CN111445529A - Calibration equipment and method based on multi-laser ranging - Google Patents
Calibration equipment and method based on multi-laser ranging Download PDFInfo
- Publication number
- CN111445529A CN111445529A CN202010183959.9A CN202010183959A CN111445529A CN 111445529 A CN111445529 A CN 111445529A CN 202010183959 A CN202010183959 A CN 202010183959A CN 111445529 A CN111445529 A CN 111445529A
- Authority
- CN
- China
- Prior art keywords
- image acquisition
- target object
- calibration
- coordinates
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
- G06T7/85—Stereo camera calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
The embodiment of the invention provides calibration equipment and a calibration method in 3D modeling, wherein (1) a plurality of parallel light beams are projected to a target object by using a calibration device, and a plurality of light spots are formed on the surface of the target object, namely calibration points; determining the x coordinate and the y coordinate of the calibration point according to the mutual position relationship of the parallel light beams; (2) measuring the distance between each light spot and the emergent plane so as to determine the z-direction coordinate of the corresponding calibration point; (3) acquiring a plurality of images of a target object by using image acquisition equipment, wherein at least part of the images comprise the plurality of light spots; (4) and calibrating the coordinates of the target object according to the coordinates of the plurality of calibration points. And the absolute size calibration of the target object is realized by a method of a plurality of laser range finders.
Description
Technical Field
The invention relates to the technical field of topography measurement, in particular to the technical field of 3D topography measurement.
Background
At present, when 3D acquisition and measurement are performed visually, a camera is usually rotated relative to a target object, or a plurality of cameras are arranged around the target object to perform acquisition simultaneously. For example, in the Digital Emily project of the university of California, a spherical bracket is adopted, and hundreds of cameras are fixed at different positions and different angles on the bracket, so that 3D acquisition and modeling of a human body are realized. In either case, however, it is desirable that the camera be at a short distance from the target, at least to the extent that it can be deployed, so that the camera can be configured to capture images of the target at different locations.
In some applications, however, the acquisition of images around the object is not possible. For example, when the monitoring probe acquires a monitored region, it is difficult to set a camera around a target object or rotate the camera around the target object because the region is large, the distance is long, and the acquisition object is not fixed. How to perform 3D acquisition and modeling of the target object in such a situation is an urgent problem to be solved.
Further, it is an unsolved problem how to obtain the accurate size of these distant objects even when 3D modeling is performed, so that the 3D models have absolute sizes. For example, when modeling a building at a distance, in order to obtain its absolute dimensions, the prior art generally sets a calibration object on or beside the building, and obtains the size of the 3D model of the building according to the size of the calibration object. However, not all cases allow us to place a calibration object near the object, and even if a 3D model is obtained, the absolute size cannot be obtained, and the actual size of the object cannot be known. For example, a house on the opposite side of a river must have a landmark placed on it to model it, which is difficult to do if it is not possible to cross the river. In addition to the long distance, there is a problem that the distance is not long, but a target object cannot be placed on the target object for some reason, for example, in the three-dimensional modeling of an antique vase, a fixed point or a target object cannot be labeled on the vase for protection, and how to obtain the absolute size of the vase model becomes a huge problem.
In addition, it has been proposed in the prior art to define the camera position using empirical formulas including rotation angle, target size, and object distance, thereby taking into account the speed of synthesis and the effect. However, in practical applications it is found that: unless a precise angle measuring device is provided, the user is insensitive to the angle and is difficult to accurately determine the angle; the object size is difficult to determine accurately, for example in the scenario of 3D model construction of the river house described above. The measured error causes the setting error of the camera position, thereby influencing the acquisition and synthesis speed and effect; accuracy and speed need to be further improved.
Therefore, the technical problems that ① can collect 3D information of long-distance and unspecified targets, ② considers both synthesis speed and synthesis precision, ③ can accurately and conveniently obtain the three-dimensional absolute size of long-distance objects or objects which are not suitable for placing calibration objects are urgently needed to be solved.
Disclosure of Invention
In view of the above, the present invention has been developed to provide a calibration method and apparatus that overcomes, or at least partially solves, the above-mentioned problems.
The embodiment of the invention provides calibration equipment and a calibration method in 3D modeling, wherein (1) a plurality of parallel light beams are projected to a target object by using a calibration device, and a plurality of light spots are formed on the surface of the target object, namely calibration points; determining the x coordinate and the y coordinate of the calibration point according to the mutual position relationship of the parallel light beams;
(2) measuring the distance between each light spot and the emergent plane so as to determine the z-direction coordinate of the corresponding calibration point;
(3) acquiring a plurality of images of a target object by using image acquisition equipment, wherein at least part of the images comprise the plurality of light spots;
(4) and calibrating the coordinates of the target object according to the coordinates of the plurality of calibration points.
In alternative embodiments: the calibration device comprises a plurality of laser ranging units, and the light emergent surface of each laser ranging unit is in the same plane and is perpendicular to the emitted light beam.
In alternative embodiments: the acquisition equipment is 3D intelligent vision equipment and comprises an image acquisition device and a rotating device;
the rotating device is used for driving the acquisition area of the image acquisition device to generate relative motion with the target object;
and the image acquisition device is used for acquiring a group of images of the target object through the relative movement.
In alternative embodiments: the position of the image acquisition device when the image acquisition device rotates to acquire a group of images meets the following conditions:
wherein L is the straight-line distance between the optical centers of two adjacent image acquisition positions, f is the focal length of the image acquisition device, d is the rectangular length of the photosensitive element of the image acquisition device, M is the distance between the photosensitive element of the image acquisition device and the surface of the target along the optical axis, and mu is an empirical coefficient.
In alternative embodiments: when the acquisition equipment is 3D intelligent image acquisition equipment, two adjacent acquisition positions of the 3D intelligent image acquisition equipment accord with the following conditions:
wherein L is the straight-line distance between the optical centers of two adjacent image acquisition positions, f is the focal length of the image acquisition device, d is the rectangular length or width of the photosensitive element of the image acquisition device, T is the distance from the photosensitive element of the image acquisition device to the surface of the target along the optical axis, and T is the adjustment coefficient.
In alternative embodiments: extracting characteristic points of the collected images, and matching the characteristic points to obtain sparse characteristic points; and inputting matched feature point coordinates, and obtaining sparse model three-dimensional point clouds of the object A and the object B and model coordinate values of the positions by utilizing the calculated sparse three-dimensional point clouds and the position and posture data of the photographing image acquisition equipment.
In alternative embodiments: introducing absolute coordinates X of marking points on a calibration objectT、YT、ZTMatching the image template of the mark point with all the input photos to obtain the pixel row number and column number x containing the mark point in the input photosi、yi。
In alternative embodiments: the method also comprises inputting the pixel row and column number x of the mark point according to the position and posture data of the camerai、yiThe coordinates (X) of the marker point in the model coordinate system can be calculatedi、Yi、Zi) (ii) a From the absolute coordinates of the landmark points and the model coordinates (X)T、YT、ZT) And (X)i、Yi、Zi) And 7 space coordinate conversion parameters of the model coordinates and the absolute coordinates are solved by using a space similarity transformation formula.
In alternative embodiments: and the calculated 7 parameters are utilized, so that the three-dimensional point cloud of the object A and the object B and the coordinates of the position and posture data of the photographing camera can be converted into an absolute coordinate system, and the real size of the target object is obtained.
In alternative embodiments: the absolute size of the target is obtained.
Another embodiment of the present invention provides a 3D model construction apparatus and method using the same.
Invention and technical effects
1. And the absolute size calibration of the target object is realized by a method of a plurality of laser range finders.
2. By optimizing the position of the camera for collecting the picture, the synthesis speed and the synthesis precision can be ensured to be improved simultaneously. When the camera acquisition position is optimized, the angle and the target size do not need to be measured, and the applicability is stronger.
3. The method has the advantages that the camera optical axis and the turntable form a certain included angle instead of being parallel to rotate to acquire the target object image, 3D synthesis and modeling are achieved, rotation around the target object is not needed, and adaptability of a scene is improved.
Drawings
Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention. Also, like reference numerals are used to refer to like parts throughout the drawings. In the drawings:
FIG. 1 is a schematic diagram of a calibration device disposed on a 3D smart vision apparatus according to an embodiment of the present invention;
FIG. 2 is a schematic diagram of a calibration device disposed on a 3D image capturing apparatus according to an embodiment of the present invention;
FIG. 3 is a schematic diagram of an onboard acquisition device with a calibration apparatus according to an embodiment of the present invention;
FIG. 4 is a schematic diagram of a calibration device disposed on a vehicle-mounted acquisition device according to an embodiment of the present invention;
the system comprises an image acquisition device 1, a rotating device 2, a cylindrical shell 3, a rotating device 4, a calibration device 5, a laser ranging unit 51 and a target object 6.
Detailed Description
Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.
3D acquisition calibration process
When the target object to be collected is B, the calibration object a may be placed around B, but in many cases, the calibration object a cannot be placed near the target object B. At this time, the following steps can be carried out:
1. and emitting laser towards the target object by using the calibration device to form a plurality of calibration point light spots, and obtaining the coordinates of the calibration points through the known position relation of the laser ranging units in the calibration device.
And emitting laser towards the target by using the calibration device, so that the light beam emitted by the laser ranging unit in the calibration device falls on the target to form a light spot. Since the laser beams emitted from the laser ranging units are parallel to each other, the positional relationship between the respective units is known. The two-dimensional coordinates in the emission plane of the plurality of light spots formed on the target object can be obtained.
The distance between each laser ranging unit and the corresponding light spot can be obtained by measuring the laser beam emitted by the laser ranging unit, namely the depth information equivalent to a plurality of light spots formed on the target object can be obtained. I.e. the depth coordinate perpendicular to the emission plane, can be obtained. Thereby, three-dimensional coordinates of each spot can be obtained.
2. And acquiring a plurality of images of the target object at different angles by using acquisition equipment, wherein part of the images comprise the plurality of calibration point light spot images.
The method comprises the following steps that a motor drives a turntable to rotate to drive a camera to rotate, so that the optical axis position of the camera moves in space, for example, an image of a target object is collected once every L distance from an image collection device 1, the image collection device 1 collects n images when the turntable rotates for 360 degrees, the images are collected when the turntable rotates, the rotation can be stopped after the camera rotates to the corresponding collection position, and the rotation is continued to the next collection position after the collection is finished.
The acquisition device may be a 3D image acquisition device (e.g. a camera).
The relative motion of collection equipment through with the target object gathers the image of a plurality of angles of target object, and above-mentioned motion can be through handheld, track, unmanned aerial vehicle machine carries multiple modes such as, vehicle bears. At the moment, the calibration device can be fixed on the ground, a calibration point is projected to the target object, coordinates of the calibration point are measured, and the target object image is collected by utilizing the method to construct the three-dimensional model. The calibration device can be arranged on the unmanned aerial vehicle or the vehicle, but the unmanned aerial vehicle and the vehicle are fixed in position at the moment, namely, the calibration device is fixed relative to the target object in the image acquisition process, namely, the calibration point is stable and unchanged, and then a plurality of images of the target object are obtained in a mode of moving or rotating the acquisition equipment. Of course, the acquisition process may be very fast, and then it appears that the calibration device projects laser light without motion limitation from the outside.
Calibration method
The calibration device comprises a plurality of distance measuring units, the distance measuring units are positioned on the same plane of a space, and the coordinates of the distance measuring units on the plane are respectively (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5) …, and the device can have a plurality of distance measuring units. The distance measuring unit respectively projects laser to the target object to form a plurality of projected light spots on the surface of the target object, the distances from the light spots to the calibration device are respectively z1, z2, z3, z4 and z5 …, so that the coordinates of the calibration points on the target object can be obtained as (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4), (x5, y5, z5) …
The method comprises the following steps of photographing a target object from a plurality of angles by using an image acquisition device to obtain a plurality of images, forming a 3D model of the target object according to a 3D synthesis algorithm by using the plurality of images, and calculating the absolute distance of the target object by using the coordinates of the calibration point, wherein the specific method comprises the following steps:
(1) shooting a target object at a plurality of angles through shooting equipment to obtain a plurality of images, wherein the number of the shot images is not less than 3;
(2) and extracting characteristic points of all the shot pictures, and matching the characteristic points. And acquiring sparse feature points. And inputting the matched feature point coordinates, and obtaining sparse model three-dimensional point cloud and model coordinate values of the positions of the shooting target area by resolving the sparse three-dimensional point cloud and the position and posture data of the shooting camera.
(3) Manually measuring the corresponding pixel row number x on the input picturei、yiOr using the picture template with the mark points, and then matching the picture template with all the input pictures to obtain the pixel row and column numbers x containing the mark points in the input picturesi、yi;
(4) According to the position and the posture of the photographing camera in the step (2)Data, input pixel row and column number x of mark pointi、yiThe coordinates (X) of the marker point in the model coordinate system can be calculatedi、Yi、Zi) (ii) a From the target's index point coordinates (X1, y1, z1), (X2, y2, z2), (X3, y3, z3), (X4, y4, z4), (X5, y5, z5) and corresponding model point coordinates (X1, y1, z1)i、Yi、Zi) 7 space coordinate conversion parameters of the model coordinate and the absolute coordinate are solved by using a space similarity transformation formula; wherein X, y, z, lambda, X0、 Y0、Z0For 7 parameters, X, Y, Z are model coordinates of the object, and XT, YT, ZT are absolute coordinates (calibration coordinates) of the object.
(5) And (4) converting the three-dimensional point cloud of the shooting target area and the target object and the coordinates of the position and posture data of the shooting camera into an absolute coordinate system by using the 7 parameters calculated in the step (4), so that the real size and size of the target object are obtained.
Calibration device structure
The calibration device 5 includes 3 or more laser ranging units 51, the mutual position relationship between each laser ranging unit is known, the laser ranging units can be fixed together under normal circumstances, the light emitting surfaces of the laser ranging units are on the same plane, and the light beam emitted by each laser ranging unit is perpendicular to the light emitting surface. That is, the laser ranging units are parallel to each other. Thus, the coordinates of each laser light in the light emitting surface direction are known.
When the calibration device 5 is applied to the 3D smart vision apparatus, as shown in fig. 1, it may be located on the cylindrical housing, at the side or right in front of the housing, and its longitudinal axis is parallel to the longitudinal axis of the cylindrical housing. That is to say, when the image acquisition device in the 3D intelligent vision equipment rotates, the calibration device is fixed, providing a stable calibration point for the target object, and fixed calibration point coordinates.
When the calibration device 5 is applied to a general 3D image capturing apparatus (e.g., a camera with a track), as shown in fig. 2, the laser ranging unit 51 is located at the periphery of the camera, but does not rotate together with the camera, so as to provide a stable calibration point for the target object and fixed calibration point coordinates. In the initial position, the longitudinal axis of the laser ranging unit (i.e., the direction in which the laser is emitted) is parallel to the optical axis of the image capture device.
Preferably, the calibration device comprises a horizontal module for leveling the whole equipment, and particularly, the calibration device needs to be leveled so as to determine a horizontal plane and facilitate coordinate calculation.
Utilizing 3D intelligent vision devices
Comprises an image acquisition device 1, a rotating device 2 and a cylindrical shell 3. As shown in fig. 1, the image pickup apparatus 1 is mounted on a rotating device 2, and the rotating device 2 is accommodated in a cylindrical housing 3 and can freely rotate therein.
The image acquisition device 1 is used for acquiring a group of images of the target object through the relative movement of an acquisition area of the image acquisition device 1 and the target object; and the acquisition area moving device is used for driving the acquisition area of the image acquisition device to generate relative motion with the target object. The collection area is the effective field range of the image collection device.
The image capturing device 1 may be a camera and the rotating device 2 may be a turntable. The camera is arranged on the rotary table, a certain included angle is formed between the optical axis of the camera and the rotary table, and the rotary table surface is approximately parallel to the target object to be collected. The turntable drives the camera to rotate, so that the camera can acquire images of the target object at different positions.
Further, the camera is mounted on the turntable through an angle adjusting device, and the angle adjusting device can rotate so as to adjust the included angle between the optical axis of the image acquisition device 1 and the surface of the turntable, wherein the adjusting range is-90 degrees < gamma <90 degrees. When shooting a closer target object, the optical axis of the image acquisition device 1 can be deviated towards the central axis direction of the turntable, namely, the gamma direction is adjusted to be minus 90 degrees. When the inside of the shooting cavity is shot, the optical axis of the image acquisition device 1 can deviate from the central axis direction of the turntable, namely, gamma is adjusted to 90 degrees. The adjustment can be manually completed, or a distance measuring device can be arranged on the 3D intelligent vision equipment to measure the distance between the 3D intelligent vision equipment and the target object, and the gamma angle is automatically adjusted according to the distance.
The turntable can be connected with the motor through a transmission device, and is driven by the motor to rotate, and the image acquisition device 1 is driven to rotate. The transmission means may be a gear system or a belt or other conventional mechanical structure.
In order to improve the collection efficiency, a plurality of image collection devices 1 may be disposed on the turntable. The plurality of image acquisition devices 1 are distributed in sequence along the circumference of the turntable. For example, two image capturing devices 1 can be respectively arranged at two ends of any diameter of the turntable. Or one image acquisition device 1 can be arranged at intervals of 60 degrees of circumferential angle, and 6 image acquisition devices 1 are uniformly arranged on the whole disc. The plurality of image acquisition devices can be the same type of camera or different types of cameras. For example, a visible light camera and an infrared camera are arranged on the turntable, so that images of different wave bands can be acquired.
The image capturing device 1 is used for capturing an image of an object, and may be a fixed focus camera or a zoom camera. In particular, the camera may be a visible light camera or an infrared camera. Of course, it is understood that any device with image capturing function can be used, and does not limit the present invention, and for example, the device can be a CCD, a CMOS, a camera, a video camera, an industrial camera, a monitor, a camera, a mobile phone, a tablet, a notebook, a mobile terminal, a wearable device, a smart glasses, a smart watch, a smart bracelet, and all devices with image capturing function.
Besides the turntable, the rotating device 2 can also be in various forms such as a rotating arm, a rotating beam, a rotating bracket and the like, as long as the image acquisition device can be driven to rotate. Whichever mode is used, the optical axis of the image capturing device 1 and the rotation plane all have a certain included angle γ.
In general, the light sources are distributed in a distributed manner around the lens of the image capturing device 1, for example, the light sources are ring-shaped L ED lamps around the lens, which are located on a turntable, or on the cross section of a cylindrical housing, because in some applications, the captured object is a human body, the intensity of the light sources needs to be controlled to avoid discomfort of the human body, especially, a soft light device, such as a soft light housing, may be arranged on the light path of the light sources, or a L ED surface light source may be directly used, which not only provides soft light, but also provides more uniform light emission.
When 3D acquisition is performed, the direction of the optical axis of the image acquisition device at different acquisition positions does not change relative to the target object, and is generally approximately perpendicular to the surface of the target object, and at this time, the positions of two adjacent image acquisition devices 1, or two adjacent acquisition positions of the image acquisition devices 1, satisfy the following conditions:
μ<0.482
wherein L is the straight-line distance between the optical centers of the image acquisition devices 1 at two adjacent acquisition positions, f is the focal length of the image acquisition device 1, d is the rectangular length of the photosensitive element (CCD) of the image acquisition device, M is the distance from the photosensitive element of the image acquisition device 1 to the surface of the target along the optical axis, and mu is an empirical coefficient.
When the two positions are along the length direction of the photosensitive element of the image acquisition device 1, d is a rectangular length; when the two positions are along the width direction of the photosensitive element of the image pickup device 1, d takes a rectangular width.
In the image capturing device 1, the distance from the photosensitive element to the surface of the target object along the optical axis is M in any one of the two positions.
As mentioned above, L should be the straight line distance between the optical centers of the two image capturing devices 1, but since the optical center position of the image capturing device 1 is not easily determined in some cases, the center of the photosensitive element of the image capturing device 1, the geometric center of the image capturing device 1, the axial center of the image capturing device connected to the pan/tilt head (or platform, support), the center of the lens near end or far end surface may be used instead in some cases, and the error caused by the above is found to be within an acceptable range through experiments, and therefore the above range is also within the protection scope of the present invention.
Experiments were conducted using the apparatus of the present invention, and the following experimental results were obtained.
From the above experimental results and a lot of experimental experience, it can be concluded that the value of μ should satisfy μ <0.482, and at this time, it is already possible to synthesize a part of the 3D model, and although some parts cannot be automatically synthesized, it is acceptable in the case of low requirements, and the part that cannot be synthesized can be compensated manually or by replacing the algorithm. Particularly, when the value of μ satisfies μ <0.357, the balance between the synthesis effect and the synthesis time can be optimally taken into consideration; mu <0.198 can be chosen for better synthesis, where the synthesis time increases but the synthesis quality is better. When μ is 0.5078, it cannot be synthesized. It should be noted that the above ranges are only preferred embodiments and should not be construed as limiting the scope of protection.
The above data are obtained by experiments for verifying the conditions of the formula, and do not limit the invention. Without these data, the objectivity of the formula is not affected. Those skilled in the art can adjust the equipment parameters and the step details as required to perform experiments, and obtain other data which also meet the formula conditions.
The adjacent acquisition positions refer to two adjacent positions on a movement track where acquisition actions occur when the image acquisition device moves relative to a target object. This is generally easily understood for the image acquisition device movements. However, when the target object moves to cause relative movement between the two, the movement of the target object should be converted into the movement of the target object, which is still, and the image capturing device moves according to the relativity of the movement. And then measuring two adjacent positions of the image acquisition device in the converted movement track.
Using 3D image acquisition devices
(1) The collecting area moving device is a rotary structure
As shown in fig. 2, the object 6 is fixed at a certain position, and the rotating device 4 drives the image capturing device 1 to rotate around the object 1. The rotating device 4 can drive the image acquisition device 1 to rotate around the target object through the rotating arm. Of course, the rotation is not necessarily a complete circular motion, and can be only rotated by a certain angle according to the acquisition requirement. The rotation does not necessarily need to be circular motion, and the motion track of the image acquisition device 1 can be other curved tracks as long as the camera can shoot the object from different angles.
The rotating device 4 can also drive the image acquisition device to rotate, so that the image acquisition device 1 can acquire target object images from different angles through rotation.
The rotating device 4 may be in various forms such as a cantilever, a turntable, a track, etc., and may also be handheld, vehicle-mounted or airborne, so that the image capturing device 1 may move, as shown in fig. 3.
In addition to the above, in some cases, the camera may be fixed, and the stage carrying the target may be rotated, so that the direction of the target facing the image capturing device changes from moment to moment, thereby enabling the image capturing device 1 to capture images of the target from different angles. However, in this case, the calculation may still be performed according to the condition converted into the movement of the image capturing device 1, so that the movement conforms to the corresponding empirical formula (which will be described in detail below). For example, in a scenario where the stage rotates, it may be assumed that the stage is stationary and the image capture device rotates. The distance of the shooting position when the image acquisition device rotates is set by using an empirical formula, so that the rotating speed of the image acquisition device is deduced, the rotating speed of the object stage is reversely deduced, the rotating speed is conveniently controlled, and 3D acquisition is realized. Of course, such scenes are not commonly used, and it is more common to rotate the image capture device.
In addition, in order to enable the image acquisition device to acquire images of the target object in different directions, the image acquisition device and the target object can be kept still, and the image acquisition device and the target object can be rotated by rotating the optical axis of the image acquisition device. For example: the collecting area moving device is an optical scanning device, so that the collecting area of the image collecting device and the target object generate relative motion under the condition that the image collecting device does not move or rotate. The acquisition area moving device also comprises a light deflection unit which is driven by machinery to rotate, or is driven by electricity to cause light path deflection, or is distributed in space in multiple groups, so that images of the target object can be acquired from different angles. The light deflection unit may typically be a mirror, which is rotated to collect images of the target object in different directions. Or a reflector surrounding the target object is directly arranged in space, and the light of the reflector enters the image acquisition device in turn. Similarly to the foregoing, the rotation of the optical axis in this case can be regarded as the rotation of the virtual position of the image pickup device, and by this method of conversion, it is assumed that the image pickup device is rotated, so that the calculation is performed using the following empirical formula.
The image capturing device is used for capturing an image of the object 1, and may be a fixed focus camera or a zoom camera. In particular, the camera may be a visible light camera or an infrared camera. Of course, it is understood that any device with image capturing function can be used, and does not limit the present invention, and for example, the device can be a CCD, a CMOS, a camera, a video camera, an industrial camera, a monitor, a camera, a mobile phone, a tablet, a notebook, a mobile terminal, a wearable device, a smart glasses, a smart watch, a smart bracelet, and all devices with image capturing function.
The device further comprises a processor, also called processing unit, for synthesizing a 3D model of the object according to the plurality of images acquired by the image acquisition means and according to a 3D synthesis algorithm, to obtain 3D information of the object.
(2) The acquisition area moving device is a translation structure
In addition to the above-described rotating structure, the image pickup device may move in a linear trajectory relative to the target object. For example, the image capturing device is located on a linear track or on a vehicle or a drone traveling in a straight line, as shown in fig. 4, and the image capturing device sequentially passes through the target object along the linear track to capture images, and the image capturing device is not rotated in the process. Wherein the linear track can also be replaced by a linear cantilever. More preferably, the image capturing device is rotated to a certain degree when moving along a linear track, so that the optical axis of the image capturing device faces the target object.
(3) The mobile device of the acquisition area is a random motion structure
As shown in fig. 4, the movement of the capturing area is not regular, for example, when the image capturing device is held by hand, or when the vehicle is mounted or mounted on a vehicle, or when the traveling route is irregular, it is difficult to move along a strict track, and the movement trajectory of the image capturing device is difficult to predict accurately. Therefore, in this case, how to ensure that the captured images can be accurately and stably synthesized into the 3D model is a difficult problem, which has not been mentioned yet. A more common approach is to take multiple photographs, with redundancy in the number of photographs to address this problem. However, the synthesis results are not stable. Although there are some ways to improve the composite effect by limiting the rotation angle of the camera, in practice, the user is not sensitive to the angle, and even if the preferred angle is given, the user is difficult to operate in the case of hand-held shooting. Therefore, the invention provides a method for improving the synthesis effect and shortening the synthesis time by limiting the moving distance of the camera for twice photographing.
In the case of irregular movement, a sensor can be arranged in the mobile terminal or the image acquisition device, the sensor measures the linear distance moved by the image acquisition device during two times of shooting, and when the moving distance does not meet the above experience condition about L (specifically the following condition), an alarm is given to the user.
(4) Multiple camera mode
It can be understood that the camera can shoot images of the target object at different angles by the relative movement of the camera and the target object, and a plurality of cameras can be arranged at different positions around the target object, so that the images of the target object 1 at different angles can be shot simultaneously.
When the collection area moves relative to the target object, particularly, the image collection device rotates around the target object, when 3D collection is carried out, the image collection device changes relative to the target object in the direction of the optical axis of different collection positions, and the positions of two adjacent image collection devices or two adjacent collection positions of the image collection devices meet the following conditions:
<0.603
wherein L is the straight-line distance between the optical centers of two adjacent image acquisition positions, f is the focal length of the image acquisition device, d is the rectangular length or width of the photosensitive element (CCD) of the image acquisition device, T is the distance from the photosensitive element of the image acquisition device to the surface of the target along the optical axis, and T is the adjustment coefficient.
When the two positions are along the length direction of the photosensitive element of the image acquisition device, d is a rectangle; when the two positions are along the width direction of the photosensitive element of the image acquisition device, d is in a rectangular width.
The distance of the photosensitive element to the surface of the object along the optical axis when the image pickup device is in any one of the two positions is taken as T in another case L is A in addition to this methodn、An+1Linear distance between optical centers of two image capturing devices, and An、An+1Two image acquisition devices adjacent to each othern-1、An+2Two image acquisition devices and An、An+1The distances from the respective photosensitive elements of the two image acquisition devices to the surface of the target object along the optical axis are respectively Tn-1、Tn、Tn+1、Tn+2,T=(Tn-1+Tn+Tn+1+Tn+2)/4. Of course, the average value may be calculated by using more positions than the adjacent positions.
Experiments were conducted using the apparatus of the present invention, and the following experimental results were obtained.
The camera lens is replaced, and the experiment is carried out again, so that the following experiment results are obtained.
The camera lens is replaced, and the experiment is carried out again, so that the following experiment results are obtained.
L should be the straight line distance between the optical centers of the two image capturing devices, but since the position of the optical center of the image capturing device is not easily determined in some cases, the center of the photosensitive element of the image capturing device, the geometric center of the image capturing device, the axial center of the connection between the image capturing device and the pan/tilt head (or platform, support), and the center of the proximal or distal surface of the lens can be used in some cases instead, and the error caused by the above is found to be within an acceptable range through experiments, and therefore the above range is also within the protection scope of the present invention.
In general, parameters such as object size and angle of view are used as means for estimating the position of a camera in the prior art, and the positional relationship between two cameras is also expressed in terms of angle. Because the angle is not well measured in the actual use process, it is inconvenient in the actual use. Also, the size of the object may vary with the variation of the measurement object. For example, when 3D information is collected and then collected, the size needs to be measured again and reckoning needs to be performed again. The inconvenient measurement and the repeated measurement bring errors in measurement, thereby causing errors in camera position estimation. According to the scheme, the experience conditions required to be met by the position of the camera are given according to a large amount of experimental data, so that the problem that the measurement is difficult to accurately measure the angle is solved, and the size of an object does not need to be directly measured. In the empirical condition, d and f are both fixed parameters of the camera, and corresponding parameters can be given by a manufacturer when the camera and the lens are purchased without measurement. And T is only a straight line distance, and can be conveniently measured by using a traditional measuring method, such as a ruler and a laser range finder. Therefore, the empirical formula of the invention enables the preparation process to be convenient and fast, and simultaneously improves the arrangement accuracy of the camera position, so that the camera can be arranged in an optimized position, thereby simultaneously considering the 3D synthesis precision and speed.
From the above experimental results and a lot of experimental experiences, it can be derived that the value should satisfy <0.603, and at this time, a part of the 3D model can be synthesized, although a part cannot be automatically synthesized, it is acceptable in the case of low requirements, and the part which cannot be synthesized can be compensated manually or by replacing the algorithm. Particularly, when the value satisfies <0.410, the balance between the synthesis effect and the synthesis time can be optimally taken into consideration; to obtain better synthesis results, <0.356 can be chosen, where the synthesis time will increase, but the synthesis quality is better. Of course, <0.311 may be selected to further improve the effect of the synthesis. And 0.681, the synthesis is not possible. It should be noted that the above ranges are only preferred embodiments and should not be construed as limiting the scope of protection.
Moreover, as can be seen from the above experiment, for the determination of the photographing position of the camera, only the camera parameters (focal length f, CCD size) and the distance T between the camera CCD and the object surface need to be obtained according to the above formula, which makes it easy to design and debug the device. Since the camera parameters (focal length f, CCD size) are determined at the time of purchase of the camera and are indicated in the product description, they are readily available. Therefore, the camera position can be easily calculated according to the formula without carrying out complicated view angle measurement and object size measurement. Particularly, in some occasions, the lens of the camera needs to be replaced, and then the position of the camera can be obtained by directly replacing the conventional parameter f of the lens and calculating; similarly, when different objects are collected, the measurement of the size of the object is complicated due to the different sizes of the objects. By using the method of the invention, the position of the camera can be determined more conveniently without measuring the size of the object. And the camera position determined by the invention can give consideration to both the synthesis time and the synthesis effect. Therefore, the above-described empirical condition is one of the points of the present invention.
The above data are obtained by experiments for verifying the conditions of the formula, and do not limit the invention. Without these data, the objectivity of the formula is not affected. Those skilled in the art can adjust the equipment parameters and the step details as required to perform experiments, and obtain other data which also meet the formula conditions.
The rotation movement of the invention is that the front position collection plane and the back position collection plane are crossed but not parallel in the collection process, or the optical axis of the front position image collection device and the optical axis of the back position image collection device are crossed but not parallel. That is, the capture area of the image capture device moves around or partially around the target, both of which can be considered as relative rotation. Although the embodiment of the present invention exemplifies more orbital rotation, it should be understood that the limitation of the present invention can be used as long as the non-parallel motion between the acquisition region of the image acquisition device and the target object is rotation. The scope of the invention is not limited to the embodiment with track rotation.
The adjacent acquisition positions refer to two adjacent positions on a movement track where acquisition actions occur when the image acquisition device moves relative to a target object. This is generally easily understood for the image acquisition device movements. However, when the target object moves to cause relative movement between the two, the movement of the target object should be converted into the movement of the target object, which is still, and the image capturing device moves according to the relativity of the movement. And then measuring two adjacent positions of the image acquisition device in the converted movement track.
3D (three-dimensional) alloyModeling device and method
And the processor is also called as a processing unit and is used for synthesizing a 3D model of the target object according to a plurality of images acquired by the image acquisition device and a 3D synthesis algorithm to obtain 3D information of the target object. The image acquisition device 1 sends the acquired images to the processing unit, and the processing unit obtains the 3D information of the target object according to the images in the group of images. Of course, the processing unit may be directly disposed in the housing where the image capturing device 1 is located, or may be connected to the image capturing device through a data line or in a wireless manner. For example, an independent computer, a server, a cluster server, or the like may be used as a processing unit, and the image data acquired by the image acquisition apparatus 1 may be transmitted thereto to perform 3D synthesis. Meanwhile, the data of the image acquisition device 1 can also be transmitted to a cloud platform, and 3D synthesis is performed by using the powerful computing power of the cloud platform.
The following method is executed in the processing unit:
1. and performing image enhancement processing on all input photos. The contrast of the original picture is enhanced and simultaneously the noise suppressed using the following filters.
In the formula: g (x, y) is the gray value of the original image at (x, y), f (x, y) is the gray value of the original image at the position after being enhanced by the Wallis filter, and mgIs the local gray average value, s, of the original imagegIs the local standard deviation of gray scale of the original image, mfFor the transformed image local gray scale target value, sfC ∈ (0, 1) is the spreading constant of the image variance, and b ∈ (0, 1) is the image brightness coefficient constant.
The filter can greatly enhance image texture modes of different scales in an image, so that the quantity and the precision of feature points can be improved when the point features of the image are extracted, and the reliability and the precision of a matching result are improved in photo feature matching.
2. The method mainly comprises the steps of constructing ① a Hessian matrix to generate all interest points for feature extraction, aiming at generating stable edge points (mutant points) of the image, constructing ② a scale space feature point position, comparing each pixel point processed by the Hessian matrix with 26 points in a two-dimensional image space and a scale space neighborhood, primarily positioning rectangular key points, filtering out weak energy points and wrongly positioned key points, screening out stable feature points, determining 32 a main feature point direction, determining a main feature point direction, taking a vertical feature point direction, a vertical feature point, a vertical.
3. Inputting matched feature point coordinates, resolving the sparse three-dimensional point cloud of the target object and the position and posture data of the photographing camera by using a light beam method adjustment, namely obtaining model coordinate values of the sparse three-dimensional point cloud of the target object model and the position; and performing multi-view photo dense matching by taking the sparse feature points as initial values to obtain dense point cloud data. The process mainly comprises four steps: stereo pair selection, depth map calculation, depth map optimization and depth map fusion. For each image in the input data set, we select a reference image to form a stereo pair for use in computing the depth map. Therefore, we can get rough depth maps of all images, which may contain noise and errors, and we use its neighborhood depth map to perform consistency check to optimize the depth map of each image. And finally, carrying out depth map fusion to obtain the three-dimensional point cloud of the whole scene.
4. And reconstructing the curved surface of the target object by using the dense point cloud. The method comprises the steps of defining an octree, setting a function space, creating a vector field, solving a Poisson equation and extracting an isosurface. And obtaining an integral relation between the sampling point and the indicating function according to the gradient relation, obtaining a vector field of the point cloud according to the integral relation, and calculating the approximation of the gradient field of the indicating function to form a Poisson equation. And (3) solving an approximate solution by using matrix iteration according to a Poisson equation, extracting an isosurface by adopting a moving cube algorithm, and reconstructing a model of the measured point cloud.
5. The method comprises the following steps of ① obtaining texture data, reconstructing a surface triangular surface grid of a target through an image, ② reconstructing visibility analysis of a triangular surface of the model, calculating a visible image set and an optimal reference image of each triangular surface by using calibration information of the image, ③ clustering the triangular surfaces to generate texture patches, clustering the triangular surfaces to generate a plurality of reference image texture patches according to the visible image set, the optimal reference image and neighborhood topological relations of the triangular surfaces, ④ automatically sequencing the texture patches to generate texture images, sequencing the generated texture patches according to the size relations of the texture patches, generating texture images with the minimum surrounding areas, and obtaining texture mapping coordinates of each triangular surface.
Although the image capturing device captures an image in the above embodiments, the image capturing device is not understood to be applicable to only a group of pictures made of a single picture, and this is merely an illustrative manner for facilitating understanding. The image acquisition device can also acquire video data, and directly utilize the video data or intercept images from the video data to carry out 3D synthesis. However, the shooting position of the corresponding frame of the video data or the captured image used in the synthesis still satisfies the above empirical formula.
The acquisition equipment can be realized in various modes such as fixed mode, handheld mode, vehicle-mounted mode, machine-mounted mode, rail moving mode and the like.
The target object, and the object all represent objects for which three-dimensional information is to be acquired. The object may be a solid object or a plurality of object components. The three-dimensional information of the target object comprises a three-dimensional image, a three-dimensional point cloud, a three-dimensional grid, a local three-dimensional feature, a three-dimensional size and all parameters with the three-dimensional feature of the target object. Three-dimensional in the present invention means having XYZ three-direction information, particularly depth information, and is essentially different from only two-dimensional plane information. It is also fundamentally different from some definitions, which are called three-dimensional, panoramic, holographic, three-dimensional, but actually comprise only two-dimensional information, in particular not depth information.
The capture area in the present invention refers to a range in which an image capture device (e.g., a camera) can capture an image. The image acquisition device can be a CCD, a CMOS, a camera, a video camera, an industrial camera, a monitor, a camera, a mobile phone, a tablet, a notebook, a mobile terminal, a wearable device, intelligent glasses, an intelligent watch, an intelligent bracelet and all devices with image acquisition functions.
In the description provided herein, numerous specific details are set forth. It is understood, however, that embodiments of the invention may be practiced without these specific details. In some instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.
Similarly, it should be appreciated that in the foregoing description of exemplary embodiments of the invention, various features of the invention are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. However, the disclosed method should not be interpreted as reflecting an intention that: that the invention as claimed requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the detailed description are hereby expressly incorporated into this detailed description, with each claim standing on its own as a separate embodiment of this invention.
Those skilled in the art will appreciate that the modules in the device in an embodiment may be adaptively changed and disposed in one or more devices different from the embodiment. The modules or units or components of the embodiments may be combined into one module or unit or component, and furthermore they may be divided into a plurality of sub-modules or sub-units or sub-components. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and all of the processes or elements of any method or apparatus so disclosed, may be combined in any combination, except combinations where at least some of such features and/or processes or elements are mutually exclusive. Each feature disclosed in this specification (including any accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
Furthermore, those skilled in the art will appreciate that while some embodiments herein include some features included in other embodiments, rather than other features, combinations of features of different embodiments are meant to be within the scope of the invention and form different embodiments. For example, in the claims, any of the claimed embodiments may be used in any combination.
The various component embodiments of the invention may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof. It will be appreciated by those skilled in the art that a microprocessor or Digital Signal Processor (DSP) may be used in practice to implement some or all of the functionality of some or all of the components in an apparatus in accordance with embodiments of the present invention. The present invention may also be embodied as apparatus or device programs (e.g., computer programs and computer program products) for performing a portion or all of the methods described herein. Such programs implementing the present invention may be stored on computer-readable media or may be in the form of one or more signals. Such a signal may be downloaded from an internet website or provided on a carrier signal or in any other form.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The invention may be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the unit claims enumerating several means, several of these means may be embodied by one and the same item of hardware. The usage of the words first, second and third, etcetera do not indicate any ordering. These words may be interpreted as names.
Thus, it should be appreciated by those skilled in the art that while a number of exemplary embodiments of the invention have been illustrated and described in detail herein, many other variations or modifications consistent with the principles of the invention may be directly determined or derived from the disclosure of the present invention without departing from the spirit and scope of the invention. Accordingly, the scope of the invention should be understood and interpreted to cover all such other variations or modifications.
Claims (11)
1. A calibration device and method in 3D modeling are characterized in that:
(1) projecting a plurality of parallel light beams to a target object by using a calibration device, and forming a plurality of light spots on the surface of the target object, namely calibration points; determining the x coordinate and the y coordinate of the calibration point according to the mutual position relationship of the parallel light beams;
(2) measuring the distance between each light spot and the emergent plane so as to determine the z-direction coordinate of the corresponding calibration point;
(3) acquiring a plurality of images of a target object by using image acquisition equipment, wherein at least part of the images comprise the plurality of light spots;
(4) and calibrating the coordinates of the target object according to the coordinates of the plurality of calibration points.
2. The apparatus and method of claim 1, wherein: the calibration device comprises a plurality of laser ranging units, and the light emergent surface of each laser ranging unit is in the same plane and is perpendicular to the emitted light beam.
3. The apparatus and method of claim 1, wherein: the acquisition equipment is 3D intelligent vision equipment and comprises an image acquisition device and a rotating device;
the rotating device is used for driving the acquisition area of the image acquisition device to generate relative motion with the target object;
and the image acquisition device is used for acquiring a group of images of the target object through the relative movement.
4. The apparatus and method of claim 3, wherein: the position of the image acquisition device when the image acquisition device rotates to acquire a group of images meets the following conditions:
wherein L is the straight-line distance between the optical centers of two adjacent image acquisition positions, f is the focal length of the image acquisition device, d is the rectangular length of the photosensitive element of the image acquisition device, M is the distance between the photosensitive element of the image acquisition device and the surface of the target along the optical axis, and mu is an empirical coefficient.
5. The apparatus and method of claim 1, wherein: when the acquisition equipment is 3D intelligent image acquisition equipment, two adjacent acquisition positions of the 3D intelligent image acquisition equipment accord with the following conditions:
wherein L is the straight-line distance between the optical centers of two adjacent image acquisition positions, f is the focal length of the image acquisition device, d is the rectangular length or width of the photosensitive element of the image acquisition device, T is the distance from the photosensitive element of the image acquisition device to the surface of the target along the optical axis, and T is the adjustment coefficient.
6. The apparatus and method of claim 1, wherein: extracting characteristic points of the collected images, and matching the characteristic points to obtain sparse characteristic points; and inputting matched feature point coordinates, and obtaining sparse model three-dimensional point clouds of the object A and the object B and model coordinate values of the positions by utilizing the calculated sparse three-dimensional point clouds and the position and posture data of the photographing image acquisition equipment.
7. The method of claim 6, wherein: introducing absolute coordinates X of marking points on a calibration objectT、YT、ZTMatching the image template of the mark point with all the input photos to obtain the pixel row number and column number x containing the mark point in the input photosi、yi。
8. The method of claim 6, wherein: the method also comprises inputting the pixel row and column number x of the mark point according to the position and posture data of the camerai、yiThe coordinates (X) of the marker point in the model coordinate system can be calculatedi、Yi、Zi) (ii) a From the absolute coordinates of the landmark points and the model coordinates (X)T、YT、ZT) And (X)i、Yi、Zi) And 7 space coordinate conversion parameters of the model coordinates and the absolute coordinates are solved by using a space similarity transformation formula.
9. The method of claim 8, wherein: and the calculated 7 parameters are utilized, so that the three-dimensional point cloud of the object A and the object B and the coordinates of the position and posture data of the photographing camera can be converted into an absolute coordinate system, and the real size of the target object is obtained.
10. The method of claim 1, wherein: the absolute size of the target is obtained.
11. A 3D model building apparatus and method using the apparatus and method according to claims 1-10.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010183959.9A CN111445529B (en) | 2020-03-16 | 2020-03-16 | Calibration equipment and method based on multi-laser ranging |
PCT/CN2021/080872 WO2021185216A1 (en) | 2020-03-16 | 2021-03-15 | Calibration method based on multiple laser range finders |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010183959.9A CN111445529B (en) | 2020-03-16 | 2020-03-16 | Calibration equipment and method based on multi-laser ranging |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111445529A true CN111445529A (en) | 2020-07-24 |
CN111445529B CN111445529B (en) | 2021-03-23 |
Family
ID=71652319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010183959.9A Active CN111445529B (en) | 2020-03-16 | 2020-03-16 | Calibration equipment and method based on multi-laser ranging |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111445529B (en) |
WO (1) | WO2021185216A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021185218A1 (en) * | 2020-03-16 | 2021-09-23 | 左忠斌 | Method for acquiring 3d coordinates and dimensions of object during movement |
WO2021185216A1 (en) * | 2020-03-16 | 2021-09-23 | 左忠斌 | Calibration method based on multiple laser range finders |
WO2022078442A1 (en) * | 2020-10-15 | 2022-04-21 | 左忠斌 | Method for 3d information acquisition based on fusion of optical scanning and smart vision |
CN114415155A (en) * | 2022-01-25 | 2022-04-29 | 长安大学 | Position calibration method for single-point laser range finder and visible light camera |
CN115225820A (en) * | 2022-07-28 | 2022-10-21 | 东集技术股份有限公司 | Automatic shooting parameter adjusting method and device, storage medium and industrial camera |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102982548A (en) * | 2012-12-11 | 2013-03-20 | 清华大学 | Multi-view stereoscopic video acquisition system and camera parameter calibrating method thereof |
CN103522291A (en) * | 2013-10-29 | 2014-01-22 | 中国人民解放军总装备部军械技术研究所 | Target capturing system and method of explosive ordnance disposal robot |
CN105486277A (en) * | 2015-12-13 | 2016-04-13 | 重庆桑耐美光电科技有限公司 | Slide rail type optical measuring device capable of changing angles and measuring method |
CN108917604A (en) * | 2018-07-12 | 2018-11-30 | 上海航天设备制造总厂有限公司 | A kind of normal direction measuring device and its scaling method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102867304B (en) * | 2012-09-04 | 2015-07-01 | 南京航空航天大学 | Method for establishing relation between scene stereoscopic depth and vision difference in binocular stereoscopic vision system |
US9661308B1 (en) * | 2015-04-20 | 2017-05-23 | Samsung Electronics Co., Ltd. | Increasing tolerance of sensor-scanner misalignment of the 3D camera with epipolar line laser point scanning |
CN110322561A (en) * | 2019-04-30 | 2019-10-11 | 熵智科技(深圳)有限公司 | 3D camera and its measurement method for the unordered sorting of robot |
CN110411339B (en) * | 2019-07-30 | 2021-07-02 | 中国海洋大学 | Underwater target size measuring equipment and method based on parallel laser beams |
CN110973763B (en) * | 2019-12-12 | 2020-12-22 | 天目爱视(北京)科技有限公司 | Foot intelligence 3D information acquisition measuring equipment |
CN113379822B (en) * | 2020-03-16 | 2024-03-22 | 天目爱视(北京)科技有限公司 | Method for acquiring 3D information of target object based on pose information of acquisition equipment |
CN111445529B (en) * | 2020-03-16 | 2021-03-23 | 天目爱视(北京)科技有限公司 | Calibration equipment and method based on multi-laser ranging |
-
2020
- 2020-03-16 CN CN202010183959.9A patent/CN111445529B/en active Active
-
2021
- 2021-03-15 WO PCT/CN2021/080872 patent/WO2021185216A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102982548A (en) * | 2012-12-11 | 2013-03-20 | 清华大学 | Multi-view stereoscopic video acquisition system and camera parameter calibrating method thereof |
CN103522291A (en) * | 2013-10-29 | 2014-01-22 | 中国人民解放军总装备部军械技术研究所 | Target capturing system and method of explosive ordnance disposal robot |
CN105486277A (en) * | 2015-12-13 | 2016-04-13 | 重庆桑耐美光电科技有限公司 | Slide rail type optical measuring device capable of changing angles and measuring method |
CN108917604A (en) * | 2018-07-12 | 2018-11-30 | 上海航天设备制造总厂有限公司 | A kind of normal direction measuring device and its scaling method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021185218A1 (en) * | 2020-03-16 | 2021-09-23 | 左忠斌 | Method for acquiring 3d coordinates and dimensions of object during movement |
WO2021185216A1 (en) * | 2020-03-16 | 2021-09-23 | 左忠斌 | Calibration method based on multiple laser range finders |
WO2022078442A1 (en) * | 2020-10-15 | 2022-04-21 | 左忠斌 | Method for 3d information acquisition based on fusion of optical scanning and smart vision |
CN114415155A (en) * | 2022-01-25 | 2022-04-29 | 长安大学 | Position calibration method for single-point laser range finder and visible light camera |
CN114415155B (en) * | 2022-01-25 | 2024-05-03 | 长安大学 | Position calibration method for single-point laser range finder and visible light camera |
CN115225820A (en) * | 2022-07-28 | 2022-10-21 | 东集技术股份有限公司 | Automatic shooting parameter adjusting method and device, storage medium and industrial camera |
CN115225820B (en) * | 2022-07-28 | 2023-05-26 | 东集技术股份有限公司 | Shooting parameter automatic adjustment method and device, storage medium and industrial camera |
Also Published As
Publication number | Publication date |
---|---|
CN111445529B (en) | 2021-03-23 |
WO2021185216A1 (en) | 2021-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111462213B (en) | Equipment and method for acquiring 3D coordinates and dimensions of object in motion process | |
CN111442721B (en) | Calibration equipment and method based on multi-laser ranging and angle measurement | |
CN111238374B (en) | Three-dimensional model construction and measurement method based on coordinate measurement | |
CN111429523B (en) | Remote calibration method in 3D modeling | |
CN111060023B (en) | High-precision 3D information acquisition equipment and method | |
CN111462304B (en) | 3D acquisition and size measurement method for space field | |
CN111445529B (en) | Calibration equipment and method based on multi-laser ranging | |
CN111445528B (en) | Multi-camera common calibration method in 3D modeling | |
CN112254670B (en) | 3D information acquisition equipment based on optical scanning and intelligent vision integration | |
CN111076674B (en) | Closely target object 3D collection equipment | |
CN110419208B (en) | Imaging system, imaging control method, image processing apparatus, and computer readable medium | |
CN112303423B (en) | Intelligent three-dimensional information acquisition equipment stable in rotation | |
CN111060008A (en) | 3D intelligent vision equipment | |
CN112254680B (en) | Multi freedom's intelligent vision 3D information acquisition equipment | |
CN111340959B (en) | Three-dimensional model seamless texture mapping method based on histogram matching | |
CN112082486B (en) | Handheld intelligent 3D information acquisition equipment | |
CN112254677B (en) | Multi-position combined 3D acquisition system and method based on handheld device | |
CN111325780B (en) | 3D model rapid construction method based on image screening |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |