CN111473811A - 一种光纤f-p/fbg复合腔电流和温度同步测量系统 - Google Patents

一种光纤f-p/fbg复合腔电流和温度同步测量系统 Download PDF

Info

Publication number
CN111473811A
CN111473811A CN202010381008.2A CN202010381008A CN111473811A CN 111473811 A CN111473811 A CN 111473811A CN 202010381008 A CN202010381008 A CN 202010381008A CN 111473811 A CN111473811 A CN 111473811A
Authority
CN
China
Prior art keywords
fbg
optical fiber
composite cavity
cavity
strain gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010381008.2A
Other languages
English (en)
Inventor
冒燕
徐小强
陈旭
张羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202010381008.2A priority Critical patent/CN111473811A/zh
Publication of CN111473811A publication Critical patent/CN111473811A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

本发明涉及一种光纤F‑P/FBG复合腔电流和温度同步测量系统,利用光纤F‑P/FBG复合腔作为传感元件,磁场产生装置在电流作用下产生磁场,悬挂在与光纤F‑P/FBG复合腔粘接的应变片一端的磁铁被磁场吸引,光纤F‑P/FBG复合腔的腔长在磁铁的作用力下发生变化,通过测量光纤F‑P/FBG复合腔的腔长变化,建立被测电流与腔长之间的关系。另外,光纤F‑P/FBG复合腔还具有测温功能,使得整个系统不但可以同步测量工作环境的温度,还可以利用光纤F‑P/FBG复合腔测温的数据来消除F‑P腔中因为温度变化对测量引起的误差,也就是消除应变片因温度变化引起膨胀而导致的测量误差,实现温度自补偿功能。

Description

一种光纤F-P/FBG复合腔电流和温度同步测量系统
技术领域
本发明涉及传感测量技术领域,更具体地说,涉及一种光纤F-P/FBG复合腔电流和温度同步测量系统。
背景技术
电流互感器是智能电网、大功率设备、新能源汽车等系统中实现状态监测和过流保护的关键检测装置,其准确性、实时性、可靠性直接关系到系统的安全运行。
电流系统对人体的物理完整性具有潜在的危险,或者存在高度污染的电磁频谱。光学电流传感器与传统电流传感器相比,具有抗电磁干扰、安全、重量轻、带宽大、适用于采用全光纤器件(如开关调制器、环行器、隔离器等)等优点,其技术优势吸引着世界各国的研究人员。
目前对于光学电流传感器,正在研究新的方法主要有法拉第磁光效应法、磁致伸缩法、光纤布拉格光栅法等。基于法拉第磁光效应的全光纤电流传感器,尽管具有良好的光学集成优势,但是线圈弯曲导致的外部双折射降低了电流灵敏度,并且振动和温度变化影响法拉第材料的verdet常数。磁致伸缩法的制备工艺要求比较高,对于使用掺杂稀土的超磁致伸缩材料时,需要增加MPa级的压强才能发挥最大伸缩系数,因此磁致伸缩法的制备价格很高。光纤布拉格光栅(FBG)法是通过测量光纤光栅布拉格波长的变化或两个偏振模式之间的拍频偏移,但是布拉格光栅光纤需重复使用,容易造成损伤。
发明内容
(一)要解决的技术问题
为解决现有技术存在的问题,本发明提供一种光纤F-P/FBG复合腔电流和温度同步测量系统。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
设计一种光纤F-P/FBG复合腔电流和温度同步测量系统,包含SLD宽带光源、光环形器、F-B/FBG复合腔、应变片、计算机、磁铁、磁场产生装置、解调系统;所述光环形器具有三个端口:端口Ⅰ、端口Ⅱ、端口Ⅲ,所述SLD宽带光源发射激光从端口Ⅰ输入,从端口Ⅱ输出,输出的光信号传输至F-B/FBG复合腔;所述F-B/FBG复合腔通过粘合剂粘接在应变片表面;所述应变片的右端悬挂磁铁,所述磁铁位于磁场产生装置产生的磁场区域;所述磁场产生装置产生磁场对磁铁产生吸力,所述应变片在磁铁作用力下发生微小弯曲,所述F-B/FBG复合腔的腔长随着应变片的弯曲而改变;所述解调系统接收从端口Ⅲ输出的激光,解调后发送给所述计算机。
在上述方案中,所述磁铁产生装置由铜线环绕而成,当铜线导通电流时产生磁场,磁场对所述磁铁产生吸力,所述应变片在磁铁作用力下发生微小弯曲。
在上述方案中,所述F-B/FBG复合腔包括第一单模光纤、第二单模光纤、毛细玻璃管,所述第一单模光纤上刻有布拉格光栅;所述第一单模光纤与第二单模光纤的端面经过平整处理后分别从毛细玻璃管两端插入并形成光纤F-P/FBG复合腔,其中,所述第一单模光纤刻有布拉格光栅那部分全部插入毛细玻璃管中并保持自由不受力的状态。
在上述方案中,所述F-B/FBG复合腔通过粘合剂采用三点式粘接在应变片表面,粘接点依次为所述第一单模光纤底端、毛细玻璃管中部底端、第二单模光纤底端。
(三)有益效果
本发明利用磁力将电能转换为机械能,可以通过测量F-P腔的腔长变化量,建立被测电流与腔长之间的关系,实现测量电流的功能,同时FBG不但可以同步测量工作环境的温度,还可以消除应变片因温度变化引起膨胀而导致的测量误差,实现温度自补偿功能。另外,本发明的系统还可以通过一根光纤串联多个F-P腔实现多点同时测量。
附图说明
图1是本发明实施例提供的一种光纤F-P/FBG复合腔电流和温度同步测量系统的结构示意图;
图2是本发明实施例提供的光纤F-P/FBG复合腔结构示意图;
图3是本发明实施例提供的光纤F-P/FBG复合腔干涉光谱示意图。
图中:1、第一单模光纤;2、布拉格光栅;3、毛细玻璃管;4、粘合剂;5、F-B/FBG复合腔;6、磁铁;7、应变片;8、光环形器;9、第二单模光纤;10、SLD宽带光源;11、解调系统;12、计算机;13、磁场产生装置。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
本发明提供一种光纤F-P/FBG复合腔电流和温度同步测量系统,如图1所示,它利用光纤F-P/FBG复合腔作为传感元件,磁场产生装置在电流作用下产生磁场,悬挂在与光纤F-P/FBG复合腔粘接的应变片一端的磁铁被磁场吸引,光纤F-P/FBG复合腔的腔长在磁铁的作用力下发生变化,通过测量光纤F-P/FBG复合腔的腔长变化,建立被测电流与腔长之间的关系。另外,光纤F-P/FBG复合腔还具有测温功能,使得整个系统不但可以同步测量工作环境的温度,还可以利用光纤F-P/FBG复合腔测温的数据来消除F-P腔中因为温度变化对测量引起的误差,也就是消除应变片因温度变化引起膨胀而导致的测量误差,实现温度自补偿功能。
为实现本发明的内容,本发明所采用的技术方案内容具体如下:
本发明设计一种光纤F-P/FBG复合腔电流和温度同步测量系统,包含SLD宽带光源10、光环形器8、F-B/FBG复合腔5、应变片7、计算机12、磁铁6、磁场产生装置13、解调系统11;所述光环形器8具有三个端口:端口Ⅰ、端口Ⅱ、端口Ⅲ,所述SLD宽带光源10发射激光从端口Ⅰ输入,从端口Ⅱ输出,输出的光信号传输至F-B/FBG复合腔5;所述F-B/FBG复合腔5通过粘合剂4粘接在应变片7表面;所述应变片7的右端悬挂磁铁6,所述磁铁6位于磁场产生装置13产生的磁场区域;所述磁场产生装置13产生磁场对磁铁6产生吸力,所述应变片7在磁铁6作用力下发生微小弯曲,所述F-B/FBG复合腔的腔长随着应变片的弯曲而改变;所述解调系统11接收从端口Ⅲ输出的激光,解调后发送给所述计算机12。
其中,所述光纤F-B/FBG复合腔5包括第一单模光纤1、第二单模光纤9、毛细玻璃管3,所述第一单模光纤1上刻有布拉格光栅2;所述第一单模光纤1与第二单模光纤9的端面经过平整处理后分别从毛细玻璃管3两端插入并形成光纤F-P/FBG复合腔,其中,所述第一单模光纤1刻有布拉格光栅2那部分全部插入毛细玻璃管3中并保持自由不受力的状态。毛细玻璃管3的内径为126微米,长度为20mm,毛细玻璃管3的内径比去掉涂覆层的第一单模光纤1和第二单模光纤9外径大1微米,所述第一单模光纤1与第二单模光纤9的端面经过平整处理后分别从毛细玻璃管3两端插入时需要保证两个单模光纤的端面不受损坏和污染。另外,所述第一单模光纤1刻有布拉格光栅2那部分长度8-10mm全部插入毛细玻璃管3中并保持自由不受力的状态,同时,所述第二单模光纤9也要受到毛细玻璃管3的保护,将插入单模光纤的毛细玻璃管3缓慢转移到应变片7的表面,然后进行腔长的调整。
为了尽量减少粘合剂4对本发明系统的测量影响,采用三点固定的粘接方式:首先,采用透明胶带将毛细玻璃管3和第一单模光纤1粘贴固定,然后解调系统11和计算机12实时监测光纤F-P/FBG复合腔5的腔长和光谱,再手动微调第二单模光纤9,直至光纤F-P/FBG复合腔5的腔长达到所需的初始腔长值,最后采用透明胶布对第一单模光纤1和毛细玻璃管3、毛细玻璃管3和第二单模光纤9进行初次固定,经过初次固定后,采用特氟龙胶布进行二次固定,并留出粘接区域,粘接点分别为所述第一单模光纤1底端、毛细玻璃管3中部底端、第二单模光纤9底端,在粘接区域涂覆粘合剂4,第一单模光纤1底端和第二单模光纤9底端的粘合剂面积为3mm×12mm,毛细玻璃管3中部底端的粘合剂面积为8mm×12mm,待粘合剂4固化后,用镊子揭掉透明胶布,完成整个安装过程。本发明电流和温度同步测量系统的测量标距为30-40mm。
磁场产生装置13由930匹、直径为1毫米的铜线环绕而成,环绕铜线的中心底部固定有大磁铁,环绕铜线的中心上方的磁铁6悬挂于应变片7的右端,当铜线通过电流时,磁铁6会对应变片7产生拉力。
SLD宽带光源10发射出的激光从光环形器8的端口Ⅰ输入,从端口Ⅱ输出至光纤F-B/FBG复合腔5,其中,与布拉格光栅2中心波长一致的激光是无法通过布拉格光栅2从左往右传输,因此其直接反射回端口Ⅱ;其他波长的激光在所述第一单模光纤1的右端面和第二单模光纤9的左端面产生反射,这两部分反射光因空气腔引起光程差而形成干涉,干涉后回到端口Ⅱ。反射回端口Ⅱ的激光一起输出到端口Ⅲ,由解调系统11计算腔长值,并实时记录腔长的变化量。当铜线输入电流时,应变片7则发生弯曲,导致光纤F-B/FBG复合腔5的腔长增加,建立电流与腔长之间的映射关系,通过测量腔长的实时变化量,计算得到电流值。
如图2所示,一部分入射光在第一单模光纤1端面反射,剩余的入射光通过光纤F-P/FBG复合腔5在第二单模光纤9的端面产生反射,两类反射光并从端口Ⅲ输出。设R1是第一单模光纤1端面的反射率,R2是第二单模光纤9端面的反射率。当R1=R2时,反射光的强度IR理论上可推导如下:
Figure BDA0002482079570000061
式中I0是入射光强度。当R太小(≤4%)时,IR可以近似表示为余弦信号,表达式如下:
Figure BDA0002482079570000062
根据公式(2),当输入为特定波长的激光时,干涉谱的反射光强随着光纤F-P/FBG复合腔5的腔长变化而变化;当输入为宽带激光源时,干涉谱的光谱随着光纤F-P/FBG复合腔5的腔长变化而变化。
由于从端口Ⅲ输出的光纤F-P/FBG复合腔5反射光谱具有明显的频谱特性,如果采用相位解调算法,解调系统11的价格低廉,信号处理简单。基于对两种干涉光谱解调方法(单峰算法和双峰算法)的特点分析,单峰算法的缺点是动态测量范围有限,只能测量光纤F-P/FBG复合腔5的腔长相对变化,不能测量光纤F-P/FBG复合腔5腔长的绝对值;而双峰算法只需测量干涉阶数分别为m和m+1的干涉谱的两个相邻波峰或波谷的波长值,即可得到光纤F-P/FBG复合腔5的腔长绝对值和相对变化量。
光纤F-P/FBG复合腔5的干涉光谱如图3所示,在光纤F-P/FBG复合腔5的腔长变化前,两个相邻的波峰或波谷的波长分别为λm和λm+1。当光纤F-P/FBG复合腔5的腔长发生变化后,相应的两个波长变化为λ′m和λ′m+1,所以光纤F-P/FBG复合腔5腔长的计算方程组如下:
Figure BDA0002482079570000063
根据方程组(3)可以推导出,变化前的腔长为:
Figure BDA0002482079570000071
变化后的腔长为:
Figure BDA0002482079570000072
可知光纤F-P/FBG复合腔(5)腔长的相对变化量为:
Δl=l′-l (6)
在得到光纤F-P/FBG复合腔5腔长与电流的映射关系后,就可以通过测量F-P腔长的变化量来计算电流值。图3中光谱的尖峰即为光纤F-P/FBG复合腔5的反射光谱,当温度改变时,尖峰会发生漂移,因此通过温度标定实验即可求出尖峰漂移与温度变化的关系。
附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (4)

1.一种光纤F-P/FBG复合腔电流和温度同步测量系统,其特征在于,包含SLD宽带光源(10)、光环形器(8)、F-B/FBG复合腔(5)、应变片(7)、计算机(12)、磁铁(6)、磁场产生装置(13)、解调系统(11);所述光环形器(8)具有三个端口:端口Ⅰ、端口Ⅱ、端口Ⅲ,所述SLD宽带光源(10)发射激光从端口Ⅰ输入,从端口Ⅱ输出,输出的光信号传输至F-B/FBG复合腔(5);所述F-B/FBG复合腔(5)通过粘合剂(4)粘接在应变片(7)表面;所述应变片(7)的右端悬挂磁铁(6),所述磁铁(6)位于磁场产生装置(13)产生的磁场区域;所述磁场产生装置(13)产生磁场对磁铁(6)产生吸力,所述应变片(7)在磁铁(6)作用力下发生微小弯曲,所述F-B/FBG复合腔的腔长随着应变片的弯曲而改变;所述解调系统(11)接收从端口Ⅲ输出的激光,解调后发送给所述计算机(12)。
2.根据权利要求1所述的一种光纤F-P/FBG复合腔电流和温度同步测量系统,其特征在于,所述磁铁产生装置(13)由铜线环绕而成,当铜线导通电流时产生磁场,磁场对所述磁铁(6)产生吸力,所述应变片(7)在磁铁(6)作用力下发生微小弯曲。
3.根据权利要求1所述的一种光纤F-P/FBG复合腔电流和温度同步测量系统,其特征在于,所述F-B/FBG复合腔(5)包括第一单模光纤(1)、第二单模光纤(9)、毛细玻璃管(3),所述第一单模光纤(1)上刻有布拉格光栅(2);所述第一单模光纤(1)与第二单模光纤(9)的端面经过平整处理后分别从毛细玻璃管(3)两端插入并形成光纤F-P/FBG复合腔,其中,所述第一单模光纤(1)刻有布拉格光栅(2)那部分全部插入毛细玻璃管(3)中并保持自由不受力的状态。
4.根据权利要求1或3所述的一种光纤F-P/FBG复合腔电流和温度同步测量系统,其特征在于,所述F-B/FBG复合腔(5)通过粘合剂(4)采用三点式粘接在应变片(7)表面,粘接点依次为所述第一单模光纤(1)底端、毛细玻璃管(3)中部底端、第二单模光纤(9)底端。
CN202010381008.2A 2020-05-08 2020-05-08 一种光纤f-p/fbg复合腔电流和温度同步测量系统 Pending CN111473811A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010381008.2A CN111473811A (zh) 2020-05-08 2020-05-08 一种光纤f-p/fbg复合腔电流和温度同步测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010381008.2A CN111473811A (zh) 2020-05-08 2020-05-08 一种光纤f-p/fbg复合腔电流和温度同步测量系统

Publications (1)

Publication Number Publication Date
CN111473811A true CN111473811A (zh) 2020-07-31

Family

ID=71762815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010381008.2A Pending CN111473811A (zh) 2020-05-08 2020-05-08 一种光纤f-p/fbg复合腔电流和温度同步测量系统

Country Status (1)

Country Link
CN (1) CN111473811A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112525257A (zh) * 2020-11-19 2021-03-19 哈尔滨理工大学 一种监测磁场和温度的双参量光纤传感装置及实现方法
CN112525259A (zh) * 2020-11-19 2021-03-19 哈尔滨理工大学 一种监测电流和温度的双参量光纤传感装置及实现方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344540A (zh) * 2008-07-17 2009-01-14 西北工业大学 光纤光栅法布里-珀罗电流传感器的传感头及其制作方法
CN101833024A (zh) * 2009-03-09 2010-09-15 西北工业大学 一种光纤光栅f-p电流传感器的传感头及其制作方法
US20110264398A1 (en) * 2008-10-16 2011-10-27 Pawel Niewczas Fibre Optic Sensor System
CN205300521U (zh) * 2015-12-07 2016-06-08 武汉理工光科股份有限公司 表面式温度自补偿光纤应变传感器
CN107655561A (zh) * 2017-09-15 2018-02-02 浙江大学 一种基于光纤光栅水听器阵列的相位调制解调装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344540A (zh) * 2008-07-17 2009-01-14 西北工业大学 光纤光栅法布里-珀罗电流传感器的传感头及其制作方法
US20110264398A1 (en) * 2008-10-16 2011-10-27 Pawel Niewczas Fibre Optic Sensor System
CN101833024A (zh) * 2009-03-09 2010-09-15 西北工业大学 一种光纤光栅f-p电流传感器的传感头及其制作方法
CN205300521U (zh) * 2015-12-07 2016-06-08 武汉理工光科股份有限公司 表面式温度自补偿光纤应变传感器
CN107655561A (zh) * 2017-09-15 2018-02-02 浙江大学 一种基于光纤光栅水听器阵列的相位调制解调装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
丁国平: "《磁力轴承电磁场的相关理论及其实验研究》", 28 February 2014, 武汉理工大学出版社 *
余顶: "FBG/FP复合传感器高低温传感特性研究", 《中国优秀硕士学位论文全文数据库·信息科技辑》 *
赵近芳,王登龙: "《大学物理学 数字资源版 下》", 31 July 2018, 北京邮电大学出版社 *
马成举: "《微纳光纤及其在传感技术中的应用》", 30 November 2015, 国防工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112525257A (zh) * 2020-11-19 2021-03-19 哈尔滨理工大学 一种监测磁场和温度的双参量光纤传感装置及实现方法
CN112525259A (zh) * 2020-11-19 2021-03-19 哈尔滨理工大学 一种监测电流和温度的双参量光纤传感装置及实现方法
CN112525259B (zh) * 2020-11-19 2021-09-07 哈尔滨理工大学 一种监测电流和温度的双参量光纤传感装置及实现方法
CN112525257B (zh) * 2020-11-19 2021-09-07 哈尔滨理工大学 一种监测磁场和温度的双参量光纤传感装置及实现方法

Similar Documents

Publication Publication Date Title
CN106949850B (zh) 一种高灵敏度高精度的光纤形状传感测量方法及系统
US4348587A (en) Fiber optic transducer for measuring current or magnetic field
Singh et al. Simultaneously measuring temperature and strain using optical fiber microcavities
CN101509962B (zh) 一种磁感应强度的测量方法及装置
CN111473811A (zh) 一种光纤f-p/fbg复合腔电流和温度同步测量系统
CA1322109C (en) Birefringent optical fiber device for measuring of ambient pressure in a stabilized temperature environment
CN101782601A (zh) 一种级连式光纤光栅自解调电流传感器
Shao et al. Fiber-optic magnetic field sensor using a phase-shifted fiber Bragg grating assisted by a TbDyFe bar
CN102141602A (zh) 磁场传感器和磁场测试仪
Feng et al. Strain and temperature sensor based on fiber Bragg grating cascaded bi-tapered four-core fiber Mach–Zehnder interferometer
Zhao et al. Novel current measurement method based on fiber Bragg grating sensor technology
KR101916940B1 (ko) 광섬유 전류 센서 시스템
CN105044628A (zh) 一种光纤f-p腔磁敏感器及磁定位测井装置
Avellar et al. Transmission-reflection performance analysis using oxide nanoparticle-doped high scattering fibers
Xiaohong et al. Simultaneous independent temperature and strain measurement using one fiber Bragg grating based on the etching technique
CN106093525B (zh) 一种基于微位移测量的电流传感器
CN113030547B (zh) 一种基于游标效应的正交臂式mz干涉仪光纤电流传感器
Bock High-pressure polarimetric sensor using birefringent optical fibers
CN209525030U (zh) 一种光学压力传感器
Payne Fibres for sensors
CN117849674A (zh) 一种具有温度补偿的电磁传感器
CN205404455U (zh) 一种利用fbg测量液位的系统
CN105717069B (zh) 基于带有微槽结构的dbr激光器的折射率传感器
Yang et al. Practical polarization maintaining optical fibre temperature sensor for harsh environment application
CN103983285A (zh) 一种基于双偏振光纤激光传感器的拍频信号单路解调装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200731