
Deep et al. | Management of multipurpose multireservoir using fuzzy interactive method | |
CN113836812A (en) | Shield construction pose adjusting method for identifying hard rock thickness by using intelligent algorithm | |
CN118821630B (en) | Hydrologic model parameter automatic calibration method, system and medium based on fusion model | |
CN112613654A (en) | Comprehensive energy system flexibility evaluation method based on multi-type energy storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200731 |