CN111474227A - Potentiometric gas sensor using titanium-doped strontium ferrite as sensitive electrode - Google Patents
Potentiometric gas sensor using titanium-doped strontium ferrite as sensitive electrode Download PDFInfo
- Publication number
- CN111474227A CN111474227A CN202010484409.0A CN202010484409A CN111474227A CN 111474227 A CN111474227 A CN 111474227A CN 202010484409 A CN202010484409 A CN 202010484409A CN 111474227 A CN111474227 A CN 111474227A
- Authority
- CN
- China
- Prior art keywords
- srfe
- hydrogen
- gas sensor
- sensitive electrode
- response
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052712 strontium Inorganic materials 0.000 title claims abstract description 9
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 title claims abstract description 7
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 51
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 51
- 239000007789 gas Substances 0.000 claims abstract description 38
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 29
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 26
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000012855 volatile organic compound Substances 0.000 claims abstract description 14
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 11
- 230000009977 dual effect Effects 0.000 claims abstract description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 70
- 229910052697 platinum Inorganic materials 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 239000007784 solid electrolyte Substances 0.000 claims description 9
- 229910021529 ammonia Inorganic materials 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000002228 NASICON Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims 2
- 150000004706 metal oxides Chemical class 0.000 claims 2
- 230000004044 response Effects 0.000 abstract description 43
- 239000007772 electrode material Substances 0.000 abstract description 18
- 230000003197 catalytic effect Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 5
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical class CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000011858 nanopowder Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000011540 sensing material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- DTDCCPMQHXRFFI-UHFFFAOYSA-N dioxido(dioxo)chromium lanthanum(3+) Chemical compound [La+3].[La+3].[O-][Cr]([O-])(=O)=O.[O-][Cr]([O-])(=O)=O.[O-][Cr]([O-])(=O)=O DTDCCPMQHXRFFI-UHFFFAOYSA-N 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4075—Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
技术领域technical field
本发明属于气体传感器领域,具体涉及一种以钛掺杂的铁酸锶为敏感电极的电位型气体传感器。The invention belongs to the field of gas sensors, in particular to a potential type gas sensor using titanium-doped strontium ferrite as a sensitive electrode.
背景技术Background technique
现实的生产生活中会产生大量的挥发性有机化合物气体(VOC)、一氧化碳以及氨气等有毒有害的气体,对人类的身体健康造成极大的危害。氢气作为一种新兴能源,具有高效、可再生且无污染等优点,但由于氢气无色无味,泄漏后不易察觉,极低的点燃能(0.019mJ)与较宽的爆炸极限(4%-75.6%)也使得氢气极易发生燃烧爆炸,因此在生产生活的各个场所实现对挥发性有机化合物气体(VOCs)、一氧化碳、氨气以及氢气等有毒有害、易燃易爆气体的监控与检测也就显得尤为重要。In real production and life, a large amount of toxic and harmful gases such as volatile organic compound gas (VOC), carbon monoxide and ammonia gas will be produced, which will cause great harm to human health. As an emerging energy, hydrogen has the advantages of high efficiency, renewable and non-polluting, but because hydrogen is colorless and odorless, it is not easy to detect after leakage, extremely low ignition energy (0.019mJ) and wide explosion limit (4%-75.6 %) also makes hydrogen extremely prone to combustion and explosion, so the monitoring and detection of volatile organic compound gases (VOCs), carbon monoxide, ammonia and hydrogen and other toxic, harmful, flammable and explosive gases is also possible in various places of production and life. appear particularly important.
目前较为方便与经济的气体监控检测手段为气体传感器,但存在传感器响应性能低、传感器制作成本高等缺点。另外,目前的研究结果中,常规的电位型气体传感器,敏感电极材料连接数据采集仪器时,对气体的响应一般表现为负极性响应(H.Zhang,J.X.Yi,X.Jiang,Fast response,highly sensitive and selective mixed-potential H2sensor based on(La,Sr)(Cr,Fe)O3-δperovskite sensing electrode,ACSAppl.Mater.Interfaces 9(2017)17218-17225.doi:10.1021/acsami.7b01901.)。At present, a more convenient and economical gas monitoring and detection method is a gas sensor, but it has the disadvantages of low sensor response performance and high sensor manufacturing cost. In addition, in the current research results, when the conventional potentiometric gas sensor and the sensitive electrode material are connected to the data acquisition instrument, the response to the gas is generally negative response (H.Zhang, JXYi, X.Jiang, Fast response, highly sensitive and selective mixed-potential H 2 sensor based on(La,Sr)(Cr,Fe)O 3-δ perovskite sensing electrode,ACSAppl.Mater.Interfaces 9(2017)17218-17225.doi:10.1021/acsami.7b01901.) .
研究表明,对气体具有良好电化学催化活性的钙钛矿氧化物可以用来作为敏感电极材料实现对气体的检测。Pt在混合电位型气体传感器中常被用做参比电极进行研究,但由于贵金属成本较高,导致传感器制作成本提升。寻找合适的电极材料以实现对氢气的响应性能的提升并降低成本是亟需解决的问题。SrFe1-xTixO3-δ在固体氧化物燃料中对氢气具有良好的电化学催化性能,可以作为传感器的敏感电极来进行研究,同时利用制作成本相对较低的钙钛矿氧化物替代贵金属铂也能进一步降低传感器制作成本。Studies have shown that perovskite oxides with good electrochemical catalytic activity for gases can be used as sensitive electrode materials for gas detection. Pt is often used as a reference electrode in mixed-potential gas sensors for research, but due to the high cost of precious metals, the cost of sensor fabrication is increased. Finding suitable electrode materials to improve the response performance to hydrogen and reduce the cost is an urgent problem to be solved. SrFe 1-x Ti x O 3-δ has good electrochemical catalytic performance for hydrogen in solid oxide fuels, and can be used as a sensitive electrode for sensors to be studied, while using relatively low-cost perovskite oxides to replace The precious metal platinum can also further reduce the cost of sensor fabrication.
发明内容SUMMARY OF THE INVENTION
本发明针对上述现有技术所存在的不足,旨在提供一种以钛掺杂的铁酸锶为敏感电极的电位型气体传感器。本发明采用的敏感电极材料对包括但不局限于氢气、挥发性有机化合物(VOC)、一氧化碳、氨气等具有较好的电化学催化活性,本发明优选为对氢气的具有最好的检测性能;同时,本发明采用的敏感电极材料能进一步提高传感器对检测气体的响应,另外同时以钙钛矿氧化物取代传统的Pt参比电极,能显著降低传感器的制作成本。以下内容以电位型氢气传感器为例进行描述。The present invention aims to provide a potential type gas sensor using titanium-doped strontium ferrite as a sensitive electrode in view of the above-mentioned deficiencies in the prior art. The sensitive electrode material used in the present invention has good electrochemical catalytic activity for including but not limited to hydrogen, volatile organic compounds (VOC), carbon monoxide, ammonia, etc. The present invention preferably has the best detection performance for hydrogen At the same time, the sensitive electrode material used in the present invention can further improve the response of the sensor to the detection gas, and simultaneously replace the traditional Pt reference electrode with perovskite oxide, which can significantly reduce the fabrication cost of the sensor. The following contents are described by taking a potentiometric hydrogen sensor as an example.
本发明电位型氢气传感器之一,是以钙钛矿氧化物为敏感电极材料、参比电极包括但不局限于铂,也可是其它金属或氧化物、包括但不局限于GDC、SDC、YSZ或NASICON等为固体电解质构筑的电位型氢气传感器。One of the potential type hydrogen sensors of the present invention uses perovskite oxide as the sensitive electrode material, and the reference electrode includes but not limited to platinum, and can also be other metals or oxides, including but not limited to GDC, SDC, YSZ or Potentiometric hydrogen sensors constructed by solid electrolytes such as NASICON.
所述钙钛矿氧化物为SrFe1-xTixO3-δ,0≤x≤0.9,本发明优选为x=0.5时具有最佳性能,其中,δ的原因为氧空位的存在,部分元素以非正常价态存在,故具有非化学计量比的氧。The perovskite oxide is SrFe 1-x Ti x O 3-δ , 0≤x≤0.9, the present invention preferably has the best performance when x=0.5, wherein, the reason for δ is the existence of oxygen vacancies, part of The element exists in an abnormal valence state and therefore has a non-stoichiometric ratio of oxygen.
其中,GDC为Ce0.8Gd0.2O1.9-δ的简称,是指掺杂20mol%Gd2O3的CeO2。Among them, GDC is the abbreviation of Ce 0.8 Gd 0.2 O 1.9-δ , which refers to CeO 2 doped with 20 mol% Gd 2 O 3 .
本发明电位型氢气传感器的制备方法,包括如下步骤:The preparation method of the potential type hydrogen sensor of the present invention comprises the following steps:
将敏感电极材料与改性松油醇以1:1的质量比混合并研磨2h(控制粒径≤10μm);通过丝网印刷的方法将研磨均匀的混合浆料与铂浆分别涂覆在同一电解质基片上并保持两种浆料互不接触,电极面积包括但不局限于3mm2,并在800-1000℃下烧结致密,分别获得敏感电极和铂电极;敏感电极与铂电极间通过铂丝(直径为0.05mm)连接,即可获得正极性响应电位型氢气传感器。Mix the sensitive electrode material and the modified terpineol in a mass ratio of 1:1 and grind for 2h (control particle size ≤10μm); apply the uniformly ground mixed slurry and platinum slurry on the same surface by screen printing. On the electrolyte substrate and keep the two pastes out of contact with each other, the electrode area includes but not limited to 3 mm 2 , and sintered at 800-1000 ° C to obtain a sensitive electrode and a platinum electrode respectively; the sensitive electrode and the platinum electrode are connected by a platinum wire (0.05mm in diameter) connection to obtain a positive-polarity response potentiometric hydrogen sensor.
本发明电位型氢气传感器之二,为双敏感电极电位型氢气传感器,是以SrFe0.5Ti0.5O3-δ为敏感电极、包括但不局限于LSCF,也可以是其它常规的氧化物或金属气敏材料为另一敏感电极,本发明优选于LSCF为另一敏感电极、包括但不局限于GDC、SDC、YSZ及NASICON等为固体电解质构筑的混合电位型氢气传感器,本发明优选于GDC为固体电解质。The second potential type hydrogen sensor of the present invention is a dual sensitive electrode potential type hydrogen sensor, which uses SrFe 0.5 Ti 0.5 O 3-δ as the sensitive electrode, including but not limited to LSCF, and can also be other conventional oxides or metal gases. The sensitive material is another sensitive electrode. In the present invention, it is preferred that LSCF be another sensitive electrode, including but not limited to GDC, SDC, YSZ, and NASICON, etc., which are mixed-potential hydrogen sensors constructed with solid electrolytes. The present invention is preferably used when GDC is solid. electrolyte.
其中,LSCF是La0.8Sr0.2Cr0.5Fe0.5O3-δ的简称,为掺杂20mol%Sr与50mol%Fe的铬酸镧。Among them, LSCF is the abbreviation of La 0.8 Sr 0.2 Cr 0.5 Fe 0.5 O 3-δ , and is lanthanum chromate doped with 20 mol% Sr and 50 mol% Fe.
本发明电位型氢气传感器的制备方法,包括如下步骤:The preparation method of the potential type hydrogen sensor of the present invention comprises the following steps:
将敏感电极材料SrFe0.5Ti0.5O3-δ、LSCF纳米粉末分别与改性松油醇以1:1的质量比混合并研磨2h(控制粒径≤10μm);通过丝网印刷的方法将研磨均匀的两种浆料分别涂覆在同一电解质基片上并保持两种浆料互不接触,电极面积包括但不局限于3mm2,并在1000℃下烧结致密;SrFe0.5Ti0.5O3-δ敏感电极、LSCF敏感电极间通过铂丝(直径为0.05mm)连接,即可获得双敏感电极电位型氢气传感器。The sensitive electrode materials SrFe 0.5 Ti 0.5 O 3-δ and LSCF nano-powder were mixed with modified terpineol in a mass ratio of 1:1 and ground for 2 hours (controlling the particle size ≤10 μm); The two slurries are uniformly coated on the same electrolyte substrate respectively and keep the two slurries out of contact with each other, the electrode area includes but not limited to 3mm 2 , and is sintered and dense at 1000 ℃; SrFe 0.5 Ti 0.5 O 3-δ The sensitive electrode and the LSCF sensitive electrode are connected by a platinum wire (0.05 mm in diameter) to obtain a double sensitive electrode potential type hydrogen sensor.
上述SrFe0.5Ti0.5O3-δ、LSCF纳米粉末与GDC电解质基片可自行合成,也可市购获得。The above-mentioned SrFe 0.5 Ti 0.5 O 3-δ , LSCF nano-powder and GDC electrolyte substrate can be self-synthesized or commercially available.
与现有技术相比,本发明的有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are embodied in:
1、本发明电位型气体传感器中,SrFe1-xTixO3-δ钙钛矿氧化物对包括但不局限于氢气、挥发性有机化合物(VOC)、一氧化碳、氨气等表现出正极性响应,与传统材料的负极性响应相反,并且掺杂50mol%Ti的铁酸锶氧化物SrFe0.5Ti0.5O3-δ对氢气具有最高的响应值(500℃时100ppm氢气响应值为29.1mV);1. In the potentiometric gas sensor of the present invention, the SrFe 1-x Ti x O 3-δ perovskite oxide exhibits positive polarity to, including but not limited to, hydrogen, volatile organic compounds (VOC), carbon monoxide, ammonia, etc. response, in contrast to the negative polarity response of conventional materials, and the strontium ferrite oxide SrFe 0.5 Ti 0.5 O 3-δ doped with 50 mol% Ti has the highest response to hydrogen (29.1 mV for 100 ppm hydrogen at 500 °C) ;
2、本发明电位型气体传感器中,SrFe0.5Ti0.5O3-δ、包括但不局限于LSCF,也可以是常规其它的氧化物或金属气敏材料两种材料对包括但不局限于氢气、挥发性有机化合物(VOC)、一氧化碳、氨气等分别表现为正极性响应与负极性响应,测试SrFe0.5Ti0.5O3-δ与LSCF两个敏感电极之间的电压响应值为二者分别作为敏感电极的电压响应值之和,基于此能进一步提升传感器对气体的响应值,拓展其应用。2. In the potential type gas sensor of the present invention, SrFe 0.5 Ti 0.5 O 3-δ , including but not limited to LSCF, can also be conventional other oxides or metal gas-sensing materials, including but not limited to hydrogen, Volatile organic compounds (VOC), carbon monoxide, ammonia, etc. showed positive and negative responses, respectively. The voltage response values between the two sensitive electrodes of SrFe 0.5 Ti 0.5 O 3-δ and LSCF were measured as the two respectively. The sum of the voltage response values of the sensitive electrodes can further improve the sensor's response value to gas and expand its application.
3、LSCF或其他常规任何氧化物或金属气敏材料在此发明中替代贵金属铂,且制作成本远低于贵金属铂,基于此可大幅度降低传感器的制作成本。3. LSCF or any other conventional oxide or metal gas-sensing material can replace precious metal platinum in this invention, and the production cost is much lower than precious metal platinum, based on this, the production cost of the sensor can be greatly reduced.
附图说明Description of drawings
图1为实施例1中SrFe0.8Ti0.2O3-δ/GDC/Pt、SrFe0.6Ti0.4O3-δ/GDC/Pt、SrFe0.5Ti0.5O3-δ/GDC/Pt、SrFe0.3Ti0.7O3-δ/GDC/Pt及SrFe0.1Ti0.9O3-δ/GDC/Pt传感器示意图。Fig. 1 shows SrFe 0.8 Ti 0.2 O 3-δ /GDC/Pt, SrFe 0.6 Ti 0.4 O 3-δ /GDC/Pt, SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt, SrFe 0.3 Ti 0.7 in Example 1 Schematic diagrams of O 3-δ /GDC/Pt and SrFe 0.1 Ti 0.9 O 3-δ /GDC/Pt sensors.
图2为实施例2中SrFe0.5Ti0.5O3-δ/GDC/LSCF传感器示意图。FIG. 2 is a schematic diagram of the SrFe 0.5 Ti 0.5 O 3-δ /GDC/LSCF sensor in Example 2. FIG.
图3为实施例1中SrFe1-xTixO3-δ粉末及电解质GDC的XRD图。3 is the XRD pattern of SrFe 1-x Ti x O 3-δ powder and electrolyte GDC in Example 1. FIG.
图4为实施例1中SrFe1-xTixO3-δ对氢气的动态响应图。4 is a graph showing the dynamic response of SrFe 1-x Ti x O 3-δ to hydrogen in Example 1.
图5为实施例1中SrFe0.5Ti0.5O3-δ/GDC/Pt传感器检测氢气、乙醇、氨气、一氧化碳等气体的动态响应图。5 is a dynamic response diagram of the SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt sensor in Example 1 for detecting gases such as hydrogen, ethanol, ammonia, and carbon monoxide.
图6为实施例2中SrFe0.5Ti0.5O3-δ/GDC/Pt与SrFe0.5Ti0.5O3-δ/GDC/LSCF两个传感器响应值与20-100ppm氢气浓度的线性关系图。6 is a linear relationship diagram of two sensor response values of SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt and SrFe 0.5 Ti 0.5 O 3-δ /GDC/LSCF and the hydrogen concentration of 20-100 ppm in Example 2.
图7为实施例2中SrFe0.5Ti0.5O3-δ/GDC/Pt、LSCF/GDC/Pt及SrFe0.5Ti0.5O3-δ/GDC/LSCF三个传感器对100-500ppm浓度氢气的动态响应图。Fig. 7 is the dynamic response of three sensors of SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt, LSCF/GDC/Pt and SrFe 0.5 Ti 0.5 O 3-δ /GDC/LSCF to 100-500ppm hydrogen concentration in Example 2 picture.
具体实施方式Detailed ways
下面两个实施例是对本发明的详细说明,均是以检测氢气为例,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式、具体的操作过程以及对所得结果的简单描述,以下实施例只是用于帮助理解本发明的实施方法与核心思想,但本发明的保护范围不限于下述的实施例。The following two examples are detailed descriptions of the present invention, both taking the detection of hydrogen gas as an example. The following examples are implemented on the premise of the technical solution of the present invention, and provide detailed implementation methods, specific operating procedures and the results obtained. For a brief description of the results, the following examples are only used to help understand the implementation method and core idea of the present invention, but the protection scope of the present invention is not limited to the following examples.
实施例1:Example 1:
本实施例以Ti的掺杂量分别为20、40、50、70、90mol%的铁酸锶氧化物SrFe0.8Ti0.2O3-δ、SrFe0.6Ti0.4O3-δ、SrFe0.5Ti0.5O3-δ、SrFe0.3Ti0.7O3-δ及SrFe0.1Ti0.9O3-δ分别为敏感电极材料,Pt为参比电极,GDC为固体电解质,具体制备方法如下:In this example, strontium ferrite oxides SrFe 0.8 Ti 0.2 O 3-δ , SrFe 0.6 Ti 0.4 O 3-δ , SrFe 0.5 Ti 0.5 O with the doping amounts of Ti are respectively 20, 40, 50, 70, and 90 mol%. 3-δ , SrFe 0.3 Ti 0.7 O 3-δ and SrFe 0.1 Ti 0.9 O 3-δ are the sensitive electrode materials, Pt is the reference electrode, GDC is the solid electrolyte, and the specific preparation method is as follows:
敏感电极材料SrFe0.8Ti0.2O3-δ、SrFe0.6Ti0.4O3-δ、SrFe0.5Ti0.5O3-δ、SrFe0.3Ti0.7O3-δ及SrFe0.1Ti0.9O3-δ与改性松油醇分别以1:1的质量比混合并研磨2h(粒径均在10μm以下);通过丝网印刷的方法将研磨均匀的敏感电极材料与铂浆分别涂覆在电解质基片上,电极面积为3mm2,并在800-1000℃下烧结致密,分别获得敏感电极和铂电极;敏感电极与铂电极间通过直径为0.05mm的铂丝连接,即完成SrFe0.8Ti0.2O3-δ/GDC/Pt、SrFe0.6Ti0.4O3-δ/GDC/Pt、SrFe0.5Ti0.5O3-δ/GDC/Pt、SrFe0.3Ti0.7O3-δ/GDC/Pt及SrFe0.1Ti0.9O3-δ/GDC/Pt传感器的制作,其结构如图1所示。Sensitive electrode materials SrFe 0.8 Ti 0.2 O 3-δ , SrFe 0.6 Ti 0.4 O 3-δ , SrFe 0.5 Ti 0.5 O 3-δ , SrFe 0.3 Ti 0.7 O 3-δ and SrFe 0.1 Ti 0.9 O 3-δ and modification Terpineol was mixed at a mass ratio of 1:1 and ground for 2 hours (the particle size was below 10 μm); the uniformly ground sensitive electrode material and platinum paste were coated on the electrolyte substrate by screen printing, and the electrode area was It is 3mm 2 , and sintered at 800-1000℃ to obtain a sensitive electrode and a platinum electrode respectively; the sensitive electrode and the platinum electrode are connected by a platinum wire with a diameter of 0.05mm, that is, SrFe 0.8 Ti 0.2 O 3-δ /GDC is completed /Pt, SrFe 0.6 Ti 0.4 O 3-δ /GDC/Pt, SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt, SrFe 0.3 Ti 0.7 O 3-δ /GDC/Pt and SrFe 0.1 Ti 0.9 O 3-δ The structure of the /GDC/Pt sensor is shown in Figure 1.
图3为敏感电极材料SrFe0.8Ti0.2O3-δ、SrFe0.6Ti0.4O3-δ、SrFe0.5Ti0.5O3-δ、SrFe0.3Ti0.7O3-δ、SrFe0.1Ti0.9O3-δ以及固体电解质GDC的XRD图,材料成相良好,无杂峰。Figure 3 shows the sensitive electrode materials SrFe 0.8 Ti 0.2 O 3-δ , SrFe 0.6 Ti 0.4 O 3-δ , SrFe 0.5 Ti 0.5 O 3-δ , SrFe 0.3 Ti 0.7 O 3-δ , SrFe 0.1 Ti 0.9 O 3-δ As well as the XRD pattern of the solid electrolyte GDC, the material has good phase formation and no impurity peaks.
将本实施例制备的混合电位型氢气传感器置于管式马弗炉中,使传感器在400-500℃下工作,利用安捷伦电压数据采集器检测传感器在不同氢气浓度下的响应值,其中敏感电极材料连接安捷伦电压数据采集器的正极,参比电极Pt连接安捷伦电压数据采集器的负极。The mixed-potential hydrogen sensor prepared in this example was placed in a tubular muffle furnace, and the sensor was operated at 400-500 ° C, and the response value of the sensor under different hydrogen concentrations was detected by using an Agilent voltage data collector. The material is connected to the positive electrode of the Agilent voltage data collector, and the reference electrode Pt is connected to the negative electrode of the Agilent voltage data collector.
图4为传感器SrFe0.8Ti0.2O3-δ/GDC/Pt、SrFe0.6Ti0.4O3-δ/GDC/Pt、SrFe0.5Ti0.5O3-δ/GDC/Pt、SrFe0.3Ti0.7O3-δ/GDC/Pt及SrFe0.1Ti0.9O3-δ/GDC/Pt在500℃下对100ppm氢气的动态响应测试,图中可以看到,SrFe1-xTixO3-δ材料在各个比例下对氢气均为正极性响应,即V1=ESrFe0.8Ti0.2O3-δ-EPt>0,V2=ESrFe0.6Ti0.4O3-δ-EPt>0,V3=ESrFe0.5Ti0.5O3-δ-EPt>0,V4=ESrFe0.3Ti0.7O3-δ-EPt>0,V5=ESrFe0.1Ti0.9O3-δ-EPt>0,且传感器SrFe0.5Ti0.5O3-δ/GDC/Pt对氢气的响应最好,与其余(如图6中LSCF/GDC/Pt对氢气表现为负极性响应)电位型氢气传感器响应极性相反,这是一种新的响应极性,能进一步扩展其应用。Figure 4 shows sensors SrFe 0.8 Ti 0.2 O 3-δ /GDC/Pt, SrFe 0.6 Ti 0.4 O 3-δ /GDC/Pt, SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt, SrFe 0.3 Ti 0.7 O 3- The dynamic response test of δ /GDC/Pt and SrFe 0.1 Ti 0.9 O 3-δ /GDC/Pt to 100ppm hydrogen at 500℃, it can be seen from the figure that the SrFe 1-x Ti x O 3-δ material is in each ratio The following are positive responses to hydrogen, namely V 1 =E SrFe0.8Ti0.2O3-δ -E Pt >0, V 2 =E SrFe0.6Ti0.4O3-δ -E Pt >0, V 3 =E SrFe0. 5Ti0.5O3-δ -E Pt > 0, V 4 =E SrFe0.3Ti0.7O3-δ -E Pt >0, V 5 =E SrFe0.1Ti0.9O3-δ -E Pt > 0, and the sensor SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt has the best response to hydrogen, which is opposite to the response of the other potential hydrogen sensors (as shown in Figure 6, LSCF/GDC/Pt has a negative response to hydrogen), which is a new type of hydrogen sensor. The response polarity can further expand its application.
图5为SrFe0.5Ti0.5O3-δ/GDC/Pt传感器检测氢气、乙醇、氨气、一氧化碳等气体的动态响应图。检测温度为500℃,气体浓度为100ppm,结果得到该传感器对氢气、乙醇、氨气、一氧化碳等气体均为正极性响应。Figure 5 is the dynamic response diagram of the SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt sensor for detecting hydrogen, ethanol, ammonia, carbon monoxide and other gases. The detection temperature is 500°C, and the gas concentration is 100ppm. The results show that the sensor has a positive response to gases such as hydrogen, ethanol, ammonia, and carbon monoxide.
实施例2:Example 2:
本实施例是以SrFe0.5Ti0.5O3-δ为正极性的敏感电极,LSCF为负极性的敏感电极,GDC为固体电解质的氢气传感器,具体制备方法如下:In this embodiment, SrFe 0.5 Ti 0.5 O 3-δ is a sensitive electrode with positive polarity, LSCF is a sensitive electrode with negative polarity, and GDC is a hydrogen sensor with solid electrolyte. The specific preparation method is as follows:
敏感电极材料SrFe0.5Ti0.5O3-δ,LSCF与改性松油醇分别以1:1的质量比混合并研磨2h(粒径均在10μm以下);通过丝网印刷的方法将研磨均匀的敏感电极材料与铂浆分别涂覆在同一个电解质基片上,电极面积为3mm2,并在1000℃下烧结致密;在SrFe0.5Ti0.5O3-δ,LSCF敏感电极与铂电极上各连接直径为0.05mm的铂丝。即完成SrFe0.5Ti0.5O3-δ/GDC/LSCF传感器的制作,其结构如图2所示。Sensitive electrode materials SrFe 0.5 Ti 0.5 O 3-δ , LSCF and modified terpineol were mixed at a mass ratio of 1:1 and ground for 2 hours (the particle sizes were all below 10 μm); The sensitive electrode material and the platinum paste are respectively coated on the same electrolyte substrate, the electrode area is 3mm 2 , and sintered at 1000℃ to be dense; in SrFe 0.5 Ti 0.5 O 3-δ , the diameter of each connection between the LSCF sensitive electrode and the platinum electrode is 0.05mm platinum wire. That is, the fabrication of the SrFe 0.5 Ti 0.5 O 3-δ /GDC/LSCF sensor is completed, and its structure is shown in FIG. 2 .
图6为实施例2中SrFe0.5Ti0.5O3-δ/GDC/Pt与SrFe0.5Ti0.5O3-δ/GDC/LSCF两个传感器响应值与20-100ppm氢气浓度的线性关系图。根据拟合可得到,SrFe0.5Ti0.5O3-δ/GDC/Pt与SrFe0.5Ti0.5O3-δ/GDC/LSCF两个传感器响应值与浓度分别满足Y=0.191x+8.8与Y=0.537x+17.6的关系式。在氢气浓度为0.5ppm时,两个传感器仍然有8.9mV与17.8mV的响应值,该传感器在低浓度氢气下,仍具有较高的响应值。6 is a linear relationship diagram of two sensor response values of SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt and SrFe 0.5 Ti 0.5 O 3-δ /GDC/LSCF and the hydrogen concentration of 20-100 ppm in Example 2. According to the fitting, it can be obtained that the response values and concentrations of the two sensors SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt and SrFe 0.5 Ti 0.5 O 3-δ /GDC/LSCF satisfy Y=0.191x+8.8 and Y=0.537 respectively The relation of x+17.6. When the hydrogen concentration is 0.5ppm, the two sensors still have response values of 8.9mV and 17.8mV, and the sensor still has a higher response value under low hydrogen concentration.
图7显示的是SrFe0.5Ti0.5O3-δ/GDC/Pt、LSCF/GDC/Pt及SrFe0.5Ti0.5O3-δ/GDC/LSCF三个传感器对不同浓度氢气的动态响应图,如图中所示,材料SrFe0.5Ti0.5O3-δ对氢气表现为正极性响应,LSCF对氢气表现为负极性响应,基于此现象,以SrFe0.5Ti0.5O3-δ与LSCF为双敏感电极的SrFe0.5Ti0.5O3-δ/GDC/LSCF传感器能将SrFe0.5Ti0.5O3-δ/GDC/Pt、LSCF/GDC/Pt对氢气的响应值进行叠加,从而进一步提升传感器对氢气的响应值,即V6=(ESrFe0.5Ti0.5O3-δ-EPt)-(ELSCF-EPt)=ESrFe0.5Ti0.5O3-δ-ELSCF=V3+|VLSCF/GDC/Pt|>0,这样就可以实现对材料SrFe1- xTixO3-δ等表现的正极性响应这一新现象实现进一步的应用。Figure 7 shows the dynamic responses of three sensors, SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt, LSCF/GDC/Pt and SrFe 0.5 Ti 0.5 O 3-δ /GDC/LSCF, to different concentrations of hydrogen, as shown in Fig. As shown in the figure, the material SrFe 0.5 Ti 0.5 O 3-δ exhibits a positive response to hydrogen, and LSCF exhibits a negative response to hydrogen. Based on this phenomenon, SrFe 0.5 Ti 0.5 O 3-δ and LSCF are used as dual sensitive electrodes The SrFe 0.5 Ti 0.5 O 3-δ /GDC/LSCF sensor can superimpose the response values of SrFe 0.5 Ti 0.5 O 3-δ /GDC/Pt and LSCF/GDC/Pt to hydrogen, thereby further improving the response value of the sensor to hydrogen , that is, V 6 =(E SrFe0.5Ti0.5O3-δ -E Pt )-(E LSCF -E Pt )=E SrFe0.5Ti0.5O3-δ -E LSCF =V 3 +|V LSCF/GDC/Pt | > 0, so that the new phenomenon of positive polarity response exhibited by materials such as SrFe 1- x Ti x O 3-δ can be further applied.
仅为本发明的示例性实施例而已,并不用以限制本发明所列举的SrFe1-xTixO3-δ材料所表现,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is only an exemplary embodiment of the present invention, and is not intended to limit the performance of the SrFe 1-x Ti x O 3-δ materials listed in the present invention. Any modifications, equivalents made within the spirit and principle of the present invention Substitutions and improvements, etc., should all be included within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010484409.0A CN111474227B (en) | 2020-06-01 | 2020-06-01 | Potential gas sensor with titanium-doped strontium ferrite as sensitive electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010484409.0A CN111474227B (en) | 2020-06-01 | 2020-06-01 | Potential gas sensor with titanium-doped strontium ferrite as sensitive electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111474227A true CN111474227A (en) | 2020-07-31 |
CN111474227B CN111474227B (en) | 2021-12-14 |
Family
ID=71765459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010484409.0A Active CN111474227B (en) | 2020-06-01 | 2020-06-01 | Potential gas sensor with titanium-doped strontium ferrite as sensitive electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111474227B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113189170A (en) * | 2021-04-15 | 2021-07-30 | 上海交通大学 | Double-working-electrode mixed potential type ammonia gas sensor and preparation method thereof |
CN114018987A (en) * | 2021-09-14 | 2022-02-08 | 湖北大学 | A kind of solid electrolyte type hydrogen sensor and its making method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106770560A (en) * | 2017-01-23 | 2017-05-31 | 中国科学技术大学 | With strontium, the electric potential type hydrogen gas sensor of the Lanthanum Chromite as sensitive electrode of Fe2O3 doping and preparation method thereof |
CN110031523A (en) * | 2019-05-27 | 2019-07-19 | 中国科学技术大学 | Using the cadmium ferrite of strontium doping as mixed potential type hydrogen gas sensor of sensitive electrode and preparation method thereof |
-
2020
- 2020-06-01 CN CN202010484409.0A patent/CN111474227B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106770560A (en) * | 2017-01-23 | 2017-05-31 | 中国科学技术大学 | With strontium, the electric potential type hydrogen gas sensor of the Lanthanum Chromite as sensitive electrode of Fe2O3 doping and preparation method thereof |
CN110031523A (en) * | 2019-05-27 | 2019-07-19 | 中国科学技术大学 | Using the cadmium ferrite of strontium doping as mixed potential type hydrogen gas sensor of sensitive electrode and preparation method thereof |
Non-Patent Citations (6)
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113189170A (en) * | 2021-04-15 | 2021-07-30 | 上海交通大学 | Double-working-electrode mixed potential type ammonia gas sensor and preparation method thereof |
CN114018987A (en) * | 2021-09-14 | 2022-02-08 | 湖北大学 | A kind of solid electrolyte type hydrogen sensor and its making method |
CN114018987B (en) * | 2021-09-14 | 2024-01-09 | 湖北大学 | Solid electrolyte type hydrogen sensor and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111474227B (en) | 2021-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | electrochemical NOx gas sensors based on stabilized zirconia | |
Liu et al. | Solid-state gas sensors for high temperature applications–a review | |
US20070080074A1 (en) | Multicell ammonia sensor and method of use thereof | |
CN110031523A (en) | Using the cadmium ferrite of strontium doping as mixed potential type hydrogen gas sensor of sensitive electrode and preparation method thereof | |
CN106770560A (en) | With strontium, the electric potential type hydrogen gas sensor of the Lanthanum Chromite as sensitive electrode of Fe2O3 doping and preparation method thereof | |
Li et al. | High performance solid electrolyte-based NO2 sensor based on Co3V2O8 derived from metal-organic framework | |
Zheng et al. | Mesoporous tungsten oxide electrodes for YSZ-based mixed potential sensors to detect NO2 in the sub ppm-range | |
Liu et al. | A limiting current oxygen sensor prepared by a co-pressing and co-sintering technique | |
CN111474227A (en) | Potentiometric gas sensor using titanium-doped strontium ferrite as sensitive electrode | |
Wang et al. | A novel limiting current oxygen sensor prepared by slurry spin coating | |
Li et al. | Influence of sensing electrode and electrolyte on performance of potentiometric mixed-potential gas sensors | |
Anggraini et al. | Zn–Ta-based oxide as a hydrogen sensitive electrode material for zirconia-based electrochemical gas sensors | |
Li et al. | Novel nanosized ITO electrode for mixed potential gas sensor | |
Qian et al. | Enhancing the performance of mixed-potential NO2 sensors by optimizing the micromorphology of La0. 8Sr0. 2MnO3 electrodes | |
CN108205002B (en) | A LaFeO3-based ethanol gas sensor element with high gas response and selectivity and its preparation method | |
Yuanxi et al. | Research on preparation and performance of a new solid electrolyte based nitrogen oxides sensor | |
White et al. | Effect of electrode microstructure on the sensitivity and response time of potentiometric NOx sensors | |
Dai et al. | A novel impedancemetric NO2 sensor based on nano-structured La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ prepared by impregnating method | |
CN100501138C (en) | A kind of manufacturing method of current type automobile exhaust gas sensor | |
CN102866192B (en) | A kind of current mode NO of solid electrolyte 2sensor and preparation method thereof | |
CN108152337A (en) | A kind of LaFeO of high air-sensitive property energy3Base alcohol gas sensor and preparation method thereof | |
JP2012504236A (en) | Nitrogen oxide gas sensor | |
CN104803680B (en) | A solid electrolyte material for medium and low temperature current type NOx sensor and its preparation | |
Chen | Effects of Electrode Microstructures on the Sensitivity and Response Time of Mixed-Potential NO 2 Sensor Based on La0. 6 Sr0. 4 CoO 3 Sensing Electrode | |
Wang et al. | A limiting current oxygen sensor based on FeO1. 5 doped LDC as dense diffusion barrier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |