CN111446924A - Power testing method and system for special-shaped solar cell modules - Google Patents
Power testing method and system for special-shaped solar cell modules Download PDFInfo
- Publication number
- CN111446924A CN111446924A CN201910045342.8A CN201910045342A CN111446924A CN 111446924 A CN111446924 A CN 111446924A CN 201910045342 A CN201910045342 A CN 201910045342A CN 111446924 A CN111446924 A CN 111446924A
- Authority
- CN
- China
- Prior art keywords
- solar cell
- power
- cell module
- special
- shaped solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 92
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000010998 test method Methods 0.000 claims abstract 2
- 230000015654 memory Effects 0.000 claims description 35
- 238000012545 processing Methods 0.000 claims description 28
- 238000005259 measurement Methods 0.000 claims description 20
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 206010066054 Dysmorphism Diseases 0.000 claims 1
- 230000001788 irregular Effects 0.000 claims 1
- 238000012937 correction Methods 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 236
- 238000000429 assembly Methods 0.000 description 32
- 230000000712 assembly Effects 0.000 description 32
- 238000004891 communication Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 210000003850 cellular structure Anatomy 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 238000012826 global research Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
- H02S50/15—Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R21/00—Arrangements for measuring electric power or power factor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及太阳能电池技术领域,具体涉及一种异形太阳能电池组件的功率测试方法及系统。The invention relates to the technical field of solar cells, in particular to a power testing method and system for a special-shaped solar cell assembly.
背景技术Background technique
随着科技不断发展,对能源需求增大,能源枯竭日益凸显,新能源成为全球研究热点。光伏发电凭借无环境污染,取之不尽用之不竭,成为最受欢迎的绿色能源。With the continuous development of science and technology, the demand for energy is increasing, and energy depletion has become increasingly prominent, and new energy has become a global research hotspot. Photovoltaic power generation has become the most popular green energy because it has no environmental pollution and is inexhaustible.
其中,太阳能发电中最重要的部分为太阳能电池组件,其用于将太阳能转换为电能。因此,太阳能电池组件的I-V特性尤为重要,在太阳能电池组件出厂之前需要对其I-V特性进行测试,以标定出太阳能电池组件的功率。Among them, the most important part in solar power generation is the solar cell module, which is used to convert solar energy into electrical energy. Therefore, the I-V characteristic of the solar cell module is particularly important, and the I-V characteristic of the solar cell module needs to be tested before it leaves the factory to calibrate the power of the solar cell module.
现有技术中一般是利用I-V测试设备对太阳能电池组件的I-V特性进行测试,I-V测试设备在进行测试时,是模拟太阳光照射太阳能电池组件,以得出I-V特性曲线。然而,由于I-V测试设备是基于太阳光在太阳能电池组件表面的直射点的面积来测试的。因此,现有的I-V测试设备能够实现平面太阳能电池组件功率的精确测量;而对应于一些异形太阳能电池组件(所述的异形为曲面形之类的在空间概念的异形,而非平面概念的异形),由于这些异形太阳能电池组件的在沿太阳光入射方向上的投影面积小于异形太阳能电池组件的实际面积,从而就会导致现有I-V测试设备所测试出来的功率的准确性偏低。In the prior art, I-V testing equipment is generally used to test the I-V characteristics of solar cell modules. When testing, the I-V testing equipment simulates sunlight irradiating the solar cell modules to obtain an I-V characteristic curve. However, since the I-V test equipment is based on the area of the direct point of sunlight on the surface of the solar cell module. Therefore, the existing I-V test equipment can realize the accurate measurement of the power of the planar solar cell module; while for some special-shaped solar cell modules (the special-shaped is the special-shaped in the space concept such as the curved shape, not the special-shaped in the flat concept) ), since the projected area of these special-shaped solar cell modules along the incident direction of sunlight is smaller than the actual area of the special-shaped solar cell modules, the accuracy of the power tested by the existing I-V test equipment is low.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明实施例提供了一种异形太阳能电池组件的功率测试系统,以解决现有技术中测试出的异形太阳能电池组件功率的准确性偏低的问题。In view of this, an embodiment of the present invention provides a power testing system for a special-shaped solar cell assembly, so as to solve the problem of low accuracy of the power of the special-shaped solar cell assembly tested in the prior art.
本发明实施例提供了一种异形太阳能电池组件的功率测试方法,包括:An embodiment of the present invention provides a power testing method for a special-shaped solar cell assembly, including:
获取多个光线入射角度下对应的异形太阳能电池组件的测量功率;Obtain the measured power of the corresponding special-shaped solar cell modules under multiple light incident angles;
获取多个光线入射角度下对应的平面太阳能电池组件的测量功率;其中,所述异形太阳电池组件与所述平面太阳能电池组件的用料及面积相同;Obtaining the measured power of the corresponding planar solar cell assemblies under multiple incident angles of light; wherein, the special-shaped solar cell assemblies and the planar solar cell assemblies have the same materials and areas;
计算所述多个光线入射角度下对应的所述异形太阳能电池组件的测量功率,以得到所述异形太阳能电池组件的平均测量功率;calculating the measured power of the special-shaped solar cell assemblies corresponding to the plurality of light incident angles to obtain the average measured power of the special-shaped solar cell assemblies;
计算所述多个光线入射角度下对应的所述平面太阳能电池组件的测量功率的平均值,以得到所述平面太阳能电池组件的平均测量功率;calculating an average value of the measured powers of the planar solar cell assemblies corresponding to the plurality of light incident angles to obtain the average measured power of the planar solar cell assemblies;
获取预设光线入射角度下对应的所述异形太阳能电池组件的测量功率以及所述预设光线入射角度下对应的所述平面太阳能电池组件的测量功率;acquiring the measured power of the special-shaped solar cell assembly corresponding to the preset light incident angle and the measured power of the flat solar cell assembly corresponding to the preset light incident angle;
利用所述平面太阳能电池组件的平均测量功率、所述预设光线入射角度下对应的所述异形太阳能电池组件的测量功率以及所述预设光线入射角度下对应的所述平面太阳能电池组件的测量功率,计算折算功率;Using the average measured power of the flat solar cell assembly, the measured power of the special-shaped solar cell assembly corresponding to the preset light incident angle, and the measurement of the flat solar cell assembly corresponding to the preset light incident angle power, calculate the converted power;
将所述异形太阳能电池组件的平均测量功率与所述折算功率相除,得到所述异形太阳能电池组件的功率衰减系数;Dividing the average measured power of the special-shaped solar cell assembly and the converted power to obtain the power attenuation coefficient of the special-shaped solar cell assembly;
利用所述预设光线入射角度下对应的所述异形太阳能电池组件的测量功率乘以所述功率衰减系数,以得到所述异形太阳能电池组件的实际功率。The actual power of the special-shaped solar cell assembly is obtained by multiplying the measured power of the special-shaped solar cell assembly corresponding to the preset light incident angle by the power attenuation coefficient.
本发明实施例提供的异形太阳能电池组件的功率测试方法,通过计算出的功率衰减系数,实现对异形太阳能电池组件的投影面积小于实际面积所导致的测量功率变小的修正,从而提高了所测得的异形太阳能电池组件的功率的准确性。The power testing method of the special-shaped solar cell module provided by the embodiment of the present invention, through the calculated power attenuation coefficient, realizes the correction to the reduction of the measured power caused by the projection area of the special-shaped solar cell module being smaller than the actual area, thereby improving the measured power. The power accuracy of the obtained special-shaped solar modules.
结合第一方面,在第一方面第一实施方式中,采用如下公式计算所述折算功率:In combination with the first aspect, in the first embodiment of the first aspect, the converted power is calculated by the following formula:
其中,c'为所述折算功率;b'为所述平面太阳能电池组件的平均测量功率;a为所述预设光线入射角度下对应的所述异形太阳能电池组件的测量功率;b为所述预设光线入射角度下对应的所述平面太阳能电池组件的测量功率。Wherein, c' is the converted power; b' is the average measured power of the planar solar cell assembly; a is the measured power of the special-shaped solar cell assembly corresponding to the preset light incident angle; b is the The measured power of the planar solar cell assembly corresponding to the preset light incident angle.
根据第二方面,本发明实施例还提供了一种异形太阳能电池组件的功率测试装置,包括:According to a second aspect, an embodiment of the present invention also provides a power testing device for a special-shaped solar cell assembly, including:
第一获取模块,用于获取多个光线入射角度下对应的异形太阳能电池组件的测量功率;a first acquisition module, configured to acquire the measured power of the corresponding special-shaped solar cell assemblies under multiple incident angles of light;
第二获取模块,用于获取多个光线入射角度下对应的平面太阳能电池组件的测量功率;其中,所述异形太阳电池组件与所述平面太阳能电池组件的用料及面积相同;The second acquisition module is used to acquire the measured power of the planar solar cell assembly corresponding to multiple light incident angles; wherein, the special-shaped solar cell assembly and the planar solar cell assembly have the same materials and areas;
第一计算模块,用于计算所述多个光线入射角度下对应的所述异形太阳能电池组件的测量功率,以得到所述异形太阳能电池组件的平均测量功率;a first calculation module, configured to calculate the measured power of the special-shaped solar cell assembly corresponding to the plurality of light incident angles, so as to obtain the average measured power of the special-shaped solar cell assembly;
第二计算模块,用于计算所述多个光线入射角度下对应的所述平面太阳能电池组件的测量功率的平均值,以得到所述平面太阳能电池组件的平均测量功率;a second calculation module, configured to calculate the average value of the measured powers of the planar solar cell assemblies corresponding to the multiple incident angles of light, so as to obtain the average measured power of the planar solar cell assemblies;
第三获取模块,用于获取预设光线入射角度下对应的所述异形太阳能电池组件的测量功率以及所述预设光线入射角度下对应的所述平面太阳能电池组件的测量功率;a third acquisition module, configured to acquire the measured power of the special-shaped solar cell assembly corresponding to the preset light incident angle and the measured power of the flat solar cell assembly corresponding to the preset light incident angle;
第三计算模块,用于利用所述平面太阳能电池组件的平均测量功率、所述预设光线入射角度下对应的所述异形太阳能电池组件的测量功率以及所述预设光线入射角度下对应的所述平面太阳能电池组件的测量功率,计算折算功率;The third calculation module is configured to use the average measured power of the planar solar cell assembly, the measured power of the special-shaped solar cell assembly corresponding to the preset incident angle of light, and the corresponding measured power of the predetermined incident angle of light. Calculate the converted power by calculating the measured power of the planar solar cell module;
第四计算模块,用于将所述异形太阳能电池组件的平均测量功率与所述折算功率相除,得到所述异形太阳能电池组件的功率衰减系数;a fourth calculation module, configured to divide the average measured power of the special-shaped solar cell assembly by the converted power to obtain a power attenuation coefficient of the special-shaped solar cell assembly;
第五计算模块,用于利用所述预设光线入射角度下对应的所述异形太阳能电池组件的测量功率乘以所述功率衰减系数,以得到所述异形太阳能电池组件的实际功率。The fifth calculation module is configured to multiply the power attenuation coefficient by the measured power of the special-shaped solar cell assembly corresponding to the preset light incident angle to obtain the actual power of the special-shaped solar cell assembly.
本发明实施例提供的异形太阳能电池组件的功率测试装置,通过计算出的功率衰减系数,实现对异形太阳能电池组件的投影面积小于实际面积所导致的测量功率变小的修正,从而提高了所测得的异形太阳能电池组件的功率的准确性。The power testing device of the special-shaped solar cell module provided by the embodiment of the present invention, through the calculated power attenuation coefficient, realizes the correction to the reduction of the measured power caused by the projection area of the special-shaped solar cell module being smaller than the actual area, thereby improving the measured power. The power accuracy of the obtained special-shaped solar modules.
根据第三方面,本发明实施例还提供了一种数据处理设备,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行本发明第一方面或第一方面第一实施方式中所述的异形太阳能电池组件的功率测试方法。According to a third aspect, an embodiment of the present invention further provides a data processing device, including: a memory and a processor, the memory and the processor are connected in communication with each other, the memory stores computer instructions, and the The processor executes the power testing method of the special-shaped solar cell assembly described in the first aspect of the present invention or the first embodiment of the first aspect by executing the computer instructions.
根据第四方面,本发明实施例还提供了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行本发明第一方面或第一方面第一实施方式中所述的异形太阳能电池组件的功率测试方法。According to a fourth aspect, an embodiment of the present invention further provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer instructions, and the computer instructions are used to make the computer execute the first step of the present invention. In one aspect or the first aspect, the power testing method of the special-shaped solar cell assembly described in the first embodiment.
根据第五方面,本发明实施例还提供了一种异形太阳能电池组件的功率测试系统,包括:According to a fifth aspect, an embodiment of the present invention further provides a power testing system for a special-shaped solar cell assembly, including:
本发明第三方面中所述的数据处理设备;The data processing device described in the third aspect of the present invention;
功率测试设备,与所述数据处理设备电连接;所述功率测试设备用于测量多个光线入射角度下的异形太阳能电池组件的功率以及多个光线入射角度下的平面太阳能电池组件的功率,并将测量结果发送给所述数据处理设备。a power testing device, which is electrically connected to the data processing device; the power testing device is used to measure the power of the special-shaped solar cell assembly under multiple incident angles of light and the power of the planar solar cell assembly under multiple incident angles of light, and The measurement results are sent to the data processing device.
本发明实施例提供的异形太阳能电池组件的功率测试系统,通过功率测试设备测量到多个光线入射角度下的异形太阳能电池组件以及平面太阳能电池组件的测量功率;再利用数据处理设备将功率测试设备测得的数据进行处理,以实现对异形太阳能电池组件测量功率的修正,得到异形太阳能电池组件的实际功率,从而提高了所得到的异形太阳能电池组件的功率的准确性。The power testing system for special-shaped solar cell assemblies provided by the embodiments of the present invention measures the measured powers of special-shaped solar cell assemblies and planar solar cell assemblies under multiple incident angles of light through the power testing equipment; The measured data is processed to correct the measured power of the special-shaped solar cell assembly, and the actual power of the special-shaped solar cell assembly is obtained, thereby improving the power accuracy of the obtained special-shaped solar cell assembly.
结合第五方面,在第五方面第一实施方式中,还包括:With reference to the fifth aspect, in the first embodiment of the fifth aspect, it also includes:
旋转平台,用于固定所述太阳能电池组件且带动所述异形太阳能电池组件或所述平面太阳能电池组件进行转动。The rotating platform is used for fixing the solar cell assembly and driving the special-shaped solar cell assembly or the flat solar cell assembly to rotate.
本发明实施例提供的异形太阳能电池组件的功率测试系统,将异形太阳能电池组件或平面太阳能电池组件固定在旋转平台上,利用旋转平台的转动模拟出照射至其上的多个光线入射角度,从而使得功率测试设备能够测量到多个光线入射角度下的异形太阳能电池组件或平面太阳能电池组件的功率,为后续计算异形太阳能电池组件的实际功率提供了基础。In the power testing system for special-shaped solar cell assemblies provided by the embodiments of the present invention, the special-shaped solar cell assemblies or flat solar cell assemblies are fixed on a rotating platform, and the rotation of the rotating platform is used to simulate multiple incident angles of light irradiating thereon, thereby The power test equipment can measure the power of the special-shaped solar cell assembly or the flat solar cell assembly under multiple incident angles of light, which provides a basis for the subsequent calculation of the actual power of the special-shaped solar cell assembly.
结合第五方面或第五方面第一实施方式,在第五方面第二实施方式中,所述功率测试设备包括:With reference to the fifth aspect or the first embodiment of the fifth aspect, in the second embodiment of the fifth aspect, the power test equipment includes:
光源,固定设置在所述功率测试设备中,用于照射所述异形太阳能电池组件或所述平面太阳能电池组件。The light source is fixedly arranged in the power testing equipment, and is used for illuminating the special-shaped solar cell assembly or the flat solar cell assembly.
本发明实施例提供的异形太阳能电池组件的功率测试系统,将光源固定在功率测试设备中,即光源相对于功率测试设备的位置保持不变;当光源照射太阳能电池组件时,利用旋转平台的转动模拟出不同的光线入射角,通过旋转平台而非功率测试设备调整光线入射角的大小,避免了功率测试设备的频繁转动,提高了该功率测试设备的使用寿命。In the power testing system for special-shaped solar cell assemblies provided by the embodiments of the present invention, the light source is fixed in the power testing equipment, that is, the position of the light source relative to the power testing equipment remains unchanged; when the light source illuminates the solar cell assembly, the rotation of the rotating platform is used. Different light incident angles are simulated, and the size of the light incident angle is adjusted by rotating the platform instead of the power test equipment, which avoids the frequent rotation of the power test equipment and improves the service life of the power test equipment.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the specific embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the specific embodiments or the prior art. Obviously, the accompanying drawings in the following description The drawings are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without creative efforts.
图1示出了本发明实施例中异形太阳能电池组件的功率测试方法的流程图;FIG. 1 shows a flow chart of a power testing method for a special-shaped solar cell assembly in an embodiment of the present invention;
图2a至图2d示出了本发明实施例中光线入射角度与异形太阳能电池组件之间的关系示意图;2a to 2d are schematic diagrams showing the relationship between the incident angle of light and the special-shaped solar cell assembly in the embodiment of the present invention;
图3示出了本发明实施例中异形太阳能电池组件的功率测试装置的结构示意图;FIG. 3 shows a schematic structural diagram of a power testing device for a special-shaped solar cell assembly in an embodiment of the present invention;
图4示出了本发明实施例中数据处理设备的结构示意图;4 shows a schematic structural diagram of a data processing device in an embodiment of the present invention;
图5示出了本发明实施例中异形太阳能电池组件的功率测试系统的一个结构示意图;FIG. 5 shows a schematic structural diagram of a power testing system for a special-shaped solar cell assembly in an embodiment of the present invention;
图6示出了本发明实施例中异形太阳能电池组件的功率测试系统的另一个结构示意图;Fig. 6 shows another schematic structural diagram of the power testing system of the special-shaped solar cell assembly in the embodiment of the present invention;
附图标记:10-旋转平台;20-功率测试设备;30-数据处理设备;41-处理器;42-通信总线;43-通信接口;44-存储器。Reference numerals: 10-rotating platform; 20-power testing equipment; 30-data processing equipment; 41-processor; 42-communication bus; 43-communication interface; 44-memory.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of the present invention.
根据本发明实施例,提供了一种异形太阳能电池组件的功率测试方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。According to an embodiment of the present invention, an embodiment of a power testing method for a special-shaped solar cell assembly is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions. and, although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that herein.
本发明实施例提供了一种异形太阳能电池组件的功率测试方法,如图1所示,包括:An embodiment of the present invention provides a power testing method for a special-shaped solar cell assembly, as shown in FIG. 1 , including:
S11,获取多个光线入射角度下对应的异形太阳能电池组件的测量功率。S11 , acquiring the measured powers of the corresponding special-shaped solar cell assemblies under multiple incident angles of light.
请结合图2a至图2d,对多个光线入射角度进行详细描述。其中,该异形太阳能电池组件以半球形为例。图2a至图2d示出了异形太阳能电池组件以0x轴为转动轴沿0点顺时针转动,在异形太阳能电池组件转动过程中,光线保持不变。将图2a中光线入射角度定义为0°,且光线入射角度定义为异形太阳能电池组件的转动角度,那么随着异形太阳能电池组件的转动,光线入射角度发生改变。如图2b所示,光线入射角度相当于异形太阳能电池组件的转动角度β;如图2c所示,异形太阳能电池组件的转动角度为90°,对应地光线入射角度为90°;如图2d所示,异形太阳能电池组件的转动角度为180°,对应地光线入射角度为180°。Please refer to FIG. 2a to FIG. 2d for a detailed description of multiple incident angles of light. Wherein, the special-shaped solar cell assembly is a hemispherical shape as an example. Figures 2a to 2d show that the special-shaped solar cell assembly rotates clockwise at 0 o'clock with the 0x axis as the rotation axis. During the rotation of the special-shaped solar cell assembly, the light remains unchanged. The incident angle of light in Fig. 2a is defined as 0°, and the incident angle of light is defined as the rotation angle of the special-shaped solar cell module, then with the rotation of the special-shaped solar cell module, the incident angle of light changes. As shown in Figure 2b, the light incident angle is equivalent to the rotation angle β of the special-shaped solar cell module; as shown in Figure 2c, the rotation angle of the special-shaped solar cell module is 90°, and the corresponding light incident angle is 90°; as shown in Figure 2d As shown, the rotation angle of the special-shaped solar cell module is 180°, and the corresponding light incident angle is 180°.
此外,可选地,光线入射角度的定义可以是太阳能电池组件(异形太阳能电池组件以及平面太阳能电池组件)的位置保持不变,光线位置改变;光线入射角度的定义也可以是太阳能电池组件(异形太阳能电池组件以及平面太阳能电池组件)的位置改变且光线位置改变等等。只需保证对于异形太阳能电池组件以及平面太阳能电池组件而言,采用相同的光线入射角度的定义即可。In addition, optionally, the definition of the angle of incidence of light can be that the position of the solar cell assembly (iso-shaped solar cell assembly and the flat solar cell assembly) remains unchanged, and the position of the light changes; The position of the solar cell module and the flat solar cell module) is changed and the light position is changed, and so on. It is only necessary to ensure that the same definition of the incident angle of light is used for the special-shaped solar cell module and the flat solar cell module.
在确定光线入射角度的定义之后,通过功率测试设备即可测量出多个光线入射角度下对应的异形太阳能电池组件的测量功率。其中,多个光线入射角度可以是0°-180°中每隔10°测量一次。例如,多个光线入射角度为0°、10°、20°、……、170°、180°。具体地,光线入射角度为0°时,利用功率测试设备测量异形太阳能电池组件的测量功率;光线入射角度为10°时,利用功率测试设备测量异形太阳能电池组件的测量功率;光线入射角度为20°时,利用功率测试设备测量异形太阳能电池组件的测量功率;……;依次类推,直至光线入射角度为180°时,利用功率测试设备测量异形太阳能电池组件的测量功率为止,从而得到多个光线入射角度下对应的异形太阳能电池组件的测量功率。数字处理设备获取到多个光线入射角度下对应的异形太阳能电池组件的测量功率,用于后续异形太阳能电池组件实际功率的确定。After the definition of the incident angle of light is determined, the measured power of the corresponding special-shaped solar cell modules under multiple incident angles of light can be measured by the power test equipment. Wherein, the multiple light incident angles may be measured every 10° in the range of 0°-180°. For example, the plurality of light incident angles are 0°, 10°, 20°, . . . , 170°, 180°. Specifically, when the light incident angle is 0°, the measured power of the special-shaped solar cell assembly is measured by the power test equipment; when the light incident angle is 10°, the measured power of the special-shaped solar cell assembly is measured by the power test equipment; the light incident angle is 20° °, use the power test equipment to measure the measured power of the special-shaped solar cell module; ...; and so on, until the incident angle of the light is 180°, use the power test equipment to measure the measured power of the special-shaped solar cell module, so as to obtain a plurality of rays The measured power of the corresponding profiled solar cell module at the incident angle. The digital processing device acquires the measured powers of the corresponding special-shaped solar cell modules under multiple incident angles of light, which are used for subsequent determination of the actual power of the special-shaped solar cell modules.
S12,获取多个光线入射角度下对应的平面太阳能电池组件的测量功率。S12, acquiring the measured power of the corresponding planar solar cell modules under multiple incident angles of light.
其中,所述异形太阳电池组件与平面太阳能电池组件的用料及面积相同。Wherein, the special-shaped solar cell module and the flat solar cell module have the same materials and area.
图2a至图2d中仅示出了对于异形太阳能电池组件的光线入射角度,对于平面太阳能电池组件的光线入射角度的定义与异形太阳能电池组件的光线入射角度的定义相同。2a to 2d only show the incident angle of light for the special-shaped solar cell module, and the definition of the incident angle of light for the flat solar cell module is the same as the definition of the incident angle of light for the special-shaped solar cell module.
例如,对应于异形太阳能电池组件的多个光线入射角度为0°、10°、20°、……、170°、180°,那么对应于平面太阳能电池组件的多个光线入射角度同样为0°、10°、20°、……、170°、180°。同样地,利用功率测试设备测量平面太阳能电池组件的测量功率;光线入射角度为10°时,利用功率测试设备测量平面太阳能电池组件的测量功率;光线入射角度为20°时,利用功率测试设备测量平面太阳能电池组件的测量功率;……;依次类推,直至光线入射角度为180°时,利用功率测试设备测量平面太阳能电池组件的测量功率为止,从而得到多个光线入射角度下对应的平面太阳能电池组件的测量功率。数字处理设备获取到多个光线入射角度下对应的平面太阳能电池组件的测量功率,用于后续异形太阳能电池组件实际功率的确定。For example, the incident angles of light corresponding to the special-shaped solar cell modules are 0°, 10°, 20°, . , 10°, 20°, ..., 170°, 180°. Similarly, use the power test equipment to measure the measured power of the flat solar cell module; when the light incident angle is 10°, use the power test equipment to measure the measured power of the flat solar cell module; when the light incident angle is 20°, use the power test equipment to measure The measured power of the flat solar cell module; ...; and so on, until the light incident angle is 180°, use the power test equipment to measure the measured power of the flat solar cell module, so as to obtain the corresponding flat solar cells under multiple light incident angles Measured power of the component. The digital processing device obtains the measured powers of the corresponding planar solar cell modules under multiple incident angles of light, which are used for subsequent determination of the actual power of the special-shaped solar cell modules.
S13,计算多个光线入射角度下对应的异形太阳能电池组件的测量功率,以得到异形太阳能电池组件的平均测量功率。S13, calculate the measured power of the corresponding special-shaped solar cell modules under multiple incident angles of light, so as to obtain the average measured power of the special-shaped solar cell modules.
数据处理设备计算多个光线入射角度下对应的异形太阳能电池组件的测量功率的平均值,得到异形太阳能电池组件的平均测量功率。The data processing device calculates the average value of the measured power of the corresponding special-shaped solar cell modules under multiple incident angles of light, and obtains the average measured power of the special-shaped solar cell modules.
S14,计算多个光线入射角度下对应的平面太阳能电池组件的测量功率的平均值,以得到平面太阳能电池组件的平均测量功率。S14 , calculating the average value of the measured power of the corresponding planar solar cell assemblies under multiple incident angles of light to obtain the average measured power of the planar solar cell assembly.
数据处理设备计算多个光线入射角度下对应的平面太阳能电池组件的测量功率的平均值,以得到平面太阳能电池组件的平均测量功率。The data processing device calculates the average value of the measured powers of the corresponding planar solar cell assemblies under multiple incident angles of light, so as to obtain the average measured power of the planar solar cell assemblies.
S15,获取预设光线入射角度下对应的异形太阳能电池组件的测量功率以及预设光线入射角度下对应的平面太阳能电池组件的测量功率。S15: Obtain the measured power of the special-shaped solar cell assembly corresponding to the preset light incident angle and the measured power of the flat solar cell assembly corresponding to the preset light incident angle.
对于异形太阳能电池组件与平面太阳能电池而言,预设光线入射角度相同,例如,需要对光线入射角度45°的异形太阳能电池组件的测量功率进行修正,那么此时对应的预设光线入射角度为45°;若需要对光线入射角度60°的异形太阳能电池组件的测量功率进行修正,那么此时对应的预设光线入射角度为60°。因此,预设光线入射角度为待修正的异形太阳能电池组件的测量功率对应的光线入射角度。For the special-shaped solar cell module and the flat solar cell, the preset light incident angle is the same. For example, the measured power of the special-shaped solar cell module with a light incident angle of 45° needs to be corrected, then the corresponding preset light incident angle is 45°; if the measured power of the special-shaped solar cell module with a light incident angle of 60° needs to be corrected, then the corresponding preset light incident angle is 60°. Therefore, the preset light incident angle is the light incident angle corresponding to the measured power of the special-shaped solar cell assembly to be corrected.
利用功率测试设备测量预设光线入射角度下对应的异形太阳能电池组件的测量功率以及预设光线入射角度下对应的平面太阳能电池组件的测量功率。数据处理设备获取到预设光线入射角度下对应的异形太阳能电池组件的测量功率以及预设光线入射角度下对应的平面太阳能电池组件的测量功率,用于后续异形太阳能电池组件实际功率的确定。The measured power of the corresponding special-shaped solar cell assembly under the preset light incident angle and the measured power of the corresponding flat solar cell assembly under the preset light incident angle are measured by using a power testing device. The data processing device obtains the measured power of the special-shaped solar cell assembly corresponding to the preset light incident angle and the measured power of the planar solar cell assembly corresponding to the preset light incident angle, which are used for subsequent determination of the actual power of the special-shaped solar cell assembly.
S16,利用平面太阳能电池组件的平均测量功率、预设光线入射角度下对应的异形太阳能电池组件的测量功率以及预设光线入射角度下对应的平面太阳能电池组件的测量功率,计算折算功率。S16: Calculate the converted power by using the average measured power of the planar solar cell assembly, the measured power of the special-shaped solar cell assembly corresponding to the preset light incident angle, and the measured power of the planar solar cell assembly corresponding to the preset light incident angle.
数据处理设备在计算折算功率时,考虑到功率测试设备所带来测试误差,可以采用如下公式计算折算功率:When the data processing equipment calculates the converted power, considering the test error caused by the power test equipment, the converted power can be calculated by the following formula:
c'为所述折算功率;b'为所述平面太阳能电池组件的平均测量功率;a为所述预设光线入射角度下对应的异形太阳能电池组件的测量功率;b为所述预设光线入射角度下对应的平面太阳能电池组件的测量功率;ΔC为测试误差对应的系数,该系数可以根据实际情况进行具体设置,在此不做任何限定。c' is the converted power; b' is the average measured power of the planar solar cell assembly; a is the measured power of the special-shaped solar cell assembly corresponding to the preset light incident angle; b is the preset light incident The measured power of the planar solar cell module corresponding to the angle; ΔC is the coefficient corresponding to the test error, which can be specifically set according to the actual situation, and is not limited here.
作为本实施例的一种可选实施方式,也可以采用如下公式计算折算功率:As an optional implementation of this embodiment, the following formula can also be used to calculate the converted power:
S17,将异形太阳能电池组件的平均测量功率与折算功率相除,得到异形太阳能电池组件的功率衰减系数。S17: Divide the average measured power of the special-shaped solar cell module and the converted power to obtain the power attenuation coefficient of the special-shaped solar cell module.
具体地,可以采用如下公式计算所述异形太阳能电池组件的功率衰减系数:Specifically, the following formula can be used to calculate the power attenuation coefficient of the special-shaped solar cell assembly:
其中,a'所述异形太阳能电池组件的平均测量功率;α所述异形太阳能电池组件的功率衰减系数;c'为所述折算功率。Wherein, a' is the average measured power of the special-shaped solar cell assembly; α is the power attenuation coefficient of the special-shaped solar cell assembly; c' is the converted power.
S18,利用预设光线入射角度下对应的异形太阳能电池组件的测量功率乘以功率衰减系数,以得到异形太阳能电池组件的实际功率。S18 , multiply the measured power of the special-shaped solar cell assembly corresponding to the preset light incident angle by the power attenuation coefficient to obtain the actual power of the special-shaped solar cell assembly.
数据处理设备利用S15中获取到的预设光线入射角度下对应的异形太阳能电池组件的测量功率与S17中计算得到的功率衰减系数相乘,即可得到异形太阳能电池组件的实际功率,所述的异形太阳能电池组件的实际功率为预设光线入射角度下对应的异形太阳能电池组件的测量功率的实际功率。The data processing equipment multiplies the measured power of the special-shaped solar cell module corresponding to the preset light incident angle obtained in S15 and the power attenuation coefficient calculated in S17 to obtain the actual power of the special-shaped solar cell module. The actual power of the special-shaped solar cell assembly is the actual power of the measured power of the corresponding special-shaped solar cell assembly under the preset light incident angle.
本实施例提供的异形太阳能电池组件的功率测试方法,通过计算出的功率衰减系数,实现对异形太阳能电池组件的投影面积小于实际面积所导致的测量功率变小的修正,从而提高了所测得的异形太阳能电池组件的功率的准确性。The power testing method of the special-shaped solar cell module provided in this embodiment, through the calculated power attenuation coefficient, realizes the correction to the reduction of the measured power caused by the projected area of the special-shaped solar cell module being smaller than the actual area, thereby improving the measured power. The power accuracy of the profiled solar modules.
在本实施例中还提供了一种异形太阳能电池组件的功率测试装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。This embodiment also provides a power testing device for a special-shaped solar cell assembly, which is used to implement the above embodiments and preferred implementations, and what has been described will not be repeated. As used below, the term "module" may be a combination of software and/or hardware that implements a predetermined function. Although the apparatus described in the following embodiments is preferably implemented in software, implementations in hardware, or a combination of software and hardware, are also possible and contemplated.
本实施例提供一种异形太阳能电池组件的功率测试设备,如图3所示,包括:This embodiment provides a power testing device for a special-shaped solar cell assembly, as shown in FIG. 3 , including:
第一获取模块31,用于获取多个光线入射角度下对应的异形太阳能电池组件的测量功率。The
第二获取模块32,用于获取多个光线入射角度下对应的平面太阳能电池组件的测量功率;其中,所述异形太阳电池组件与所述平面太阳能电池组件的用料及面积相同。The
第一计算模块33,用于计算所述多个光线入射角度下对应的所述异形太阳能电池组件的测量功率,以得到所述异形太阳能电池组件的平均测量功率。The
第二计算模块34,用于计算所述多个光线入射角度下对应的所述平面太阳能电池组件的测量功率的平均值,以得到所述平面太阳能电池组件的平均测量功率。The
第三获取模块35,用于获取预设光线入射角度下对应的所述异形太阳能电池组件的测量功率以及所述预设光线入射角度下对应的所述平面太阳能电池组件的测量功率。The
第三计算模块36,用于利用所述平面太阳能电池组件的平均测量功率、所述预设光线入射角度下对应的所述异形太阳能电池组件的测量功率以及所述预设光线入射角度下对应的所述平面太阳能电池组件的测量功率,计算折算功率。The
第四计算模块37,用于将所述异形太阳能电池组件的平均测量功率与所述折算功率相除,得到所述异形太阳能电池组件的功率衰减系数。The
第五计算模块38,用于利用所述预设光线入射角度下对应的所述异形太阳能电池组件的测量功率乘以所述功率衰减系数,以得到所述异形太阳能电池组件的实际功率。The
本发明实施例提供的异形太阳能电池组件的功率测试装置,通过计算出的功率衰减系数,实现对异形太阳能电池组件的投影面积小于实际面积所导致的测量功率变小的修正,从而提高了所测得的异形太阳能电池组件的功率的准确性。The power testing device of the special-shaped solar cell module provided by the embodiment of the present invention, through the calculated power attenuation coefficient, realizes the correction to the reduction of the measured power caused by the projection area of the special-shaped solar cell module being smaller than the actual area, thereby improving the measured power. The power accuracy of the obtained special-shaped solar modules.
本实施例中的异形太阳能电池组件的功率测试装置是以功能单元的形式来呈现,这里的单元是指ASIC电路,执行一个或多个软件或固定程序的处理器和存储器,和/或其他可以提供上述功能的器件。The power testing device for the special-shaped solar cell assembly in this embodiment is presented in the form of functional units, where the units refer to ASIC circuits, processors and memories that execute one or more software or fixed programs, and/or other devices that can A device that provides the above functions.
上述各个模块的更进一步的功能描述与上述对应实施例相同,在此不再赘述。Further functional descriptions of the above-mentioned modules are the same as those of the above-mentioned corresponding embodiments, and are not repeated here.
本发明实施例还提供一种数据处理设备,具有上述图3所示的异形太阳能电池组件的功率测试装置。An embodiment of the present invention further provides a data processing device, which has the power testing device for the special-shaped solar cell assembly shown in FIG. 3 .
请参阅图4,图4是本发明可选实施例提供的一种数据处理设备的结构示意图,如图4所示,该数据处理设备可以包括:至少一个处理器41,例如CPU(Central ProcessingUnit,中央处理器),至少一个通信接口43,存储器44,至少一个通信总线42。其中,通信总线42用于实现这些组件之间的连接通信。其中,通信接口43可以包括显示屏(Display)、键盘(Keyboard),可选通信接口43还可以包括标准的有线接口、无线接口。存储器44可以是高速RAM存储器(Random Access Memory,易挥发性随机存取存储器),也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器44可选的还可以是至少一个位于远离前述处理器41的存储装置。其中处理器41可以结合图3所描述的装置,存储器44中存储应用程序,且处理器41调用存储器44中存储的程序代码,以用于执行上述任一方法步骤。Please refer to FIG. 4. FIG. 4 is a schematic structural diagram of a data processing device provided by an optional embodiment of the present invention. As shown in FIG. 4, the data processing device may include: at least one
其中,通信总线42可以是外设部件互连标准(peripheral componentinterconnect,简称PCI)总线或扩展工业标准结构(extended industry standardarchitecture,简称EISA)总线等。通信总线42可以分为地址总线、数据总线、控制总线等。为便于表示,图4中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。The
其中,存储器44可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(英文:hard diskdrive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器44还可以包括上述种类的存储器的组合。The
其中,处理器41可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。The
其中,处理器41还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic arraylogic,缩写:GAL)或其任意组合。The
可选地,存储器44还用于存储程序指令。处理器41可以调用程序指令,实现如本申请图1实施例中所示的异形太阳能电池组件的功率测试方法。Optionally,
本发明实施例还提供了一种计算机可读存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述方法实施例中的异形太阳能电池组件的功率测试方法。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。Embodiments of the present invention further provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and the computer-executable instructions can execute the power testing method for a special-shaped solar cell assembly in the above method embodiments. Wherein, the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a flash memory (Flash Memory), a hard disk (Hard) Disk Drive, abbreviation: HDD) or solid-state drive (Solid-State Drive, SSD), etc.; the storage medium may also include a combination of the above-mentioned types of memories.
本发明实施例还提供了一种异形太阳能电池组件的功率测试系统,如图5所示,包括功率测试设备20以及数据处理设备30。An embodiment of the present invention also provides a power testing system for a special-shaped solar cell assembly, as shown in FIG. 5 , including a
功率测试设备20,用于测量多个光线入射角度下的异形太阳能电池组件的测量功率以及多个光线入射角度下的平面太阳能电池组件的测量功率。其中,太阳能电池组件包括用料以及面积相同的异形太阳电池组件与平面太阳能电池组件。功率测试设备20在测量时,可以是仅利用功率测试设备20本身进行测量,也可以是功率测试设备20与其他设备的配合进行测量。在此对多个光线入射角度下的异形太阳能电池组件以及平面太阳能电池组件的功率测量方式并不做任何限定,只需保证异形太阳能电池组件与平面太阳能电池组件采用相同的功率测量方式进行多个光线入射角度下的测量功率的测量即可。The
请参见图5,数据处理设备30与功率测试设备20电连接。其中,关于数据处理设备30的具体细节请参见图4所示实施例的详细描述,在此不再赘述。Referring to FIG. 5 , the
具体地,由于功率测试设备20是基于光线在太阳能电池组件的直射面积(即,沿光线入射方向上的投影面积)进行测试的,而对于异形太阳能电池组件而言,其沿光线入射方向的投影面积小于异形太阳能电池组件朝向光线入射方向的实际面积。因此,功率测试设备20所测得的异形太阳能电池组件的测量功率小于异形太阳能电池组件的实际功率。Specifically, since the
本发明实施例提供的异形太阳能电池组件的功率测试系统,通过功率测试设备测量到多个光线入射角度下的异形太阳能电池组件以及平面太阳能电池组件的测量功率;再利用数据处理设备将功率测试设备测得的数据进行处理,以实现对异形太阳能电池组件测量功率的修正,得到异形太阳能电池组件的实际功率,从而提高了所得到的异形太阳能电池组件的功率的准确性。The power testing system for special-shaped solar cell assemblies provided by the embodiments of the present invention measures the measured powers of special-shaped solar cell assemblies and planar solar cell assemblies under multiple incident angles of light through the power testing equipment; The measured data is processed to correct the measured power of the special-shaped solar cell assembly, and the actual power of the special-shaped solar cell assembly is obtained, thereby improving the power accuracy of the obtained special-shaped solar cell assembly.
作为本实施例的一种可选实施方式,如图6所示,异形太阳能电池组件的功率测试系统,包括旋转平台10、功率测试设备20以及数据处理设备30。As an optional implementation of this embodiment, as shown in FIG. 6 , a power testing system for a special-shaped solar cell assembly includes a
其中,旋转平台10用于固定异形太阳能电池组件以及平面太阳能电池组件,且带动异形太阳能电池组件以及平面太阳能电池组件的转动。在功率测量时,可以是分别将异形太阳能电池组件以及平面太阳能电池组件固定在旋转平台10上。通过旋转平台10的转动,带动固定在其上的异形太阳能电池组件或平面太阳能电池组件的转动。The rotating
请结合图2a至图2b,当光线照射在异形太阳能电池组件上时,由于异形太阳能电池组件的转动,会使得照射在异形太阳能电池组件上的光线入射角度发生改变,从而后续功率测试设备20即可测量出不同光线入射角度下异形太阳能电池组件的测量功率;同理,当光线照射在平面太阳能电池组件上时,由于平面太阳能电池组件的转动,会使得照射在平面太阳能电池组件上的光线入射角度发生改变,从而后续功率测试设备20即可测量出不同光线入射角度下平面太阳能电池组件的测量功率。Please refer to Fig. 2a to Fig. 2b, when the light is irradiated on the special-shaped solar cell module, due to the rotation of the special-shaped solar cell module, the incident angle of the light irradiated on the special-shaped solar cell module will change, so that the subsequent
具体地,将异形太阳能电池组件固定在旋转平台10上,旋转平台10带动异形太阳能电池组件转动,例如,转动角度为0-180°;可以是每转动10°进行一次测量,即可测量出多个光线入射角度下对应的异形太阳能电池组件的测量功率;多个光线入射角度下对应的平面太阳能电池组件的测量功率的测量方法与多个光线入射角度下对应的异形太阳能电池组件的测量功率相同。Specifically, the special-shaped solar cell assembly is fixed on the rotating
功率测试设备20中固定有光源,该光源用于照射旋转平台10上的异形太阳能电池组件或平面太阳能电池组件,使得异形太阳能电池组件或平面太阳能电池组件进行能量转换,从而产生电流或电压,产生的电流或电压被功率测试设备20所测得,即可得到异形太阳能电池组件或平面太阳能电池组件的测量功率。A light source is fixed in the
该测试系统中通过将光源固定在功率测试设备20中,即光源相对于功率测试设备20的位置保持不变;利用旋转平台10的转动模拟不同的光线入射角度,通过旋转平台10而非功率测试设备20调整入射角的大小,避免了功率测试设备20的频繁转动,提高了该功率测试设备20的使用寿命。In this test system, the light source is fixed in the
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。Although the embodiments of the present invention have been described with reference to the accompanying drawings, various modifications and variations can be made by those skilled in the art without departing from the spirit and scope of the present invention, and such modifications and variations fall within the scope of the appended claims within the limits of the requirements.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910045342.8A CN111446924B (en) | 2019-01-17 | 2019-01-17 | Power testing method and system for special-shaped solar cell module |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910045342.8A CN111446924B (en) | 2019-01-17 | 2019-01-17 | Power testing method and system for special-shaped solar cell module |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111446924A true CN111446924A (en) | 2020-07-24 |
| CN111446924B CN111446924B (en) | 2023-10-03 |
Family
ID=71626739
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910045342.8A Active CN111446924B (en) | 2019-01-17 | 2019-01-17 | Power testing method and system for special-shaped solar cell module |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111446924B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN201213137Y (en) * | 2008-07-15 | 2009-03-25 | 北京国通创安信息技术有限公司 | Shaped solar panels |
| US20140333313A1 (en) * | 2013-05-13 | 2014-11-13 | Southwest Research Institute | Application independent map-based cycle life testing of battery cells |
| CN109067360A (en) * | 2018-09-21 | 2018-12-21 | 南通理工学院 | Method and device for monitoring solar cell panel of automobile |
-
2019
- 2019-01-17 CN CN201910045342.8A patent/CN111446924B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN201213137Y (en) * | 2008-07-15 | 2009-03-25 | 北京国通创安信息技术有限公司 | Shaped solar panels |
| US20140333313A1 (en) * | 2013-05-13 | 2014-11-13 | Southwest Research Institute | Application independent map-based cycle life testing of battery cells |
| CN109067360A (en) * | 2018-09-21 | 2018-12-21 | 南通理工学院 | Method and device for monitoring solar cell panel of automobile |
Non-Patent Citations (1)
| Title |
|---|
| 屠佳佳;梁国伟;: "光照入射角对太阳能电池输出功率的影响", 中国计量学院学报, no. 02 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111446924B (en) | 2023-10-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7032498B2 (en) | Systems and methods for testing the deterioration of photosensitive devices | |
| US8190385B2 (en) | System and method for testing a solar panel | |
| TW200837329A (en) | A measuring method for the surface of a propeller | |
| CN110109041B (en) | Detection system and method of non-contact traveling wave distance measuring device | |
| CN203037840U (en) | Insulation resistor test device calibrating device | |
| CN110018434A (en) | A kind of voltage measuring apparatus bearing calibration, apparatus and system | |
| CN104166985B (en) | A kind of star sensor scaling method based on region segmentation | |
| CN111446924B (en) | Power testing method and system for special-shaped solar cell module | |
| CN115112666A (en) | Wafer calibration method and calibration system | |
| CN112037191A (en) | A method, device and computer equipment for determining local leakage current density threshold | |
| CN111120203B (en) | Method and equipment for determining yaw wind deviation angle of wind generating set | |
| CN107220153A (en) | A kind of calculator memory switching card test method and device based on UEFI | |
| CN103969032A (en) | LED luminous flux measurement system based on free-form surface lens | |
| CN117607652A (en) | An equivalent test method and device for evaluating the failure rate of power semiconductor devices | |
| CN118706263A (en) | A method for measuring solar sunshine hours | |
| CN207991696U (en) | Measuring instrument before a kind of laser wave | |
| CN111693844A (en) | Test device and test method for pressure-bonding type semiconductor device, and electronic apparatus | |
| Kumaravel | A novel measurement technique for performance comparison of sun tracker systems | |
| CN210774002U (en) | A sunlight angle measuring device | |
| CN114136530B (en) | Method and device for determining air pressure difference between inlet and outlet of converter | |
| CN116166055A (en) | Control method and device for tracking bracket of photovoltaic system and photovoltaic system | |
| CN205091451U (en) | Arc light sensor check gauge ray apparatus | |
| CN205333021U (en) | A Grating Pitch Automatic Measuring Instrument | |
| CN107015087A (en) | A kind of capacitive property detection method of photoelectric device | |
| CN118467887A (en) | A method, device, electronic device and medium for determining power of a bifacial module |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20210122 Address after: 101400 Yanqi Street, Yanqi Economic Development Zone, Huairou District, Beijing Applicant after: Beijing Huihong Technology Co.,Ltd. Address before: Room 107, building 2, Olympic Village street, Chaoyang District, Beijing Applicant before: HANERGY MOBILE ENERGY HOLDING GROUP Co.,Ltd. |
|
| TA01 | Transfer of patent application right | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20211103 Address after: No.31 Yanqi street, Yanqi Economic Development Zone, Huairou District, Beijing Applicant after: Dongjun new energy Co.,Ltd. Address before: 101400 Yanqi Street, Yanqi Economic Development Zone, Huairou District, Beijing Applicant before: Beijing Huihong Technology Co.,Ltd. |
|
| TA01 | Transfer of patent application right | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| PP01 | Preservation of patent right |
Effective date of registration: 20240930 Granted publication date: 20231003 |
|
| PP01 | Preservation of patent right |




