CN111474234A - Method for analyzing content of trace plutonium in large amount of uranium in nuclear fuel post-processing flow - Google Patents
Method for analyzing content of trace plutonium in large amount of uranium in nuclear fuel post-processing flow Download PDFInfo
- Publication number
- CN111474234A CN111474234A CN202010174422.6A CN202010174422A CN111474234A CN 111474234 A CN111474234 A CN 111474234A CN 202010174422 A CN202010174422 A CN 202010174422A CN 111474234 A CN111474234 A CN 111474234A
- Authority
- CN
- China
- Prior art keywords
- sample
- plutonium
- uranium
- organic phase
- washing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052778 Plutonium Inorganic materials 0.000 title claims abstract description 60
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 229910052770 Uranium Inorganic materials 0.000 title claims abstract description 46
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 239000003758 nuclear fuel Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims description 56
- 238000012805 post-processing Methods 0.000 title abstract description 4
- 238000004458 analytical method Methods 0.000 claims abstract description 24
- 239000012074 organic phase Substances 0.000 claims abstract description 24
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 17
- 238000005406 washing Methods 0.000 claims abstract description 15
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 claims abstract description 14
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 claims abstract description 14
- 238000000605 extraction Methods 0.000 claims abstract description 13
- 239000012071 phase Substances 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 235000010288 sodium nitrite Nutrition 0.000 claims abstract description 7
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 4
- 238000012958 reprocessing Methods 0.000 claims description 19
- 238000000926 separation method Methods 0.000 claims description 19
- 239000000243 solution Substances 0.000 claims description 15
- 238000005070 sampling Methods 0.000 claims description 10
- 239000008096 xylene Substances 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 239000012086 standard solution Substances 0.000 claims description 3
- 239000008346 aqueous phase Substances 0.000 claims description 2
- 238000010790 dilution Methods 0.000 claims description 2
- 239000012895 dilution Substances 0.000 claims description 2
- 238000007865 diluting Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 21
- 238000005342 ion exchange Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- -1 2 -thiopheneformyl trifluoroacetone Chemical compound 0.000 description 1
- OYEHPCDNVJXUIW-FTXFMUIASA-N 239Pu Chemical compound [239Pu] OYEHPCDNVJXUIW-FTXFMUIASA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002927 high level radioactive waste Substances 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- WJWSFWHDKPKKES-UHFFFAOYSA-N plutonium uranium Chemical compound [U].[Pu] WJWSFWHDKPKKES-UHFFFAOYSA-N 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/626—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/34—Purifying; Cleaning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/38—Diluting, dispersing or mixing samples
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
技术领域technical field
本发明属于分析化学技术领域,涉及一种核燃料后处理流程大量铀中微量钚含量的分析方法。The invention belongs to the technical field of analytical chemistry, and relates to a method for analyzing the content of trace plutonium in a large amount of uranium in a nuclear fuel reprocessing process.
背景技术Background technique
核燃料后处理对铀产品中钚的控制要求十分严格。在后处理流程铀产品中,铀浓度为几十克每升,而铀钚比超过1×109,大量铀对微量的239Pu分析干扰很大,要准确测定样品溶液的钚浓度,就需要经过严格的铀钚分离预处理过程,使铀钚能够分离。因此,好的铀钚分离预处理过程是分析数据准确性的关键。而核燃料后处理需要分析的样品很多,其中一些中间样品和各级样品由于工艺和设备限制,样品取样量少,无法满足分析样品体积要求。The control requirements for plutonium in uranium products in nuclear fuel reprocessing are very strict. In the uranium products in the post-processing process, the concentration of uranium is several tens of grams per liter, and the ratio of uranium to plutonium exceeds 1×10 9 . A large amount of uranium interferes greatly with the analysis of trace amounts of 239 Pu. To accurately determine the plutonium concentration of the sample solution, it is necessary to The uranium and plutonium can be separated after a strict uranium and plutonium separation pretreatment process. Therefore, a good pretreatment process for the separation of uranium and plutonium is the key to the accuracy of the analytical data. However, there are many samples that need to be analyzed in nuclear fuel reprocessing. Some intermediate samples and samples at all levels are limited by technology and equipment, and the sample sampling amount is small, which cannot meet the volume requirements of the analyzed samples.
目前对于铀产品中钚的分析方法主要有两种:一是放射性活度法,二是离子交换-质谱法。At present, there are two main methods for the analysis of plutonium in uranium products: one is the radioactivity method, and the other is the ion exchange-mass spectrometry method.
放射性活度法选用TTA萃取剂将钚从大量铀中分离出来,取适量该萃取剂在特制的不锈钢小盘上制成α放射源,然后用α能谱测定其中的钚-239活度。该方法需要样品体积5-50ml,样品取样量大;铀钚分离的预处理过程需要经过蒸发、萃取浓缩等手段,操作步骤复杂;由于放射源的含盐组分造成α的自吸收,使得钚活度的测量结果偏低,因此分析误差大,灵敏度低(分析误差大于10%,分析下限为1×10-9g/L)(参见:[1]郭魁生,吴继宗,刘焕良.阴离子色谱分离-α计数法测定高放废液中微量Pu[J].原子能科学技术.1997,31(5):435;[2]刘权卫.大量铀中镎钚的分离与测定:加压排空柱离子交换系统的设计及应用[D].北京:中国原子能科学研究院,2005.)。The radioactivity method uses TTA extractant to separate plutonium from a large amount of uranium, and takes an appropriate amount of the extractant to make an alpha radiation source on a special stainless steel plate, and then uses alpha energy spectrum to measure the activity of plutonium-239. This method requires a sample volume of 5-50ml, and the sample volume is large; the pretreatment process of uranium and plutonium separation requires means such as evaporation, extraction and concentration, and the operation steps are complicated; due to the self-absorption of α caused by the salt-containing components of the radioactive source, the The measurement result of the activity is low, so the analytical error is large and the sensitivity is low (the analytical error is greater than 10%, and the analytical lower limit is 1×10 -9 g/L) (see: [1] Guo Kuisheng, Wu Jizong, Liu Huanliang. Anion chromatography separation- Determination of trace amounts of Pu in high-level radioactive waste by α counting method[J]. Atomic Energy Science and Technology. 1997, 31(5): 435; System design and application [D]. Beijing: China Institute of Atomic Energy, 2005.).
离子交换-质谱法是将样品调酸调价后,通过离子交换柱吸附四价钚,实现铀钚分离,然后以稀硝酸将钚从离子交换柱上解吸下来,最后用质谱分析钚浓度。该方法铀钚分离的预处理过程包括吸附、淋洗、洗脱等过程,过程复杂,单个样品的预处理需要2-4个小时;样品消耗量大,需要5-50ml;钚浓度低的样品,在离子交换的吸附、淋洗和洗脱过程中,会有一部分钚损失,造成分析结果偏低(参见:李力力,李金英,赵永刚等.铀基体中痕量钚的分离[J].核化学与放射化学,2007,29(3):135-140.)。The ion-exchange-mass spectrometry method is that after adjusting the acid value of the sample, the tetravalent plutonium is adsorbed through the ion-exchange column to realize the separation of uranium and plutonium, and then the plutonium is desorbed from the ion-exchange column with dilute nitric acid, and finally the concentration of plutonium is analyzed by mass spectrometry. The pretreatment process of the separation of uranium and plutonium in this method includes adsorption, leaching, elution and other processes. The process is complicated, and the pretreatment of a single sample takes 2-4 hours; the sample consumption is large, requiring 5-50ml; the sample with low plutonium concentration , during the adsorption, washing and elution process of ion exchange, a part of plutonium will be lost, resulting in low analysis results (see: Li Lili, Li Jinying, Zhao Yonggang, etc. Separation of trace plutonium in uranium matrix [J]. Nuclear Chemistry and Radiochemistry, 2007, 29(3):135-140.).
因此,上述方法在分析核燃料后处理工艺样品时都存在分析误差大、取样量大、分离过程复杂、操作时间长等缺点。Therefore, the above methods all have the disadvantages of large analysis error, large sampling amount, complicated separation process and long operation time when analyzing nuclear fuel reprocessing process samples.
TTA全称是2-噻吩甲酰三氟丙酮,广泛用于硝酸介质中钚的萃取分离,在1-2mol/L硝酸体系中对Pu(Ⅳ)萃取分配系数大于1×104。利用TTA在1mol/L硝酸体系中萃取特点,可以用TTA萃取钚,将99%以上的钚从铀中分离出来。The full name of TTA is 2 -thiopheneformyl trifluoroacetone, which is widely used in the extraction and separation of plutonium in nitric acid medium. Taking advantage of the extraction characteristics of TTA in a 1mol/L nitric acid system, plutonium can be extracted with TTA, and more than 99% of plutonium can be separated from uranium.
电感耦合等离子体质谱(ICP-MS)是可以用于测定超痕量元素和同位素比值的仪器,其优点是:具有很低的检出限(达ng/ml或更低),基体效应小,谱线简单,能同时测定许多元素。安装了有机进样系统的ICP-MS可以对有机相样品的微量元素进行分析。Inductively coupled plasma mass spectrometry (ICP-MS) is an instrument that can be used to determine ultra-trace elements and isotope ratios. Its advantages are: very low detection limit (up to ng/ml or lower), small matrix effect, The spectral lines are simple, and many elements can be determined simultaneously. An ICP-MS equipped with an organic sampling system can analyze trace elements in organic phase samples.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种核燃料后处理流程大量铀中微量钚含量的分析方法,以能够简便、快捷、准确、所需样品量少、干扰小的进行核燃料后处理流程大量铀中微量钚含量的分析。The purpose of the present invention is to provide a method for analyzing the trace plutonium content in a large amount of uranium in the nuclear fuel reprocessing process, so that the trace plutonium content in the large amount of uranium in the nuclear fuel reprocessing process can be carried out simply, quickly, accurately, with less sample volume and less interference. analysis.
为实现此目的,在基础的实施方案中,本发明提供一种核燃料后处理流程大量铀中微量钚含量的分析方法,所述的分析方法依次包括如下步骤:In order to achieve this purpose, in a basic embodiment, the present invention provides a method for analyzing the content of trace plutonium in a large amount of uranium in a nuclear fuel reprocessing process, the analysis method sequentially comprising the following steps:
(1)取一定体积样品,加入浓硝酸使硝酸浓度调至1-2mol/L(样品取样量一般为1-5ml;加入浓硝酸调酸至1-2mol/L是因为萃取剂TTA-二甲苯溶液在1-2mol/L硝酸浓度的溶液中,对钚的萃取分配比最高);(1) Take a certain volume of sample, add concentrated nitric acid to adjust the concentration of nitric acid to 1-2mol/L (sample sampling volume is generally 1-5ml; adding concentrated nitric acid to adjust acid to 1-2mol/L is because the extraction agent TTA-xylene In the solution with 1-2mol/L nitric acid concentration, the extraction and distribution ratio of plutonium is the highest);
(2)在样品中加入亚硝酸钠溶液,混匀放置一段时间(TTA-二甲苯只萃取四价钚,用亚硝酸钠的氧化性,可以将钚保持在四价);(2) Add sodium nitrite solution to the sample, mix well and place for a period of time (TTA-xylene only extracts tetravalent plutonium, and the oxidative property of sodium nitrite can keep plutonium in tetravalent);
(3)在样品中加入萃取剂萃取后,离心分离,除去水相,保留有机相(将萃余水相移除,因为铀只存在于水相中,移除水相可实现铀钚分离);(3) After adding an extractant to the sample for extraction, centrifuge, remove the water phase, and retain the organic phase (remove the raffinate water phase, because uranium only exists in the water phase, and removing the water phase can realize the separation of uranium and plutonium) ;
(4)用洗涤液洗涤有机相2-5次,每次洗涤后除去水相,保留有机相(洗涤液用于洗涤萃取有机相,可以减少有机相中夹带的铀,降低铀对钚的干扰);(4) Wash the organic phase with the washing solution 2-5 times, remove the aqueous phase after each washing, and retain the organic phase (the washing solution is used to wash and extract the organic phase, which can reduce the uranium entrained in the organic phase and reduce the interference of uranium on plutonium). );
(5)将有机相用异丙醇稀释,稀释后的有机相用安装了有机进样系统的ICP-MS分析。(5) The organic phase was diluted with isopropanol, and the diluted organic phase was analyzed by ICP-MS equipped with an organic sampling system.
在一种优选的实施方案中,本发明提供一种核燃料后处理流程大量铀中微量钚含量的分析方法,其中步骤(1)中,取1-5ml样品,加入浓硝酸的浓度为8-12mol/L,样品中铀的浓度为50-90g/L,钚的浓度为1.5×10-6-5×10-8g/L。In a preferred embodiment, the present invention provides a method for analyzing trace plutonium content in a large amount of uranium in a nuclear fuel reprocessing process, wherein in step (1), a 1-5ml sample is taken, and concentrated nitric acid is added to a concentration of 8-12mol /L, the concentration of uranium in the sample is 50-90g/L, and the concentration of plutonium is 1.5×10 -6 -5×10 -8 g/L.
在一种优选的实施方案中,本发明提供一种核燃料后处理流程大量铀中微量钚含量的分析方法,其中步骤(2)中,在样品中加入0.03-0.07ml的0.5-1.5mol/L亚硝酸钠溶液,混匀放置2-10分钟。In a preferred embodiment, the present invention provides a method for analyzing trace plutonium content in a large amount of uranium in a nuclear fuel reprocessing process, wherein in step (2), 0.03-0.07ml of 0.5-1.5mol/L of 0.03-0.07ml is added to the sample Sodium nitrite solution, mix well and leave for 2-10 minutes.
在一种优选的实施方案中,本发明提供一种核燃料后处理流程大量铀中微量钚含量的分析方法,其中步骤(3)中,所述的萃取剂为0.4-0.6mol/LTTA-二甲苯溶液,加入体积为0.4-0.6ml。In a preferred embodiment, the present invention provides a method for analyzing trace plutonium content in a large amount of uranium in a nuclear fuel reprocessing process, wherein in step (3), the extraction agent is 0.4-0.6mol/LTTA-xylene Solution, add volume of 0.4-0.6ml.
在一种优选的实施方案中,本发明提供一种核燃料后处理流程大量铀中微量钚含量的分析方法,其中步骤(3)中,萃取时间为7-15分钟,离心分离为2000-4000转/分钟转速下离心分离1-3min(萃取7-15分钟,是为了保证TTA-二甲苯充分萃取Pu(Ⅳ))。In a preferred embodiment, the present invention provides a method for analyzing trace plutonium content in a large amount of uranium in a nuclear fuel reprocessing process, wherein in step (3), the extraction time is 7-15 minutes, and the centrifugal separation is 2000-4000 rpm Centrifugation for 1-3 minutes at a rotational speed of 1/min (extraction for 7-15 minutes is to ensure sufficient extraction of Pu(IV) by TTA-xylene).
在一种优选的实施方案中,本发明提供一种核燃料后处理流程大量铀中微量钚含量的分析方法,其中步骤(4)中,所述的洗涤液为0.8-1.2mol/L硝酸,每次洗涤时间为4-6min。In a preferred embodiment, the present invention provides a method for analyzing trace plutonium content in a large amount of uranium in a nuclear fuel reprocessing process, wherein in step (4), the washing solution is 0.8-1.2 mol/L nitric acid, and each The washing time is 4-6min.
在一种优选的实施方案中,本发明提供一种核燃料后处理流程大量铀中微量钚含量的分析方法,其中步骤(5)中,稀释倍数为10-50倍。In a preferred embodiment, the present invention provides a method for analyzing trace plutonium content in a large amount of uranium in a nuclear fuel reprocessing process, wherein in step (5), the dilution ratio is 10-50 times.
在一种优选的实施方案中,本发明提供一种核燃料后处理流程大量铀中微量钚含量的分析方法,其中步骤(5)中,配制异丙醇的水相钚标准溶液进行ICP-MS分析的工作曲线绘制。In a preferred embodiment, the present invention provides a method for analyzing trace plutonium content in a large amount of uranium in a nuclear fuel reprocessing process, wherein in step (5), an aqueous plutonium standard solution of isopropanol is prepared for ICP-MS analysis work curve drawing.
在一种优选的实施方案中,本发明提供一种核燃料后处理流程大量铀中微量钚含量的分析方法,其中步骤(5)中,所述的有机进样系统通入氧气(氧气的通入可使有机相燃烧充分,一方面可使ICP-MS火焰稳定不容易熄火,另一方面由于有机相燃烧充分,使碳原子变成二氧化碳,避免仪器出口发生积碳而堵塞,提高ICP-MS的灵敏度)。In a preferred embodiment, the present invention provides a method for analyzing the content of trace plutonium in a large amount of uranium in a nuclear fuel reprocessing process, wherein in step (5), the organic sampling system is supplied with oxygen (the introduction of oxygen The organic phase can be fully burned. On the one hand, the ICP-MS flame can be stabilized and not easily extinguished. On the other hand, due to the sufficient combustion of the organic phase, the carbon atoms are turned into carbon dioxide, so as to avoid the blockage caused by carbon deposition at the outlet of the instrument, and improve the ICP-MS performance. sensitivity).
本发明的有益效果在于,利用本发明的核燃料后处理流程大量铀中微量钚含量的分析方法,能够简便、快捷、准确、所需样品量少、干扰小的进行核燃料后处理流程大量铀中微量钚含量的分析。The beneficial effect of the present invention is that, by using the method for analyzing the trace plutonium content in a large amount of uranium in the nuclear fuel reprocessing process of the present invention, it is simple, fast and accurate to carry out the nuclear fuel reprocessing process trace in a large amount of uranium with less sample amount and less interference. Analysis of plutonium content.
本发明的分析方法可以满足后处理工艺流程含有大量铀的样品中的微量钚浓度分析的要求。用该方法分析钚分析下限可以达到1×10-10g/L,分析误差为5%,分析精度远高于放射性分析法;需要的样品体积少,仅为0.5-5ml;一个批次铀钚分离过程可同时操作8-16个样品,整个铀钚分离预处理过程所需时间不超过1小时,分析人员可根据分析要求,一次同时完成若干个样品的预处理分离(在一次热实验中,分析人员在8小时的工作时间内,预处理样品最多达40个),因此与放射性分析方法和离子交换法相比,预处理分离的时间大大缩短、样品消耗量大大减少、钚损失小、分析误差有所降低。The analysis method of the present invention can meet the requirement of analyzing the concentration of trace plutonium in the sample containing a large amount of uranium in the post-processing process. The analytical lower limit of plutonium analysis by this method can reach 1×10 -10 g/L, the analytical error is 5%, and the analytical precision is much higher than that of the radioactive analysis method; the required sample volume is only 0.5-5ml; one batch of uranium-plutonium The separation process can operate 8-16 samples at the same time, and the entire uranium and plutonium separation pretreatment process takes no more than 1 hour. The analyst can complete the pretreatment separation of several samples at a time according to the analysis requirements (in a thermal experiment, Analysts can pretreat up to 40 samples in an 8-hour working time), so compared to radioanalytical methods and ion exchange methods, the preprocessing separation time is greatly shortened, the sample consumption is greatly reduced, the loss of plutonium is small, and the analysis error somewhat reduced.
本发明的分析方法选用TTA萃取剂实现铀钚分离,然后用安装了有机相进样系统的电感耦合等离子质谱分析钚,大大缩短了铀钚分离预处理时间、提高了分析灵敏度、降低了样品消耗量。该方法成功测定了一批后处理流程热实验中含有大量铀的样品中的微量钚浓度。The analysis method of the invention selects TTA extractant to realize the separation of uranium and plutonium, and then analyzes the plutonium by inductively coupled plasma mass spectrometry equipped with an organic phase sampling system, which greatly shortens the pretreatment time for the separation of uranium and plutonium, improves the analytical sensitivity, and reduces the sample consumption. quantity. The method successfully determined the trace plutonium concentration in a batch of samples containing a large amount of uranium in the thermal experiment of the reprocessing process.
具体实施方式Detailed ways
以下结合实施例对本发明的具体实施方式作出进一步的说明。The specific embodiments of the present invention will be further described below with reference to the examples.
实施例1:Example 1:
(1)取5ml模拟样品(其中铀浓度为50g/L,钚浓度为5.12×10-8g/L),加入1.2ml10mol/L硝酸使溶液酸度达到2mol/L;(1) Take 5ml of simulated sample (wherein the concentration of uranium is 50g/L, and the concentration of plutonium is 5.12×10 -8 g/L), and 1.2ml of 10mol/L nitric acid is added to make the solution acidity reach 2mol/L;
(2)加入0.05ml 1mol/L亚硝酸钠溶液,混匀放置2分钟,将钚氧化至四价;(2) add 0.05ml 1mol/L sodium nitrite solution, mix and place for 2 minutes, and oxidize plutonium to tetravalent;
(3)加入萃取剂0.5mol/LTTA-二甲苯溶液0.5ml萃取Pu(Ⅳ)10min,3000转/分钟转速下,离心分离2min,弃水相,实现铀钚分离;(3) adding extractant 0.5mol/LTTA-xylene solution 0.5ml to extract Pu(IV) for 10min, centrifuging for 2min at 3000 rpm, discarding the water phase to realize the separation of uranium and plutonium;
(4)用1mol/L硝酸洗涤有机相三次,每次洗涤5分钟,以洗脱有机相中夹带的少量铀;(4) washing the organic phase three times with 1 mol/L nitric acid for 5 minutes each time to elute a small amount of uranium entrained in the organic phase;
(5)取0.1ml有机相用异丙醇稀释至2.5ml,用装有有机进样系统的ICP-MS分析钚浓度(配制异丙醇的水相钚标准溶液进行ICP-MS分析的工作曲线绘制,有机进样系统通入氧气),分析的钚浓度为5.26×10-8g/L,相对标准偏差为2.73%。(5) Take 0.1ml of organic phase and dilute it to 2.5ml with isopropanol, analyze the plutonium concentration with ICP-MS equipped with an organic sampling system (preparing the aqueous plutonium standard solution of isopropanol and carry out the working curve of ICP-MS analysis) Drawing, the organic sampling system was fed with oxygen), the analyzed plutonium concentration was 5.26×10 -8 g/L, and the relative standard deviation was 2.73%.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。上述实施例或实施方式只是对本发明的举例说明,本发明也可以以其它的特定方式或其它的特定形式实施,而不偏离本发明的要旨或本质特征。因此,描述的实施方式从任何方面来看均应视为说明性而非限定性的。本发明的范围应由附加的权利要求说明,任何与权利要求的意图和范围等效的变化也应包含在本发明的范围内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their technical equivalents, the present invention is also intended to include such modifications and variations. The above-mentioned embodiments or implementations are merely illustrative of the present invention, and the present invention may also be implemented in other specific forms or other specific forms without departing from the gist or essential characteristics of the present invention. Accordingly, the described embodiments are to be regarded in all respects as illustrative and not restrictive. The scope of the present invention should be indicated by the appended claims, and any changes equivalent to the intent and scope of the claims should also be included within the scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010174422.6A CN111474234A (en) | 2020-03-13 | 2020-03-13 | Method for analyzing content of trace plutonium in large amount of uranium in nuclear fuel post-processing flow |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010174422.6A CN111474234A (en) | 2020-03-13 | 2020-03-13 | Method for analyzing content of trace plutonium in large amount of uranium in nuclear fuel post-processing flow |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111474234A true CN111474234A (en) | 2020-07-31 |
Family
ID=71748189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010174422.6A Pending CN111474234A (en) | 2020-03-13 | 2020-03-13 | Method for analyzing content of trace plutonium in large amount of uranium in nuclear fuel post-processing flow |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111474234A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113311465A (en) * | 2021-04-08 | 2021-08-27 | 中国辐射防护研究院 | Combined analysis method for content of Pu isotope and Np-237 in sample |
CN113311469A (en) * | 2021-04-12 | 2021-08-27 | 中国辐射防护研究院 | Method for analyzing uranium isotope content in reduction system |
CN113311466A (en) * | 2021-04-08 | 2021-08-27 | 中国辐射防护研究院 | Method for analyzing plutonium content in plant sample |
CN113409972A (en) * | 2021-06-23 | 2021-09-17 | 中国核动力研究设计院 | Nuclear fuel burnup measuring process |
CN114136883A (en) * | 2021-11-22 | 2022-03-04 | 杭州谱育科技发展有限公司 | Detection system and method for multivalent plutonium in nuclear fuel reprocessing |
CN115436456A (en) * | 2022-09-19 | 2022-12-06 | 中核四0四有限公司 | Method for rapidly analyzing abundance of uranium and plutonium isotopes in high-radioactivity feed liquid |
CN118050767A (en) * | 2024-01-10 | 2024-05-17 | 中国核电工程有限公司 | Sample analysis system and method for nuclear fuel post-treatment plant |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102352436A (en) * | 2011-07-21 | 2012-02-15 | 中国原子能科学研究院 | Method for separating U (uranium) from Pu (plutonium) in Purex process |
WO2013155638A2 (en) * | 2012-04-18 | 2013-10-24 | Eth Zurich | Reference materials |
CN103451455A (en) * | 2012-05-28 | 2013-12-18 | 中国原子能科学研究院 | Uranium (U) and plutonium (Pu) separation technology in Purex process |
CN109226327A (en) * | 2018-11-01 | 2019-01-18 | 安阳工学院 | A kind of 2.25Cr1Mo0.25V steel heavy cylindrical forging forging rolling bonding manufacturing method |
CN110108779A (en) * | 2019-06-13 | 2019-08-09 | 西安奕斯伟硅片技术有限公司 | The method that quantitative detection is carried out to fluent material with ICP-MS |
CN111380934A (en) * | 2020-01-18 | 2020-07-07 | 邓智超 | Gas alarm detection device |
-
2020
- 2020-03-13 CN CN202010174422.6A patent/CN111474234A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102352436A (en) * | 2011-07-21 | 2012-02-15 | 中国原子能科学研究院 | Method for separating U (uranium) from Pu (plutonium) in Purex process |
WO2013155638A2 (en) * | 2012-04-18 | 2013-10-24 | Eth Zurich | Reference materials |
CN103451455A (en) * | 2012-05-28 | 2013-12-18 | 中国原子能科学研究院 | Uranium (U) and plutonium (Pu) separation technology in Purex process |
CN109226327A (en) * | 2018-11-01 | 2019-01-18 | 安阳工学院 | A kind of 2.25Cr1Mo0.25V steel heavy cylindrical forging forging rolling bonding manufacturing method |
CN110108779A (en) * | 2019-06-13 | 2019-08-09 | 西安奕斯伟硅片技术有限公司 | The method that quantitative detection is carried out to fluent material with ICP-MS |
CN111380934A (en) * | 2020-01-18 | 2020-07-07 | 邓智超 | Gas alarm detection device |
Non-Patent Citations (1)
Title |
---|
毛国淑: "克量级铀中微量钚的分离", 《中国原子能科学研究院年报》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113311465A (en) * | 2021-04-08 | 2021-08-27 | 中国辐射防护研究院 | Combined analysis method for content of Pu isotope and Np-237 in sample |
CN113311466A (en) * | 2021-04-08 | 2021-08-27 | 中国辐射防护研究院 | Method for analyzing plutonium content in plant sample |
CN113311465B (en) * | 2021-04-08 | 2022-04-19 | 中国辐射防护研究院 | Combined analysis method for content of Pu isotope and Np-237 in sample |
CN113311469A (en) * | 2021-04-12 | 2021-08-27 | 中国辐射防护研究院 | Method for analyzing uranium isotope content in reduction system |
CN113409972A (en) * | 2021-06-23 | 2021-09-17 | 中国核动力研究设计院 | Nuclear fuel burnup measuring process |
CN114136883A (en) * | 2021-11-22 | 2022-03-04 | 杭州谱育科技发展有限公司 | Detection system and method for multivalent plutonium in nuclear fuel reprocessing |
CN114136883B (en) * | 2021-11-22 | 2024-12-13 | 中国核电工程有限公司 | Detection system and method of multivalent plutonium in nuclear fuel reprocessing |
CN115436456A (en) * | 2022-09-19 | 2022-12-06 | 中核四0四有限公司 | Method for rapidly analyzing abundance of uranium and plutonium isotopes in high-radioactivity feed liquid |
CN118050767A (en) * | 2024-01-10 | 2024-05-17 | 中国核电工程有限公司 | Sample analysis system and method for nuclear fuel post-treatment plant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111474234A (en) | Method for analyzing content of trace plutonium in large amount of uranium in nuclear fuel post-processing flow | |
Baghaliannejad et al. | Determination of rare earth elements in uranium materials by ICP-MS and ICP-OES after matrix separation by solvent extraction with TEHP | |
CN103014380A (en) | Method for separating neptunium from uranium product by TEVA-UTEVA extraction chromatographic column | |
CN111380943A (en) | Method for analyzing content of trace neptunium in large amount of uranium in nuclear fuel post-processing flow | |
CN108226327A (en) | LC-MS measure uranium in PUREX post processings flow 1AW, neptunium, plutonium content method | |
Natarajan et al. | Optimization of flowsheet for scrubbing of ruthenium during the reprocessing of fast reactor spent fuels | |
CN102949973A (en) | Uranium and rare earth element separation method in fuel element burn-up measurement | |
CN103105321A (en) | Pretreatment method of trace uranium sample | |
Wei-fan et al. | Extraction of thorium traces from hydrochloric acid media by 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 | |
CN116953145A (en) | An analysis method for the concentration of dibutyl phosphate in the organic phase liquid of the PUREX process | |
Ansari et al. | Complexation of actinides with phosphine oxide functionalized pillar [5] arenes: extraction and spectroscopic studies | |
Stokely et al. | New separation method for americium based on liquid-liquid extraction behavior of americium (V) | |
CN112461945B (en) | Method for simultaneously and rapidly analyzing dibutyl phosphate, monobutyl phosphate, n-butyric acid, NO 3-and NO2- | |
Marsh et al. | Improved 2-Thenoyltrifluoroacetone Extraction Method for Radiozirconium | |
Higginson et al. | Rapid selective separation of americium/curium from simulated nuclear forensic matrices using triazine ligands | |
Wang et al. | Demonstration of a crown ether process for partitioning strontium from high level liquid waste (HLLW) | |
CN106841468A (en) | The analysis method of azide ion or nitrite anions in complicated nitric acid system | |
Rao et al. | Determination of uranium and plutonium in high active solutions by extractive spectrophotometry | |
Dhami et al. | Validation of the flow-sheet proposed for reprocessing of AHWR spent fuel: counter-current studies using TBP | |
CN103323552B (en) | Quick analysis method of N,N-dimethylhydroxylamine and methyl hydrazine | |
Moore | Radiochemical determination of neptunium-239 and plutonium-239 in homogeneous reactor fuel and blanket solutions | |
CN113311469A (en) | Method for analyzing uranium isotope content in reduction system | |
CN105352897A (en) | Method for determination of complex extraction equilibrium constant of double extraction agent organic phase system | |
CN114689616B (en) | Analysis method for content of trace neptunium in high-discharge liquid | |
US5613186A (en) | Method for monitoring the ADU process for technetium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200731 |
|
RJ01 | Rejection of invention patent application after publication |