CN111450858B - Composite photocatalyst Ag/AgCl @ Co3O4Preparation method of (1) and composite photocatalyst prepared by using same - Google Patents
Composite photocatalyst Ag/AgCl @ Co3O4Preparation method of (1) and composite photocatalyst prepared by using same Download PDFInfo
- Publication number
- CN111450858B CN111450858B CN202010282207.8A CN202010282207A CN111450858B CN 111450858 B CN111450858 B CN 111450858B CN 202010282207 A CN202010282207 A CN 202010282207A CN 111450858 B CN111450858 B CN 111450858B
- Authority
- CN
- China
- Prior art keywords
- solution
- methanol
- composite photocatalyst
- agcl
- suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 64
- 229910021607 Silver chloride Inorganic materials 0.000 title claims abstract description 53
- 239000002131 composite material Substances 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 26
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 claims abstract description 66
- 239000000725 suspension Substances 0.000 claims abstract description 56
- 239000000243 solution Substances 0.000 claims abstract description 52
- 239000002105 nanoparticle Substances 0.000 claims abstract description 48
- 238000003756 stirring Methods 0.000 claims abstract description 32
- 238000001354 calcination Methods 0.000 claims abstract description 21
- 238000002156 mixing Methods 0.000 claims abstract description 20
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims abstract description 10
- 150000001868 cobalt Chemical class 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 8
- 239000003960 organic solvent Substances 0.000 claims abstract description 7
- 239000012266 salt solution Substances 0.000 claims abstract description 7
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 222
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical group [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 28
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 3
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 3
- 229940044175 cobalt sulfate Drugs 0.000 claims description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 claims description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 230000001699 photocatalysis Effects 0.000 abstract description 12
- 238000013033 photocatalytic degradation reaction Methods 0.000 abstract description 7
- 238000007146 photocatalysis Methods 0.000 abstract description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 5
- 230000015556 catabolic process Effects 0.000 abstract description 3
- 238000006731 degradation reaction Methods 0.000 abstract description 3
- 239000002351 wastewater Substances 0.000 abstract description 3
- 239000002245 particle Substances 0.000 abstract description 2
- 238000004064 recycling Methods 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 15
- 238000001035 drying Methods 0.000 description 13
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 description 12
- 238000005406 washing Methods 0.000 description 12
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 11
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 10
- 229940012189 methyl orange Drugs 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 10
- 238000009210 therapy by ultrasound Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000000975 dye Substances 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 6
- 239000001048 orange dye Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 3
- 230000000593 degrading effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012621 metal-organic framework Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- -1 silver halide Chemical class 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000013110 organic ligand Substances 0.000 description 2
- 239000002957 persistent organic pollutant Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 101710134784 Agnoprotein Proteins 0.000 description 1
- 229910021281 Co3O4In Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000002256 photodeposition Methods 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- STZCRXQWRGQSJD-UHFFFAOYSA-M sodium;4-[[4-(dimethylamino)phenyl]diazenyl]benzenesulfonate Chemical compound [Na+].C1=CC(N(C)C)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-UHFFFAOYSA-M 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/128—Halogens; Compounds thereof with iron group metals or platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/341—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
- B01J37/344—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G5/00—Compounds of silver
- C01G5/02—Halides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/04—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
Abstract
The invention discloses a composite photocatalyst Ag/AgCl @ Co3O4The preparation method and the composite photocatalyst prepared by the method. The preparation method comprises the following steps: (1) mixing the 2-methylimidazole solution with a cobalt salt solution for reaction to obtain ZIF-67; (2) calcining the ZIF-67 at a temperature of 350-700 ℃ to obtain Co3O4A nanoparticle; (3) mixing the Co3O4The nano particles are dispersed in an organic solvent to prepare Co3O4A suspension; (4) to the Co3O4Adding silver salt into the suspension, and stirring to obtain mixed suspension; (5) adding a cobalt chloride solution into the mixed suspension, stirring, and then irradiating ultraviolet visible light to obtain the composite photocatalyst Ag/AgCl @ Co3O4. The composite photocatalyst has uniform particles, good stability and high recycling rate, has good absorption performance in an ultraviolet visible light region, has excellent photocatalytic degradation efficiency, greatly improves the removal and degradation efficiency of organic matters in wastewater, and has good application value and prospect in the field of photocatalysis.
Description
Technical Field
The invention relates to the field of catalysts, and in particular relates to a composite photocatalyst Ag/AgCl @ Co3O4The preparation method and the composite photocatalyst prepared by the method.
Background
With the acceleration of the progress of the printing and dyeing industry in China, the environmental problem caused by dye wastewater is increasingly prominent. The conventional dye wastewater treatment method cannot meet the requirements of increasing development due to the defects of the conventional dye wastewater treatment method. In recent years, a great deal of research has been initiated on novel photocatalytic treatment technologies due to the advantages of low operation cost, difficulty in generating secondary pollution, capability of thoroughly degrading pollutants and the like, but the development of the novel photocatalytic treatment technologies is restricted by the cost and the catalytic efficiency of the photocatalyst. Therefore, it is necessary to develop a high-efficiency, green and economical photocatalyst.
In recent years, noble metal nanoparticles attract close attention due to the obvious plasma effect in the visible light region, and particularly, Ag/AgX in metal/metal halide is widely studied, because simple substance silver and silver halide can coexist in the photocatalysis process, and the silver in the form of nanoparticles can protect the silver halide from being decomposed by photo-corrosion, and the prepared photocatalyst has the SPR effect of the noble metal nanoparticles in the photocatalysis reaction process, so that the recombination of photo-generated electron holes is greatly inhibited, the capability of degrading various organic wastes under visible light is enhanced, but the catalyst has the defects of poor adsorption capability on organic pollutants, easy occurrence of agglomeration and the like, and the catalytic efficiency in practical application is low.
Therefore, there is a need to develop a photocatalyst capable of stably performing a catalytic reaction with high efficiency.
Disclosure of Invention
[ problem ] to
Aiming at the defects in the prior art, the invention aims to provide the composite photocatalyst Ag/AgCl @ Co3O4The preparation method is simple and easy to implement, and the implementation cost is low.
The invention also aims to provide the composite photocatalyst Ag/AgCl @ Co prepared by the preparation method3O4The composite photocatalyst has uniform particles, good stability and high recycling rate, has good absorption performance in an ultraviolet visible light region, has excellent photocatalytic degradation efficiency, greatly improves the removal and degradation efficiency of organic matters in wastewater, and has good application value and prospect in the field of photocatalysis.
[ solution ]
To achieve the above object, according to one embodiment of the present invention, a composite photocatalyst Ag-AgCl@Co3O4The preparation method comprises the following steps:
(1) mixing the 2-methylimidazole solution with a cobalt salt solution for reaction to obtain ZIF-67 (zeolite imidazole framework-67);
(2) calcining the ZIF-67 at a temperature of 350-700 ℃ to obtain Co3O4A nanoparticle;
(3) mixing the Co3O4The nano particles are dispersed in an organic solvent to prepare Co3O4A suspension;
(4) to the Co3O4Adding silver salt into the suspension, and stirring to obtain mixed suspension;
(5) adding a cobalt chloride solution into the mixed suspension, stirring, and then irradiating ultraviolet visible light to obtain the composite photocatalyst Ag/AgCl @ Co3O4。
Zeolite imidazole framework-67 belongs to one of Metal Organic Frameworks (MOFs), which are a class of crystalline porous materials with periodic network structures formed by the interconnection of inorganic metal centers (metal ions or metal clusters) and organic ligands through self-assembly. They possess a large specific surface area, a regular and adjustable pore structure, and these outstanding properties make them of great interest in many fields, such as: gas storage, separation, chemical sensing, drug delivery, optical materials, and the like. In MOF materials, zeolitic imidazole framework-67 is a dodecahedral crystalline material formed by the self-assembly linkage of metallic cobalt ions and organic ligands, possessing excellent thermal and chemical stability, large specific surface area, regular porous structure and low band gap energy.
In the present invention, in order to increase the activity of Ag/AgCl as a photocatalytic component, an improvement is made by two aspects. First, ZIF-67 was calcined at high temperature to obtain a catalyst consisting of Co3O4Co of rhombic dodecahedron structure3O4Nano particles as catalyst carrier to make the carried catalytic active component obtain stronger absorption in ultraviolet and visible light range, and then utilizing photo-deposition method to grow and deposit noble metal/noble metal halide on the surface of carrierTypical of the compound is Ag/AgCl, so that Ag/AgCl @ Co capable of efficiently photodegrading organic dyes is obtained3O4And (3) compounding a catalyst.
In the step (1), the 2-methylimidazole solution may be a methanol solution with a concentration of 0.2 to 1.0mol/L, preferably 0.8 mol/L; the cobalt salt can be at least one selected from cobalt nitrate, cobalt chloride or cobalt sulfate, and is preferably cobalt nitrate; and the cobalt salt solution can be a methanol solution with the concentration of 0.05-0.12 mol/L, preferably 0.1 mol/L.
Further, the step (1) may be: the 2-methylimidazole solution and the cobalt salt solution in a volume ratio of 0.8:1 to 1.25:1, preferably 1:1 are rapidly mixed and reacted under stirring at a constant temperature of 27 to 33 ℃, preferably 30 ℃ for 2 to 12 hours, preferably 4 to 7 hours, more preferably 5 hours.
Further, the step (2) is preferably carried out at a temperature of 400 ℃. In the present invention, if the calcination temperature is lower than 350 ℃, sufficient modification is difficult to obtain, and the effect of improving the photocatalysis cannot be achieved; if the calcination temperature is more than 700 ℃, the obtained product is difficult to maintain the structure of the rhombic dodecahedron and cannot realize modification. Wherein, when the calcining temperature is 400 ℃, the product Co can be obtained3O4The absorption of the nano-particles to ultraviolet and visible light is maximized.
In the step (2), the calcination time may be 1 to 3 hours, preferably 2 hours.
In the step (3), the organic solvent may be selected from at least one of methanol, ethanol, ethylene glycol, propanol, glycerol or n-butanol, and is preferably methanol. Further, the Co3O4The volume ratio of the weight of the nanoparticles to the organic solvent can be 1.5-5 mg/mL, and preferably 2.5 mg/mL.
And (3) stirring in the step (4) is carried out for 0.5-1 hour, preferably 0.5 hour under a dark condition.
The silver salt may preferably be silver nitrate. Further, the ratio of the amount of the silver salt to the volume of the mixed suspension may be 0.073 to 0.15mol/L, preferably 0.11 mol/L.
In the step (5), the cobalt chloride solution may be a methanol solution having a concentration of 0.1 to 0.15mol/L, preferably 0.1 mol/L.
Further, the step (5) may be: mixing the mixed suspension and the cobalt chloride solution in a volume ratio of 4:1 to 2:1, preferably 2:1, stirring for 30-60 minutes, preferably 50 minutes, and then irradiating with ultraviolet visible light for 8-20 minutes, preferably 10 minutes.
The wavelength of the ultraviolet visible light can be 315-450 nm, preferably 365nm, and the intensity can be 125-230 mW/m2Preferably 175mW/m2。
In the step (5), adsorption to Co is advanced3O4Silver ions in the nano particles can react with cobalt chloride to generate silver chloride, then partial silver chloride is decomposed to generate silver nano particles through the irradiation of ultraviolet visible light, and the silver nano particles are deposited on Co3O4In the nano particles, the other part of silver chloride is prevented from being decomposed, so that the composite photocatalyst Ag/AgCl @ Co is prepared3O4。
According to one embodiment of the invention, the composite photocatalyst Ag/AgCl @ Co prepared by the preparation method is provided3O4。
[ advantageous effects ]
In conclusion, the invention has the following beneficial effects:
the invention adopts a one-pot method to prepare the composite photocatalyst Ag/AgCl @ Co3O4The operation method is simple and convenient, and the synthesis time is short.
In the invention, the ZIF-67 is calcined at high temperature to obtain Co with a rhombic dodecahedron structure3O4The nano particles further improve the absorption intensity of the prepared composite photocatalyst in the ultraviolet and visible light range. Then, by mixing in Co3O4Ag/AgCl is loaded on the nano particles, and recombination of photo-generated electron hole pairs is effectively inhibited by utilizing the SPR effect of noble metals, so that the performance of degrading organic matters through photocatalysis is greatly improved.
Drawings
FIG. 1 is a schematic diagram of an embodiment of the present inventionAg/AgCl @ Co from example 1 of formula3O4Scanning electron microscope images of the composite photocatalyst.
Detailed Description
In order that those skilled in the art will more clearly understand the present invention, the following examples are given for further detailed description of the present invention, but it should be understood that the following examples are only preferred embodiments of the present invention, and the scope of the present invention as claimed should not be limited thereto.
Sources of materials
2-methylimidazole, analytically pure, purchased from Shanghai Allantin Biotechnology Ltd;
cobalt nitrate hexahydrate (Co (NO)3)2·6H2O), analytically pure, purchased from shanghai alading biochem-technological limited;
silver nitrate (AgNO)3) Analytically pure, purchased from Tianjin Kemiou chemical reagents, Inc.;
cobalt chloride hexahydrate (CoCl)2·6H2O), analytically pure, purchased from shanghai alading biochem-technological limited;
methanol, analytically pure, purchased from Tianjin Kemiou Chemicals, Inc.
< example >
Example 1
The composite photocatalyst Ag/AgCl @ Co according to the invention is prepared by the following method3O4:
(1) Quickly mixing a methanol (100mL) solution of 2-methylimidazole (6.489g, 0.08mol) and a methanol (100mL) solution of cobalt nitrate hexahydrate (2.933g, 0.01mol), stirring for 5 hours at a constant temperature of 30 ℃, after the reaction is finished, centrifugally separating the obtained mixture, washing with methanol for three times, and drying at 60 ℃ to obtain ZIF-67;
(2) calcining the ZIF-67 prepared in the step (1) in a muffle furnace at the temperature of 400 ℃ for 2 hours to obtain Co3O4A nanoparticle;
(3) taking out of the Co3O4Adding the nano particles (50mg) into methanol (20mL), and performing ultrasonic treatment until the nano particles are completely dispersed to obtain Co3O4A suspension;
(4) to the Co3O4Adding silver nitrate (0.3737g, 0.0022mol) into the suspension, and stirring for 0.5 hour under dark conditions to obtain mixed suspension;
(5) to the mixed suspension was added a solution of cobalt chloride hexahydrate (0.2379g, 0.001mol) in methanol (10mL), stirred for 50 minutes, and then irradiated at a wavelength of 365nm and an intensity of 175mW/m2The obtained product is centrifuged and washed by methanol, and naturally dried, thereby obtaining the composite photocatalyst Ag/AgCl @ Co of the invention3O4。
Example 2
The composite photocatalyst Ag/AgCl @ Co according to the invention is prepared by the following method3O4:
(1) Quickly mixing a methanol (100mL) solution of 2-methylimidazole (6.489g, 0.08mol) and a methanol (100mL) solution of cobalt nitrate hexahydrate (2.933g, 0.01mol), stirring for 5 hours at a constant temperature of 30 ℃, after the reaction is finished, centrifugally separating the obtained mixture, washing with methanol for three times, and drying at 60 ℃ to obtain ZIF-67;
(2) calcining the ZIF-67 prepared in step (1) in a muffle furnace at a temperature of 500 ℃ for 2 hours to obtain Co3O4A nanoparticle;
(3) taking out of the Co3O4Adding the nano particles (50mg) into methanol (20mL), and performing ultrasonic treatment until the nano particles are completely dispersed to obtain Co3O4A suspension;
(4) to the Co3O4Adding silver nitrate (0.3737g, 0.0022mol) into the suspension, and stirring for 0.5 hour under dark conditions to obtain mixed suspension;
(5) to the mixed suspension was added a solution of cobalt chloride hexahydrate (0.2379g, 0.001mol) in methanol (10mL), stirred for 50 minutes, and then irradiated at a wavelength of 365nm and an intensity of 175mW/m2Ultraviolet light for 10 minutes, and finally centrifuging the product obtained and adding methanolWashing and naturally drying to obtain the composite photocatalyst Ag/AgCl @ Co according to the invention3O4。
Example 3
The composite photocatalyst Ag/AgCl @ Co according to the invention is prepared by the following method3O4:
(1) Rapidly mixing a methanol (100mL) solution of 2-methylimidazole (7.398g, 0.09mol) and a methanol (100mL) solution of cobalt nitrate hexahydrate (2.619g, 0.009mol), stirring for 5 hours at a constant temperature of 30 ℃, after the reaction is completed, centrifugally separating the obtained mixture, washing with methanol three times, and drying at 60 ℃ to obtain ZIF-67;
(2) calcining the ZIF-67 prepared in the step (1) in a muffle furnace at the temperature of 350 ℃ for 2 hours to obtain Co3O4A nanoparticle;
(3) taking out of the Co3O4Adding the nano particles (40mg) into methanol (20mL), and performing ultrasonic treatment until the nano particles are completely dispersed to obtain Co3O4A suspension;
(4) to the Co3O4Adding silver nitrate (0.4417g, 0.0026mol) into the suspension, and stirring for 0.5 hour under dark conditions to obtain mixed suspension;
(5) to the mixed suspension was added a solution of cobalt chloride hexahydrate (0.2379g, 0.001mol) in methanol (10mL), stirred for 50 minutes, and then irradiated at a wavelength of 365nm and an intensity of 175mW/m2The obtained product is centrifuged and washed by methanol, and naturally dried, thereby obtaining the composite photocatalyst Ag/AgCl @ Co of the invention3O4。
Example 4
The composite photocatalyst Ag/AgCl @ Co according to the invention is prepared by the following method3O4:
(1) Quickly mixing a methanol (100mL) solution of 2-methylimidazole (8.230g, 0.10mol) and a methanol (100mL) solution of cobalt nitrate hexahydrate (2.328g, 0.008mol), stirring for 5 hours at a constant temperature of 30 ℃, after the reaction is finished, centrifugally separating the obtained mixture, washing with methanol for three times, and drying at 60 ℃ to obtain ZIF-67;
(2) calcining the ZIF-67 prepared in step (1) in a muffle furnace at a temperature of 500 ℃ for 2 hours to obtain Co3O4A nanoparticle;
(3) taking out of the Co3O4Adding the nano particles (30mg) into methanol (20mL), and performing ultrasonic treatment until the nano particles are completely dispersed to obtain Co3O4A suspension;
(4) to the Co3O4Adding silver nitrate (0.3737g, 0.0022mol) into the suspension, and stirring for 0.5 hour under dark conditions to obtain mixed suspension;
(5) to the mixed suspension was added a solution of cobalt chloride hexahydrate (0.2379g, 0.001mol) in methanol (10mL), stirred for 50 minutes, and then irradiated at a wavelength of 365nm and an intensity of 175mW/m2The obtained product is centrifuged and washed by methanol, and naturally dried, thereby obtaining the composite photocatalyst Ag/AgCl @ Co of the invention3O4。
Example 5
The composite photocatalyst Ag/AgCl @ Co according to the invention is prepared by the following method3O4:
(1) Rapidly mixing a methanol (100mL) solution of 2-methylimidazole (5.768g, 0.07mol) with a methanol (100mL) solution of cobalt nitrate hexahydrate (2.037g, 0.007mol), stirring for 5 hours at a constant temperature of 30 ℃, after the reaction is completed, centrifugally separating the obtained mixture, washing with methanol three times, and drying at 60 ℃ to obtain ZIF-67;
(2) calcining the ZIF-67 prepared in the step (1) in a muffle furnace at the temperature of 600 ℃ for 2 hours to obtain Co3O4A nanoparticle;
(3) taking out of the Co3O4Adding the nano particles (50mg) into methanol (20mL), and performing ultrasonic treatment until the nano particles are completely dispersed to obtain Co3O4A suspension;
(4) to the Co3O4Silver nitrate (0.5096g, 0.0030mol) was added to the suspension in dark stripsStirring for 0.75 hour under stirring to obtain mixed suspension;
(5) to the mixed suspension was added a solution of cobalt chloride hexahydrate (0.2379g, 0.001mol) in methanol (10mL), stirred for 50 minutes, and then irradiated at a wavelength of 365nm and an intensity of 175mW/m2The obtained product is centrifuged and washed by methanol, and naturally dried, thereby obtaining the composite photocatalyst Ag/AgCl @ Co of the invention3O4。
Example 6
The composite photocatalyst Ag/AgCl @ Co according to the invention is prepared by the following method3O4:
(1) Quickly mixing a methanol (100mL) solution of 2-methylimidazole (4.950g, 0.06mol) and a methanol (100mL) solution of cobalt nitrate hexahydrate (3.202g, 0.011mol), stirring for 5 hours at a constant temperature of 30 ℃, after the reaction is finished, centrifugally separating the obtained mixture, washing with methanol for three times, and drying at 60 ℃ to obtain ZIF-67;
(2) calcining the ZIF-67 prepared in step (1) in a muffle furnace at a temperature of 700 ℃ for 2 hours to obtain Co3O4A nanoparticle;
(3) taking out of the Co3O4Adding the nano particles (75mg) into methanol (20mL), and performing ultrasonic treatment until the nano particles are completely dispersed to obtain Co3O4A suspension;
(4) to the Co3O4Adding silver nitrate (0.3737g, 0.0022mol) into the suspension, and stirring for 1 hour under dark conditions to obtain mixed suspension;
(5) to the mixed suspension was added a solution of cobalt chloride hexahydrate (0.3093g, 0.0013mol) in methanol (10mL), stirred for 40 minutes, and then irradiated at a wavelength of 365nm and an intensity of 175mW/m2The obtained product is centrifuged and washed by methanol, and naturally dried, thereby obtaining the composite photocatalyst Ag/AgCl @ Co of the invention3O4。
Example 7
The following method was used to prepare rootsThe composite photocatalyst Ag/AgCl @ Co provided by the invention3O4:
(1) Rapidly mixing a methanol (80mL) solution of 2-methylimidazole (3.304g, 0.04mol) with a methanol (100mL) solution of cobalt nitrate hexahydrate (3.493g, 0.012mol), stirring at a constant temperature of 33 ℃ for 4 hours, after the reaction is completed, centrifuging the obtained mixture, washing with methanol three times, and drying at 60 ℃ to obtain ZIF-67;
(2) calcining the ZIF-67 prepared in the step (1) in a muffle furnace at the temperature of 400 ℃ for 3 hours to obtain Co3O4A nanoparticle;
(3) taking out of the Co3O4Adding the nano particles (100mg) into methanol (20mL), and performing ultrasonic treatment until the nano particles are completely dispersed to obtain Co3O4A suspension;
(4) to the Co3O4Adding silver nitrate (0.3397g, 0.0020mol) into the suspension, and stirring for 0.75 h under dark conditions to obtain mixed suspension;
(5) to the mixed suspension was added a solution of cobalt chloride hexahydrate (0.3569g, 0.0015mol) in methanol (10mL), stirred for 50 minutes, and then irradiated at a wavelength of 365nm and an intensity of 175mW/m2The obtained product is centrifuged and washed by methanol, and naturally dried, thereby obtaining the composite photocatalyst Ag/AgCl @ Co of the invention3O4。
Example 8
The composite photocatalyst Ag/AgCl @ Co according to the invention is prepared by the following method3O4:
(1) Rapidly mixing a methanol (90mL) solution of 2-methylimidazole (5.954g, 0.072mol) with a methanol (100mL) solution of cobalt nitrate hexahydrate (2.933g, 0.01mol), stirring at a constant temperature of 27 ℃ for 7 hours, after the reaction is completed, centrifugally separating the obtained mixture, washing with methanol three times, and drying at 60 ℃ to obtain ZIF-67;
(2) calcining the ZIF-67 prepared in step (1) in a muffle furnace at a temperature of 700 ℃ for 1 hour to obtain Co3O4A nanoparticle;
(3) taking out of the Co3O4Adding the nano particles (50mg) into methanol (20mL), and performing ultrasonic treatment until the nano particles are completely dispersed to obtain Co3O4A suspension;
(4) to the Co3O4Adding silver nitrate (0.3058g, 0.0018mol) into the suspension, and stirring for 0.5 hour under dark conditions to obtain a mixed suspension;
(5) to the mixed suspension was added a solution of cobalt chloride hexahydrate (0.2855g, 0.0012mol) in methanol (10mL), stirred for 60 minutes, and then irradiated at a wavelength of 365nm and an intensity of 175mW/m2The obtained product is centrifuged and washed by methanol, and naturally dried, thereby obtaining the composite photocatalyst Ag/AgCl @ Co of the invention3O4。
Example 9
The composite photocatalyst Ag/AgCl @ Co according to the invention is prepared by the following method3O4:
(1) Rapidly mixing a methanol (110mL) solution of 2-methylimidazole (7.286g, 0.088mol) with a methanol (100mL) solution of cobalt nitrate hexahydrate (2.933g, 0.01mol), stirring for 6 hours at a constant temperature of 31 ℃, after the reaction is finished, centrifugally separating the obtained mixture, washing with methanol for three times, and drying at 60 ℃ to obtain ZIF-67;
(2) calcining the ZIF-67 prepared in step (1) in a muffle furnace at a temperature of 600 ℃ for 1.5 hours to obtain Co3O4A nanoparticle;
(3) taking out of the Co3O4Adding the nano particles (40mg) into methanol (20mL), and performing ultrasonic treatment until the nano particles are completely dispersed to obtain Co3O4A suspension;
(4) to the Co3O4Adding silver nitrate (0.2718g, 0.0016mol) into the suspension, and stirring for 0.5 hour under dark conditions to obtain a mixed suspension;
(5) to the mixed suspension was added a solution of cobalt chloride hexahydrate (0.3331g, 0.0014mol) in methanol (10mL), stirred for 30 minutes, and then irradiated at a wavelength of 365nm and an intensity of 175mW/m2The obtained product is centrifuged and washed by methanol, and naturally dried, thereby obtaining the composite photocatalyst Ag/AgCl @ Co of the invention3O4。
Example 10
The composite photocatalyst Ag/AgCl @ Co according to the invention is prepared by the following method3O4:
(1) Quickly mixing a methanol (125mL) solution of 2-methylimidazole (8.290g, 0.10mol) with a methanol (100mL) solution of cobalt nitrate hexahydrate (2.933g, 0.01mol), stirring for 5 hours at a constant temperature of 29 ℃, after the reaction is finished, centrifugally separating the obtained mixture, washing with methanol for three times, and drying at 60 ℃ to obtain ZIF-67;
(2) calcining the ZIF-67 prepared in the step (1) in a muffle furnace at the temperature of 350 ℃ for 3 hours to obtain Co3O4A nanoparticle;
(3) taking out of the Co3O4Adding the nano particles (50mg) into methanol (20mL), and performing ultrasonic treatment until the nano particles are completely dispersed to obtain Co3O4A suspension;
(4) to the Co3O4Adding silver nitrate (0.2480g, 0.0015mol) into the suspension, and stirring for 0.5 hour under dark conditions to obtain a mixed suspension;
(5) to the mixed suspension was added a solution of cobalt chloride hexahydrate (0.2617g, 0.0011mol) in methanol (10mL), stirred for 40 minutes, and then irradiated at a wavelength of 365nm and an intensity of 175mW/m2The obtained product is centrifuged and washed by methanol, and naturally dried, thereby obtaining the composite photocatalyst Ag/AgCl @ Co of the invention3O4。
Comparative example 1
ZIF-67 was prepared only in the same manner as in the step (1) of example 1, centrifuged and washed with methanol, and naturally dried to be used as a photocatalyst.
Comparative example 2
By using only the same substanceCo was obtained in the same manner as in steps (1) and (2) of example 13O4And (3) centrifuging the nano particles, washing the nano particles by using methanol, and naturally drying the nano particles to serve as the photocatalyst.
Comparative example 3
(1) Silver nitrate (0.3737g, 0.0022mol) was added to methanol (20mL) and stirred under dark conditions for 0.5 h, after which a solution of cobalt chloride hexahydrate (0.2379g, 0.001mol) in methanol (10mL) was added thereto and stirred for 50 min, followed by irradiation at 365nm and an intensity of 175mW/m2And (4) ultraviolet visible light for 10 minutes, and finally centrifuging the obtained product, washing the product with methanol, and naturally drying the product to obtain the Ag/AgCl serving as the photocatalyst.
Comparative example 4
A composite photocatalyst Ag/AgCl @ Co was prepared in the same manner as in example 1, except that the calcination temperature in step (2) was changed to 300 deg.C3O4。
Comparative example 5
A composite photocatalyst Ag/AgCl @ Co was prepared in the same manner as in example 1, except that the calcination temperature in step (2) was changed to 800 deg.C3O4。
< test examples >
Methyl orange dye is a common organic pollutant and belongs to azo dyes, and the dye accounts for the largest of various dyes and accounts for about 50 percent of all dyes. Moreover, the methyl orange dye is non-volatile and difficult to degrade, has quite high capability of resisting direct photodecomposition and oxidation, and the concentration of the methyl orange dye can be measured by a spectrophotometry method, so that the method is simple and convenient. Therefore, the methyl orange dye can be used as a model reactant of a photocatalytic reaction and has certain representativeness by taking the methyl orange dye as a research object.
In the invention, the method of adsorbing-visible light photocatalytic degradation of methyl orange is adopted to measure the catalytic effectiveness of the photocatalyst. Specifically, 120mL of 10mg/L methyl orange solution is taken, 0.08g of photocatalyst is added, and adsorption is carried out for 30min before photocatalytic degradation, so as to achieve adsorption equilibrium.Then, the sample was taken at intervals of 3min for the first 15min and 5min for the second 15min, and each sample was centrifuged, and the supernatant was taken to measure the absorbance at 462nm using a spectrophotometer. The composite photocatalysts Ag/AgCl @ Co prepared in the above examples 1 to 10 were measured by the above methods3O4And the photocatalyst prepared in comparative examples 1 to 5, the change of absorbance A of methyl orange dye with time under visible light and the final catalytic efficiency of the photocatalyst ((A)0-A)/A0X 100%), the results are shown in table 1 below.
[ Table 1]
Referring to table 1, comparative examples 1 and 2, which tested the photocatalytic ability using the carrier itself, showed almost no degradation ability to methyl orange, whereas comparative example 3, which directly used Ag/AgCl as a photocatalyst, was difficult to exert a sufficient photocatalytic degradation effect to methyl orange due to the defects of Ag/AgCl itself. In addition, comparative examples 4 and 5 employ lower or higher calcination temperatures, and thus the photocatalyst prepared also has a significant decrease in catalytic efficiency. In contrast, composite photocatalysts Ag/AgCl @ Co prepared according to examples 1 to 10 of the present invention3O4The photocatalyst has high-efficiency photocatalytic efficiency, and the photocatalytic degradation of methyl orange can reach more than 91%.
Further, see FIG. 1 for Ag/AgCl @ Co obtained in example 1 of the present invention3O4Scanning electron microscope images of the composite photocatalyst. As can be seen from FIG. 1, Ag/AgCl photocatalytic active components are fully deposited and grown on the surface of the prepared composite photocatalyst, so that the photocatalytic degradation effect can be fully and stably exerted. In addition, Ag/AgCl @ Co prepared in other examples of the invention3O4The scanning electron micrograph of the composite photocatalyst is similar to that of example 1, and thus it is omitted.
The present embodiment is only for explaining the present invention, and it is not limited to the present invention, and those skilled in the art can make modifications of the present embodiment without inventive contribution as needed after reading the present specification, but all of them are protected by patent law within the scope of the claims of the present invention.
Claims (10)
1. Composite photocatalyst Ag/AgCl @ Co3O4The preparation method is characterized by comprising the following steps:
(1) mixing the 2-methylimidazole solution with a cobalt salt solution for reaction to obtain ZIF-67;
(2) calcining the ZIF-67 at a temperature of 350-700 ℃ to obtain Co3O4A nanoparticle;
(3) mixing the Co3O4The nano particles are dispersed in an organic solvent to prepare Co3O4A suspension;
(4) to the Co3O4Adding silver salt into the suspension, and stirring to obtain mixed suspension;
(5) adding a cobalt chloride solution into the mixed suspension, stirring, and then irradiating ultraviolet visible light to obtain the composite photocatalyst Ag/AgCl @ Co3O4。
2. The production method according to claim 1, wherein, in the step (1),
the 2-methylimidazole solution is a methanol solution with the concentration of 0.2-1.0 mol/L;
the cobalt salt is selected from at least one of cobalt nitrate, cobalt chloride or cobalt sulfate; and
the cobalt salt solution is a methanol solution with the concentration of 0.05-0.12 mol/L.
3. The method according to claim 1, wherein the step (1) is: rapidly mixing a 2-methylimidazole solution and a cobalt salt solution in a volume ratio of 0.8:1 to 1.25:1, and stirring and reacting for 2-12 hours at a constant temperature of 27-33 ℃.
4. The production method according to claim 1, wherein the step (2) is carried out at a temperature of 400 ℃; and
the calcining time is 1-3 hours.
5. The production method according to claim 1, wherein, in the step (3),
the organic solvent is at least one of methanol, ethanol, glycol, propanol, glycerol or n-butanol;
the Co3O4The volume ratio of the weight of the nanoparticles to the organic solvent is 1.5-5 mg/mL.
6. The production method according to claim 1, wherein, in the step (4),
the stirring is carried out for 0.5-1 hour under the dark condition;
the silver salt is silver nitrate; and
the ratio of the dosage of the silver salt to the volume of the mixed suspension is 0.073-0.15 mol/L.
7. The method according to claim 1, wherein in the step (5), the cobalt chloride solution is a methanol solution having a concentration of 0.1 to 0.15 mol/L.
8. The method according to claim 1, wherein the step (5) is: mixing the mixed suspension and the cobalt chloride solution in a volume ratio of 4:1 to 2:1, stirring for 30-60 minutes, and then irradiating ultraviolet visible light for 8-20 minutes.
9. The method according to claim 1, wherein the UV-VIS light has a wavelength of 315 to 450nm and an intensity of 125 to 230mW/m2。
10. A method of producing a compound according to any one of claims 1 to 9Prepared composite photocatalyst Ag/AgCl @ Co3O4。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010282207.8A CN111450858B (en) | 2020-04-11 | 2020-04-11 | Composite photocatalyst Ag/AgCl @ Co3O4Preparation method of (1) and composite photocatalyst prepared by using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010282207.8A CN111450858B (en) | 2020-04-11 | 2020-04-11 | Composite photocatalyst Ag/AgCl @ Co3O4Preparation method of (1) and composite photocatalyst prepared by using same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111450858A CN111450858A (en) | 2020-07-28 |
CN111450858B true CN111450858B (en) | 2020-12-15 |
Family
ID=71674073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010282207.8A Active CN111450858B (en) | 2020-04-11 | 2020-04-11 | Composite photocatalyst Ag/AgCl @ Co3O4Preparation method of (1) and composite photocatalyst prepared by using same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111450858B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112264013B (en) * | 2020-10-27 | 2022-10-25 | 福建农林大学 | Preparation method of cellulose-based cobalt-oxygen composite silver phosphate photocatalytic heterojunction |
CN112619647A (en) * | 2020-11-16 | 2021-04-09 | 江苏大学 | Preparation method of Co-MOF derived cobaltosic oxide composite titanium dioxide heterojunction and application of electrolyzed water |
CN114887660B (en) * | 2022-06-01 | 2023-10-24 | 浙江科技学院 | Preparation of photocatalytic material by plasma method and application of photocatalytic material in dye wastewater |
CN116747885B (en) * | 2023-06-06 | 2024-08-23 | 常州大学 | ZIF-67-derived CsPbBr3/Co3O4Preparation method and application of composite photocatalyst |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101840819B1 (en) * | 2012-01-17 | 2018-03-21 | 삼성전자 주식회사 | Water splitting oxygen evolving catalyst, method of prepararing the catalyst, electrode having the catalyst and water splitting oxygen evolving device having the electrode |
CN103623803A (en) * | 2012-08-30 | 2014-03-12 | 上海纳晶科技有限公司 | Visible light photocatalyst and preparation method therefor |
CN107349943A (en) * | 2017-08-10 | 2017-11-17 | 南京理工大学 | The preparation method of bismuth stannate/silver-colored silver chlorate plasma nano composite photocatalyst material |
CN108525667A (en) * | 2018-04-10 | 2018-09-14 | 苏州大学 | Metal organic frame derives the preparation method of the TiO 2 nanotubes modified array of cobaltosic oxide |
CN110732330A (en) * | 2018-07-20 | 2020-01-31 | 南京理工大学 | WO3Preparation method of/Ag/AgCl photocatalytic film material |
CN109589993B (en) * | 2018-12-17 | 2021-06-29 | 浙江工商大学 | Electrochemically modified bismuth vanadate-molybdenum sulfide-cobaltosic oxide catalytic electrode and preparation method and application thereof |
CN109701664A (en) * | 2019-02-11 | 2019-05-03 | 盐城师范学院 | A kind of Ag/AgBr@ZIF-8 composite photo-catalyst and its preparation method and application |
CN110586130A (en) * | 2019-10-12 | 2019-12-20 | 南京大学 | Z-system visible light catalytic material based on crystal face energy level difference and hole trap synergistic effect and preparation method thereof |
-
2020
- 2020-04-11 CN CN202010282207.8A patent/CN111450858B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111450858A (en) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220042184A1 (en) | Preparation Method and Application of Non-noble Metal Single Atom Catalyst | |
CN111450858B (en) | Composite photocatalyst Ag/AgCl @ Co3O4Preparation method of (1) and composite photocatalyst prepared by using same | |
Zhong et al. | In-situ growth of COF on BiOBr 2D material with excellent visible-light-responsive activity for U (VI) photocatalytic reduction | |
Xiao et al. | Ordered mesoporous CeO2/ZnO composite with photodegradation concomitant photocatalytic hydrogen production performance | |
CN104801328B (en) | Method for preparing TiO2/g-C3N4 composite photocatalyst at low temperature | |
CN103240130A (en) | TiO2 / MIL-101 composite catalyst for photocatalytic water splitting and preparation method and applications thereof | |
CN115805072B (en) | Supported AgPt alloy photocatalyst and preparation method and application thereof | |
CN106423223B (en) | A kind of pie porous structure MoSe2@TiO2 photochemical catalyst and preparation method thereof | |
CN112517081A (en) | Composite photocatalyst of metal stannum porphyrin axial functionalized titanium dioxide and preparation method thereof | |
CN112403519A (en) | Preparation method and application of COF-300/PPy/Au (G) nanoenzyme catalyst | |
CN114160169B (en) | Preparation method and application of covalent organic framework material encapsulated molybdenum-sulfur cluster | |
CN110479315B (en) | Porous indium sulfide/spherical molybdenum disulfide composite material and preparation method and application thereof | |
CN108837840B (en) | A kind of Ag/g-C3N4Modify bismuth tungstate mixed crystal composite material and preparation method and application | |
CN111054419A (en) | For CO2Reduced semiconductor/g-C3N4Photocatalyst and preparation method thereof | |
CN111266111B (en) | Nickel-doped titanium-oxygen cluster nano catalytic material, preparation method and application | |
CN110841717B (en) | Mesoporous chromium-based metal organic framework compound hollow microsphere shell loaded with nano-scale silver simple substance and preparation method thereof | |
CN114522731B (en) | Application of ceria-metal organic framework in photocatalytic degradation of active blue 19 | |
CN108855222B (en) | ZCS @ Ni-MOF nanocomposite and preparation and application thereof | |
CN115025783B (en) | Synthetic method and application of multi-niobium oxygen cluster/ZIF-67 derivative composite material | |
CN112246256B (en) | Piezoelectric catalytic degradation and ammonia synthesis catalyst, and preparation method and application thereof | |
CN112536068B (en) | Immobilized PS-CHO @ CeO 2 Preparation method of composite catalyst and method for degrading methyl orange by using composite catalyst | |
CN115337942A (en) | Ag-TiO 2 Preparation method and application of/BiOI composite photocatalytic material | |
CN109499567B (en) | Preparation method and application of metal cluster photostable catalyst | |
CN109701518B (en) | Composite photocatalyst, preparation method thereof and application of composite photocatalyst in degradation of organic dye | |
CN111450892A (en) | Preparation method of composite photocatalyst Ag/AgCl @ ZIF-67 and composite photocatalyst prepared by same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |