The application is a divisional application, and the Chinese application number of the parent case is as follows: 201880057640.2, International application number PCT/CN2018/124110, International application date 12/27 of 2018.
The present invention claims priority from chinese patent applications CN201711478307.2 and CN201810754253.6, and the contents of the specification, drawings and claims of this priority document are incorporated in their entirety into the specification of the present invention and are included as a part of the original description of the present invention. Applicants further claim that applicants have the right to amend the description and claims of this invention based on this priority document.
Disclosure of Invention
The invention provides a compound shown as a formula I,
A represents-C (O) -, -S (O)2-or-s (o) -;
wherein each R is1Each independently selected from hydrogen atom, halogen, hydroxyl, nitro, cyano, sulfonic acid group, C1-6Alkyl radical, C3-6Cycloalkyl radical, C2-6Alkenyl radical, C2-6Alkynyl, C1-6Alkoxy, halo C1-C6Alkyl, halo C1-C6Alkoxy, halo C1-C6Cycloalkyl radical, C1-6Alkylthio radical, C1-6Alkylcarbonyl group, C1-6Alkoxycarbonyl, di (C)1-6Alkyl) amino C2-6Alkoxycarbonyl, amino, C1-6Alkylamino radical, di (C)1-6Alkyl) amino, carbamoyl, C1-6Alkylcarbamoyl, di (C)1-6Alkyl) carbamoyl, di (C)1-6Alkyl) amino C2-6Alkylcarbamoyl, sulfamoyl, C1-6Alkylsulfamoyl, di (C)1-6Alkyl) sulfamoyl, di (C)1-6Alkyl) amino C2-6Alkylsulfamoyl, C1-6Alkylsulfonyl radical, C1-6Alkylsulfinyl, di (C)1-6Alkyl) phosphono, hydroxy C1-6Alkyl, hydroxy carbonyl C1-6Alkyl radical, C1-6Alkoxy radical C1-6Alkyl radical, C1-6Alkylsulfonyl radical C1-6Alkyl radical, C1-6Alkylsulfinyl C1-6Alkyl, di (C)1-6Alkyl) phosphono C1-6Alkyl, hydroxy C2-6Alkoxy radical, C1-6Alkoxy radical C2-6Alkoxy, amino C1-6Alkyl radical, C1-6Alkylamino radical C1-6Alkyl, di (C)1-6Alkyl) amino C1-6Alkyl, di (C)1-6Alkyl) aminoacetyl, amino C2-6Alkoxy radical, C1-6Alkylamino radical C2-6Alkoxy, di (C)1-6Alkyl) amino C2-6Alkoxy, hydroxy C2-6Alkylamino radical, C1-6Alkoxy radical C2-6Alkylamino radical, amino radical C2-6Alkylamino radical, C1-6Alkylamino radical C2-6Alkylamino radical, di (C)1-6Alkyl) amino C2-6An alkylamino group; or adjacent R1Mutually cyclized to form a 3-8 membered ring, and the ring contains 0, 1,2 and 3 heteroatoms;
Cy1selected from 5-15 membered bridged ring group, 5-15 membered spiro ring group, 5-15 membered bridged heterocyclic group, or 5-15 membered spiro heterocyclic group substituted by any substituent group: halogen, hydroxy, C1-6Alkyl, amino, halo C1-6Alkyl, mercapto, C1-6Alkyl mercapto group, C1-6Alkylamino radical, di (C)1-6Alkyl) amino, cyano;
Ra、Rb、R2each independently selected from hydrogen and C1-C6Alkyl or C3-6A cycloalkyl group;
Cy2is C containing one or more substituents5-C10Aryl radical, C5-C10Heteroaryl group, C5-C10Cycloalkyl radical, C5-C10A heterocycloalkyl group; the substituent can be selected from halogen, hydroxyl, nitro, cyano, sulfonic acid group and C1-6Alkyl radical, C2-6Alkenyl radical, C2-6Alkynyl, C3-6Cycloalkyl radical, C1-6Alkoxy, halo C1-C6Alkyl, halo C1-C6Alkoxy radical, C1-6Alkylthio radical, C1-6Alkylcarbonyl group, C1-6Alkylcarbonyloxy, C1-6Alkoxycarbonyl, di (C)1-6Alkyl) amino C2-6Alkoxycarbonyl, amino, C1-6Alkylamino radical, di (C)1-6Alkyl) amino, carbamoyl, C1-6Alkylcarbamoyl, di (C)1-6Alkyl) carbamoyl, di (C)1-6Alkyl) amino C2-6Alkylcarbamoyl, sulfamoyl, C1-6Alkylsulfamoyl, di (C)1-6Alkyl) sulfamoyl, di (C)1-6Alkyl) amino C2-6Alkylsulfamoyl, C1-6Alkylsulfonyl radical, C1-6Alkylsulfinyl, di (C)1-6Alkyl) phosphono, hydroxy C1-6Alkyl, hydroxy carbonyl C1-6Alkyl radical, C1-6Alkoxy radical C1-6Alkyl radical, C1-6Alkylsulfonyl radical C1-6Alkyl radical, C1-6Alkylsulfinyl C1-6Alkyl, di (C)1-6Alkyl) phosphono C1-6Alkyl, hydroxy C2-6Alkoxy radical, C1-6Alkoxy radical C2-6Alkoxy, amino C1-6Alkyl radical, C1-6Alkylamino radical C1-6Alkyl, di (C)1-6Alkyl) amino C1-6Alkyl, di (C)1-6Alkyl) aminoacetyl, amino C2-6Alkoxy radical, C1-6Alkylamino radical C2-6Alkoxy, di (C)1-6Alkyl) amino C2-6Alkoxy, hydroxy C2-6Alkylamino radical, C1-6Alkoxy radical C2-6Alkylamino radical, amino radical C2-6Alkylamino radical, C1-6Alkylamino radical C2-6Alkylamino radical, di (C)1-6Alkyl) amino C2-6Alkylamino, -S (O) C1-6An alkyl group; or when two substituents are adjacent, can form a 3-8 membered ring, which 3-8 membered ring may contain 0, 1,2, 3O, S, N atoms; m and n are 0, 1,2, 3 and 4.
In another embodiment of the present invention, Cy is1Selected from the group consisting of8-12 membered spiro ring group or 8-12 membered spiro ring group, 8-12 membered bridged heterocyclic group, or 8-12 membered spiro heterocyclic group, the substituent is: halogen, hydroxy, C1-6Alkyl, amino, halo C1-6Alkyl, mercapto, C1-6Alkyl mercapto group, C1-6Alkylamino radical, di (C)1-6Alkyl) amino, cyano.
In another embodiment of the present invention, Cy is1Selected from the following groups:
the above groups may be selected from halogen, hydroxy, C1-6Alkyl, amino, halo C1-6Alkyl, mercapto, C1-6Alkyl mercapto group, C1-6Alkylamino radical, di (C)1-6Alkyl) amino, cyano.
In another embodiment of the present invention, Cy is1Selected from the following groups:
the above groups may be selected from halogen, hydroxy, C1-6Alkyl, amino, halo C1-6Alkyl, mercapto, C1-6Alkyl mercapto group, C1-6Alkylamino radical, di (C)1-6Alkyl) amino, cyano.
The invention provides a compound shown as a formula (II),
wherein R is1、R2、Ra、Rb、Cy2M, n, A are as defined for formula I; x is selected from (CR)cRd)oWherein is optionally CRcRdMay be substituted by O or NReReplacing; y is selected from CRfOr N; wherein R isc、Rd、Re、RfEach independently selected from hydrogen or C1-6An alkyl group; o is selected from 0, 1,2, 3, 4, 5.
The invention provides a compound shown as a formula (III),
wherein W and Q are selected from CRcRdOr NReOr O; A. r1、R2、Ra、Rb、Rc、Rd、Re、Cy2M, n and Y are as defined above for formula (II).
The invention also provides a compound shown as a formula (IV),
wherein R is1、R2、Ra、Rb、Cy2M, n, X, Y, A are as defined above for formula (II); z is selected from (CR)g)pWherein CR is arbitrarygMay be replaced by N; rgEach independently selected from hydrogen or C1-6An alkyl group; p is selected from 0, 1,2, 3, 4, 5.
In the preferred technical scheme of the invention, the structure of the compound has the formula (V):
wherein R is1、R2、Rc、Rd、Rf、Cy2M, A are as defined in the above formula (II)And (5) defining.
In the preferred technical scheme of the invention, the structure of the compound has the formula (VI):
wherein R is1、R2、Rc、Rd、Cy2M and A are as defined above for formula (II).
In a preferred embodiment of the present invention, the compound has a structure represented by formula (VII):
wherein R is1、R2、Re、Rf、Cy2M and A are as defined above for formula (II).
In a preferred technical scheme of the invention, the compound has a structure as shown in a formula (VIII):
wherein R is1、R2、Rc、Rd、Rf、Cy2M and A are as defined above for formula (II).
In a preferred technical scheme of the invention, the compound has a structure as shown in a formula (IX):
wherein R is1、R2、Rc、Rd、Re、Rf、Cy2M and A are as defined above for formula (II).
In the technical scheme of the invention, the air conditioner is provided with a fan,
to represent
Or
In the technical scheme of the invention, the air conditioner is provided with a fan,
preferably, it is
In the technical scheme of the invention, A is selected from-C (O) -or S (O)2-。
The invention also provides a preparation method of the compound with the structure of the formula (X):
in the route I reaction:
wherein the base used in step (1) is selected from inorganic bases or organic bases, including but not limited to: sodium hydride, calcium hydride, sodium amide, sodium methoxide, sodium ethoxide, potassium hydroxide, sodium hydroxide, lithium aluminum hydride, tert-butyl lithium, tert-butyl potassium, potassium tert-butoxide, lithium diisopropylamide, barium hydroxide, or any combination thereof;
wherein the organic solvent used in step (1) includes but is not limited to: 1, 4-dioxane, N-dimethylformamide, dichloromethane, chloroform, DMSO, DMF, THF, acetone, methanol, ethanol, or any combination thereof;
wherein the ylide used in step (2) is selected from the group consisting of a sulfur ylide and a phosphorus ylide;
wherein the Grignard reagent used in step (3) is selected from CH3MgCl、CH3MgBr、C2H5MgCl、C2H5MgBr、i-PrMgCl、i-PrMgBr,PhCH2MgCl、PhCH2MgBr, or any combination thereof.
The invention also provides a preparation method of the compound with the structure of the formula (XI):
in the route II reaction:
wherein the catalyst used in step (1) is selected from methyl titanate, ethyl titanate, n-propyl titanate, isopropyl titanate, butyl titanate or any combination thereof;
wherein the base used in step (2) is selected from inorganic bases or organic bases, including but not limited to: sodium hydride, calcium hydride, sodium amide, sodium methoxide, sodium ethoxide, potassium hydroxide, sodium hydroxide, lithium aluminum hydride, tert-butyl lithium, tert-butyl potassium, potassium tert-butoxide, lithium diisopropylamide, barium hydroxide, or any combination thereof;
wherein the organic solvent used in step (2) includes but is not limited to: 1, 4-dioxane, N-dimethylformamide, dichloromethane, chloroform, DMSO, DMF, THF, acetone, methanol, ethanol, or any combination thereof;
wherein the ylide used in step (2) is selected from the group consisting of a sulfur ylide and a phosphorus ylide;
wherein the hydrolysis of step (3) is carried out under acidic conditions, said acid being selected from, but not limited to, hydrochloric acid, sulfuric acid, hydrobromic acid, oxalic acid, citric acid, formic acid, acetic acid or any combination thereof;
wherein the organic solvent used in step (4) includes but is not limited to: 1, 4-dioxane, N-dimethylformamide, dichloromethane, chloroform, DMSO, DMF, THF, acetone, methanol, ethanol, or any combination thereof.
The invention also provides a preparation method of the compound with the structure of the formula (XII):
in path III:
wherein the catalyst used in step (1) is selected from methyl titanate, ethyl titanate, n-propyl titanate, isopropyl titanate, butyl titanate or any combination thereof;
wherein the step (2) is carried out under the action of non-nucleophilic strong base selected from the group consisting of but not limited to lithium diisopropylamide, lithium diethylamide, lithium isopropylcyclohexylamide, lithium dicyclohexylamide, lithium 2,2,6, 6-tetramethylpiperidino and lithium hexamethyldisilazide;
wherein the hydrolysis reaction of step (3) is carried out under acidic conditions, and the acid is selected from, but not limited to, hydrochloric acid, sulfuric acid, hydrobromic acid, oxalic acid, citric acid, formic acid, acetic acid, or any combination thereof;
wherein the Grignard reagent used in step (4) is selected from CH3MgCl、CH3MgBr、C2H5MgCl、C2H5MgBr、i-PrMgCl、i-PrMgBr,PhCH2MgCl、PhCH2MgBr or any combination thereof;
wherein, when the alkylation reaction in the step (5) is performed, the alkylation reaction reagent is selected from halogenated alkyl, the reaction is performed under the condition of Lewis acid as a catalyst, and the Lewis acid is preferably AlCl3、FeCl2、CuCl2。
The invention also provides a preparation method of the compound with the structure of the formula (XIII):
in path IV
Wherein the base used in step (1) and step (3) is selected from inorganic bases or organic bases, including but not limited to: sodium hydride, calcium hydride, sodium amide, sodium methoxide, sodium ethoxide, potassium hydroxide, sodium hydroxide, lithium aluminum hydride, tert-butyl lithium, tert-butyl potassium, potassium tert-butoxide, lithium diisopropylamide, barium hydroxide, or any combination thereof;
wherein the organic solvent used in steps (1) to (3) includes but is not limited to: 1, 4-dioxane, N-dimethylformamide, dichloromethane, chloroform, DMSO, DMF, THF, acetone, methanol, ethanol, or any combination thereof;
wherein the oxidant used in step (2) is selected from but not limited to m-chloroperoxybenzoic acid, CrO3、KMnO4、MnO2、NaCr2O7、HIO4、PbAc4、OsO4Hydrogen peroxide or any combination thereof;
wherein the hydrolysis reaction of step (4) is carried out under acidic conditions, and the acid is selected from, but not limited to, hydrochloric acid, sulfuric acid, hydrobromic acid, oxalic acid, citric acid, formic acid, acetic acid, or any combination thereof;
wherein the Grignard reagent used in step (5) is selected from CH3MgCl、CH3MgBr、C2H5MgCl、C2H5MgBr、i-PrMgCl、i-PrMgBr,PhCH2MgCl、PhCH2MgBr, or any combination thereof.
The invention also provides a preparation method of the compound with the structure of the formula (XIV):
in path V:
wherein step (1) is carried out in the presence of an alkali metal fluoride selected from, but not limited to, LiF, NaF, KF, MgF, or an alkaline earth metal fluoride2、CaF2;
Wherein the reduction reaction in the step (2) can be palladium carbon catalytic hydrogenation reduction or Na/liquid ammonia reduction;
wherein the Grignard reagent used in step (3) is selected from CH3MgCl、CH3MgBr、C2H5MgCl、C2H5MgBr、i-PrMgCl、i-PrMgBr,PhCH2MgCl、PhCH2MgBr or any combination thereof;
wherein, when the alkylation reaction in step (4) is carried out, the alkylation reaction reagent is selected from a haloalkyl group, and theThe reaction is carried out with a Lewis acid, preferably AlCl, as catalyst3、FeCl2、CuCl2。
Detailed Description
Design and reaction examples
The compound of the present invention can be synthesized by known procedures with reference to the following descriptions. All solvents and reagents purchased were used directly without treatment. All synthesized compounds can be analytically validated by, but not limited to, the following methods: LCMS (liquid chromatography mass spectrometry) and NMR (nuclear magnetic resonance). Nuclear Magnetic Resonance (NMR) was measured by Bruker AVANCE-500 NMR spectrometer using deuterated dimethyl sulfoxide (d)6-DMSO), deuterated chloroform (CDCl)3) Tetramethylsilane (TMS) was used as an internal standard. The following abbreviations represent various types of split peaks: singlet(s), doublet (d), triplet (t), multiplet (m), broad (br). Mass Spectrometry (MS) was measured using a Thermo Fisher-MSQ Plus LC Mass spectrometer. General synthetic analysis and examples are described below:
example 1
N- (4-chlorophenylyl) -6- (6-fluoroquinolin-4-yl) spiro [2.5] octane-1-carboxamid eN- (4-chlorophenyl) -6- (6-fluoroquinolin-4-yl) spiro [2.5] octane-1-carboxamide
The first step is as follows: 1, 4-cyclohexanedione monoethylene glycol ketal (10.0g,64.03mmol) was dissolved in 250mL of methyl tert-butyl ether and N-phenylbis (trifluoromethanesulfonyl) imide (22.9g,64.03mmol) was added. The reaction mixture was cooled to-78 ℃ and sodium bis (trimethylsilyl) amide (2mol/L tetrahydrofuran solution) (32mL,64.03mmol) was added dropwise to the reaction mixture under a nitrogen atmosphere. After the completion of the dropwise addition, the reaction mixture was stirred at that temperature for 60 minutes, then allowed to warm to room temperature and stirred overnight until the reaction material was completely consumed by TLC. The reaction solution was quenched with 3mL of an aqueous potassium hydrogen sulfate solution, filtered to remove solids, and the filtrate was concentrated. To the residue was added 3mL of methyl tert-butyl etherButyl ether, the organic layer was washed three times with 45mL of sodium hydroxide (5%) solution and once with 50mL of saturated brine. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated to give compound 1a (17.23g) as an orange oily liquid in 93% yield.1H NMR(500MHz,CDCl3)δ5.66(J=4.0Hz,1H),4.01–3.96(m,4H),2.56–2.52(m,2H),2.42–2.40(m,2H),1.90(t,J=6.5Hz,2H).
The second step is that: compound 1a (13g,45.1mmol) was dissolved in 100mL dioxane, and pinacol diboron (14.9g,58.64mmol), potassium acetate (13.3g,135.3mmol) and Pd (dppf) Cl were added sequentially2(1.65g,2.26 mmol). The reaction mixture was refluxed overnight under nitrogen atmosphere. Then the reaction solvent dioxane was evaporated to dryness, ethyl acetate was added, celite was filtered, the filtrate was concentrated and then separated by flash column chromatography to give compound 1b (7.6g) as a pale yellow solid in 63% yield.1HNMR(500MHz,CDCl3)δ6.48–6.45(m,1H),3.98(s,4H),2.40–2.34(m,4H),1.73(t,J=6.5Hz,2H),1.25(s,12H).
The third step: compound 1b (5.7g,21.48mmol) was dissolved in 60mL/15mL dioxane/water and 4-chloro-6-fluoroquinoline (3.0g,16.53mmol), potassium carbonate (6.8g,49.56mmol) and Pd (PPh3)4(954mg,0.83mmol) were added sequentially. The reaction mixture was refluxed overnight under nitrogen atmosphere. The reaction was then concentrated, extracted with ethyl acetate, and the organic phase was concentrated and then separated by flash column chromatography to give compound 1c (2.42g) as a pale yellow liquid in 51% yield. MS (ESI) M/z 286.1(M + H)+.1H NMR(500MHz,CDCl3)δ8.81(d,J=4.5Hz,1H),8.15(dd,J=9.0,5.5Hz,1H),7.65(dd,J=10.0,2.5Hz,1H),7.49(td,J=9.0,2.5Hz,1H),7.26(d,J=4.5Hz,1H),5.77(t,J=3.5Hz,1H),4.08–40.6(m,4H),2.65–2.60(m,2H),2.56–2.53(m,2H),2.00(t,J=6.5Hz,2H).
The fourth step: compound 1c (2.42g,8.49mmol) was dissolved in 45mL of isopropanol and 10% palladium on carbon (300mg) was added. The reaction mixture was heated to 55 ℃ under hydrogen atmosphere for overnight reaction. The palladium on carbon was then filtered off with celite and the filtrate was concentrated to give crude compound 1d (2.04g) as a slurry in 84% yield, which was used directly in the next reaction. MS (ESI) M/z 288.1(M + H)+.
The fifth step: compound 1d (2.04g,7.11mmol) was dissolved in 36mL of acetone, and 9mL of 4mol/L hydrochloric acid was added. The reaction mixture was heated to 45 ℃ and reacted overnight. The solvent was then evaporated off, the aqueous solution was neutralized with 6mol/L sodium hydroxide to pH 9 and the aqueous phase was extracted with ethyl acetate. The organic phases were combined and washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was isolated by flash column chromatography to give compound 1e (1.17g) as a pale yellow solid in 67% yield. MS (ESI) M/z 244.3(M + H)+.1H NMR(500MHz,CDCl3)δ8.85(d,J=4.5Hz,1H),8.22(dd,J=9.0,5.5Hz,1H),7.74(dd,J=10.0,2.5Hz,1H),7.57–7.50(m,1H),7.33(d,J=4.5Hz,1H),3.74–3.66(m,1H),2.72–2.58(m,4H),2.41–2.34(m,2H),2.11–2.00(m,2H).
And a sixth step: triethyl phosphonoacetate (968mg,4.32mmol) was dissolved in 16mL of ultra dry tetrahydrofuran and sodium tert-butoxide (415mg,4.32mmol) was added at 0 ℃ in an ice bath. After 10 minutes, a solution of compound 1e (1g,4.12mmol) in tetrahydrofuran (4mL) was added to the reaction. After 2 hours of reaction, quench with water. The aqueous solution was extracted three times with 20mL of ethyl acetate, the organic phases were combined, washed with 20mL of saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was isolated by flash column chromatography to give compound 1f (1.18g) as a white solid in 92% yield. MS (ESI) M/z 314.0(M + H)+.1H NMR(500MHz,CDCl3)δ8.81(d,J=4.5Hz,1H),8.17(dd,J=9.0,5.5Hz,1H),7.72(dd,J=10.0,2.5Hz,1H),7.53–7.47(m,1H),7.28(d,J=4.5Hz,1H),5.75(s,1H),4.19(q,J=7.0Hz,2H),3.52–3.42(m,1H),2.54–2.48(m,2H),2.26–2.11(m,4H),1.80–1.68(m,2H),1.30(t,J=7.0Hz,3H).
The seventh step: NaH (383mg,9.57mmol) was added to 15mL of dimethyl sulfoxide, and trimethyl sulfoxide iodide (2.11g,9.57mmol) was added to the suspension. The mixture was stirred at room temperature for 1.5 hours. Then, a solution of compound 1f (1.0g,3.19mmol) in dimethyl sulfoxide (5mL) was added to the reaction solution. The reaction was stirred at room temperature overnight. Then quenched with water, extracted with ethyl acetate, and isolated by flash column chromatography to give 1g (820mg) of the compound as a colorless oily liquid in 78% yield. MS (ESI) M/z 328.1(M + H)+.1HNMR(500MHz,CDCl3)δ8.83(d,J=4.5Hz,1H),8.24(dd,J=9.0,5.5Hz,1H),7.71(dd,J=10.0,2.5Hz,1H),7.55–7.49(m,1H),7.35(d,J=4.5Hz,1H),4.19(q,J=7.0Hz,2H),3.32–3.24(m,1H),2.17(td,J=13.0,3.5Hz,1H),2.07–1.90(m,4H),1.87–1.78(m,1H),1.58(dd,J=8.0,5.5Hz,1H),1.46–1.37(m,1H),1.30(t,J=7.0Hz,3H),1.28–1.24(m,2H),1.16–1.11(m,1H),1.00(dd,J=8.0,4.5Hz,1H).
Eighth step: 4-chloroaniline (94mg,0.73mmol) was dissolved in 5mL tetrahydrofuran and a 2mol/L solution of isopropyl magnesium chloride in tetrahydrofuran (0.4mL,0.73mmol) was added at 0 deg.C in an ice bath. The mixture was stirred at room temperature for 5 minutes, and a solution of compound 1g (60mg,0.18mmol) in tetrahydrofuran (2mL) was added to the mixture. The reaction was stirred at room temperature overnight, then quenched with saturated ammonium chloride solution and the aqueous phase extracted with ethyl acetate. The combined organic phases were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by reverse phase preparative chromatography to give compound 1(16.04mg) as a white solid in 21% yield. MS (ESI) M/z 408.9(M + H)+.1H NMR(500MHz,d6-DMSO)δ10.37(s,1H),8.81(s,1H),8.11–8.05(m,1H),8.02(d,J=11.0Hz,1H),7.69–7.63(m,3H),7.38–7.31(m,3H),3.48–3.40(m,1H),2.20(t,J=12.0Hz,1H),1.97–1.84(m,4H),1.78(d,J=12.5Hz,1H),1.72(t,J=6.5Hz,1H),1.35–1.26(m,1H),1.17–1.08(m,2H),0.96–0.90(m,1H).
Example 32
N-(4-chlorophenyl)-7-(6-fluoroquinolin-4-yl)spiro[3.5]nonane-1-carboxamide
N- (4-chlorophenyl) -7- (6-fluoroquinolin-4-yl) spiro [3.5] nonane-1-carboxamide
Synthesis of compound 32 starting from intermediate 1e in example 1, was prepared via the following steps: the first step is as follows: (cyclopropylmethyl) triphenylphosphine bromide (2.0eq) was added to the ultra-dry tetrahydrofuran, and NaH (2.0eq) was added to the suspension, followed by stirring at room temperature for 2 hours. Further, compound 1e (1.0eq) and tris (3, 6-dioxaheptyl) amine (0.1eq) were added to the reaction solution. The reaction mixture isStirred at room temperature for 10 minutes and then heated to 62 ℃ for 4 hours. The reaction solvent was dried by spinning and the residue was isolated by flash column chromatography to give compound 32a in 75% yield. MS (ESI) M/z 268.3(M + H)+.
The second step is that: compound 32a (1.0eq) was dissolved in dichloromethane and m-chloroperoxybenzoic acid (1.4eq) was added in portions at 0-5 ℃. The reaction mixture was reacted at 0-5 ℃ for 40 minutes and then warmed to room temperature for 1 hour. The reaction mixture was diluted with methylene chloride, and the organic phase was washed successively with a 10% aqueous sodium hydroxide solution and a saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was separated by flash column chromatography to give compound 32b in 35% yield. MS (ESI) M/z284.3(M + H)+.
The third step: compound 32b (1.0eq) and p-toluenesulfonylmethylisocyanitrile (2.0eq) were dissolved in 1, 2-dimethoxyethane and methanol (v/v:16/1), and potassium tert-butoxide (3.0eq) was added at 0-5 ℃. The reaction mixture was stirred at room temperature for 4 hours, then poured into water and neutralized with 1M hydrochloric acid solution to pH 6-7. The aqueous solution was extracted three times with ethyl acetate, the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was separated by flash column chromatography to give compound 32c in 20% yield. MS (ESI) M/z 295.3(M + H)+.
The fourth step: compound 32c (1.0eq) was dissolved in ethanol, 40% sodium hydroxide solution (10.0eq) was added, and the mixture was heated at 95 ℃ for reaction for 3 hours. The reaction was diluted with water and neutralized with 4M hydrochloric acid solution to pH 1-2. The aqueous phase was extracted with ethyl acetate, the organic phases combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to give compound 32d in 82% yield, which was used in the next step without purification. MS (ESI) M/z 314.3(M + H)+.
The fifth step: compound 32d (1.0eq) was dissolved in ethyl acetate, and pyridine (3.0eq) and tripropyl phosphoric anhydride (2.5eq) were added in this order and stirred at room temperature for 10 minutes. 4-chloroaniline (3.0eq) was then added and the reaction was continued at room temperature with stirring overnight. To the reaction solution was added 2M sodium hydroxide solution, and diluted with water, and the aqueous phase was extracted with ethyl acetate. The combined organic phases were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by reverse phase preparative chromatography to give compound 32 as a white solid.
Synthesis of compounds 33,34,35,36,37 and compound 32.