CN111444663A - Kalman tracking loop design method, Kalman tracking loop, space vehicle - Google Patents
Kalman tracking loop design method, Kalman tracking loop, space vehicle Download PDFInfo
- Publication number
- CN111444663A CN111444663A CN202010165702.0A CN202010165702A CN111444663A CN 111444663 A CN111444663 A CN 111444663A CN 202010165702 A CN202010165702 A CN 202010165702A CN 111444663 A CN111444663 A CN 111444663A
- Authority
- CN
- China
- Prior art keywords
- plasma sheath
- kalman
- amplitude attenuation
- phase shift
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013461 design Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 48
- 230000010363 phase shift Effects 0.000 claims abstract description 82
- 230000009471 action Effects 0.000 claims abstract description 5
- 230000001133 acceleration Effects 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000004422 calculation algorithm Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 7
- 239000003574 free electron Substances 0.000 claims description 6
- 238000004088 simulation Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 238000005315 distribution function Methods 0.000 claims description 4
- 230000010354 integration Effects 0.000 claims description 4
- 230000010355 oscillation Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000002238 attenuated effect Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000004891 communication Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000018199 S phase Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Plasma Technology (AREA)
- Radio Relay Systems (AREA)
Abstract
Description
技术领域technical field
本发明属于航天飞行器测控通信技术领域,尤其涉及一种卡尔曼跟踪环路设计方法、卡尔曼跟踪环路、航天飞行器,具体涉及一种高超声速飞行器新型卡尔曼跟踪环路设计方法。The invention belongs to the technical field of aerospace vehicle measurement and control communication, in particular to a Kalman tracking loop design method, a Kalman tracking loop, and an aerospace vehicle, in particular to a new Kalman tracking loop design method for a hypersonic aircraft.
背景技术Background technique
目前,临近空间高超声速飞行器飞行速度快、机动范围大的特性使接收机接收信号存在着大的多普勒频移及高阶导数。此外,高超声速飞行器在穿透大气层时,包覆飞行器表面的等离子体鞘套会对电磁波产生吸收、反射和散射作用,电磁信号透过等离子体鞘套之后会产生严重的幅度衰减和相位偏移。因此高超声速飞行器载波跟踪环路设计受到大动态多普勒频偏、严重幅度衰减和相移等多重因素挑战。At present, the fast flying speed and large maneuvering range of the near space hypersonic vehicle make the received signal of the receiver have a large Doppler frequency shift and high-order derivative. In addition, when a hypersonic vehicle penetrates the atmosphere, the plasma sheath covering the surface of the aircraft will absorb, reflect and scatter electromagnetic waves, and the electromagnetic signal will have severe amplitude attenuation and phase shift after passing through the plasma sheath. . Therefore, the design of the carrier tracking loop of hypersonic vehicle is challenged by multiple factors such as large dynamic Doppler frequency offset, severe amplitude attenuation and phase shift.
目前测控通信领域载波跟踪的方法主要有两大类:一类是基于传统锁相环(PLL)的跟踪环路,另一类是基于卡尔曼(Kalman)滤波器的跟踪环路。现有的基于这两类方法的跟踪环路在一般应用场景下性能优良,但在大动态多普勒和等离子体鞘套信道下尚不能实现载波的稳健跟踪。第一类方法未考虑接收信号的幅度噪声影响,且环路滤波器的带宽是恒定值,大动态多普勒要求锁相环的环路滤波器带宽较大,低信噪比要求环路滤波器带宽较小,无法均衡大宽带和高精度的矛盾,在高动态低信噪比和严重等离子体鞘套幅度衰减的状态下传统锁相环的载波跟踪能力急剧下降。第二类方法为了解决大动态和低信噪比的矛盾问题,引入Kalman滤波器,目前仅考虑大动态多普勒,其状态变量通常为载波的相位、多普勒频率、多普勒加速度三个变量,虽然能较好的解决大动态跟踪难题,但也未考虑等离子体鞘套信道下信号幅度衰减对跟踪环路的影响。At present, there are two main types of carrier tracking methods in the field of measurement and control communication: one is a tracking loop based on a traditional phase-locked loop (PLL), and the other is a tracking loop based on a Kalman filter. The existing tracking loops based on these two types of methods have excellent performance in general application scenarios, but cannot achieve robust carrier tracking in large dynamic Doppler and plasma sheath channels. The first type of method does not consider the influence of the amplitude noise of the received signal, and the bandwidth of the loop filter is a constant value. Large dynamic Doppler requires a larger bandwidth of the loop filter of the phase-locked loop, and low signal-to-noise ratio requires loop filtering. Due to the small bandwidth of the device, the contradiction between large bandwidth and high precision cannot be balanced, and the carrier tracking capability of the traditional phase-locked loop drops sharply in the state of high dynamic, low signal-to-noise ratio and severe plasma sheath amplitude attenuation. In the second type of method, in order to solve the contradiction between large dynamics and low signal-to-noise ratio, Kalman filter is introduced. At present, only large dynamic Doppler is considered, and its state variables are usually carrier phase, Doppler frequency, and Doppler acceleration. Although it can better solve the large dynamic tracking problem, it does not consider the influence of signal amplitude attenuation on the tracking loop in the plasma sheath channel.
通过上述分析,现有技术存在的问题及缺陷为:Through the above analysis, the existing problems and defects in the prior art are:
(1)现有的跟踪环路在大动态多普勒和等离子体鞘套信道双重恶劣条件下存在大动态多普勒要求环路带宽较大,低信噪比要求环路带宽较小。(1) The existing tracking loop has a large dynamic Doppler under the dual harsh conditions of a large dynamic Doppler and a plasma sheath channel, which requires a large loop bandwidth, and a low signal-to-noise ratio requires a small loop bandwidth.
(2)传统跟踪环路使用环路滤波器的带宽为定值,无法均衡大带宽和高精度的矛盾。(2) The traditional tracking loop uses the bandwidth of the loop filter as a fixed value, which cannot balance the contradiction between large bandwidth and high precision.
(3)传统跟踪环路工作在信号幅度衰减一般可以忽略不记,或者衰减为定值的场景,高超声速飞行器的接收信号幅度衰减具有快时变性,传统跟踪环路在高超场景下由于时变幅度衰减的影响极易失锁。(3) The traditional tracking loop works in the scenario where the signal amplitude attenuation can generally be ignored, or the attenuation is a fixed value. The amplitude attenuation of the received signal of the hypersonic aircraft has fast time variation. The effects of amplitude decay are extremely vulnerable to loss of lock.
解决以上问题及缺陷的难度为:The difficulty of solving the above problems and defects is as follows:
高超声速飞行器接收信号由于等离子体鞘套作用产生严重幅度衰减。传统跟踪环路在跟踪过程中忽略接收信号幅度衰减,只能克服大动态多普勒频偏和多普勒加速度对接收信号的影响。在高超环境下,接收信号幅度衰减会使锁相环失锁,不能忽略。如何在环路设计中考虑接收信号幅度衰减是锁相环在等离子体鞘套下实现载波稳定跟踪的难点重点。The signal received by the hypersonic vehicle is severely attenuated due to the action of the plasma sheath. The traditional tracking loop ignores the amplitude attenuation of the received signal during the tracking process, and can only overcome the influence of the large dynamic Doppler frequency offset and Doppler acceleration on the received signal. In a high-level environment, the attenuation of the received signal amplitude will cause the phase-locked loop to lose its lock, which cannot be ignored. How to consider the amplitude attenuation of the received signal in the loop design is the difficulty and focus of the phase-locked loop to achieve stable carrier tracking under the plasma sheath.
解决以上问题及缺陷的意义为:The significance of solving the above problems and defects is:
本发明提供了一种卡尔曼跟踪环路设计方法,实现了高超声速环境下接收信号的稳健跟踪,为存在严重幅度衰减的接收机跟踪环路设计提供新思路。The invention provides a Kalman tracking loop design method, realizes robust tracking of received signals in a hypersonic environment, and provides a new idea for the design of receiver tracking loops with severe amplitude attenuation.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供了一种卡尔曼跟踪环路设计方法、卡尔曼跟踪环路、航天飞行器。Aiming at the problems existing in the prior art, the present invention provides a Kalman tracking loop design method, a Kalman tracking loop, and a space vehicle.
本发明是这样实现的,一种卡尔曼跟踪环路设计方法,所述卡尔曼跟踪环路设计方法建立时变等离子体鞘套模型并计算等离子体鞘套下接收信号的幅度衰减和相移;建立幅度衰减的自回归模型和相移的统计特性;设计卡尔曼滤波器的状态方程和观测方程;设计高超声速飞行器新型卡尔曼跟踪环路;通过对等离子体鞘套信道下接收信号的幅度衰减和相移进行分析,计算幅度衰减的自回归模型和相移的统计特性,设计适用于等离子体鞘套信道的Kalman滤波器;将等离子体鞘套作用下接收信号的幅度衰减考虑到跟踪环路设计中,建立同时跟踪接收信号幅度衰减和相位的卡尔曼滤波器。The present invention is realized by a Kalman tracking loop design method, the Kalman tracking loop design method establishes a time-varying plasma sheath model and calculates the amplitude attenuation and phase shift of the received signal under the plasma sheath; Establish the autoregressive model of amplitude attenuation and the statistical characteristics of phase shift; design the state equation and observation equation of the Kalman filter; design a new Kalman tracking loop for hypersonic aircraft; through the amplitude attenuation of the received signal under the plasma sheath channel and phase shift, calculate the autoregressive model of amplitude attenuation and the statistical characteristics of phase shift, and design a Kalman filter suitable for the plasma sheath channel; consider the amplitude attenuation of the received signal under the action of the plasma sheath into the tracking loop In the design, a Kalman filter is built that tracks both the amplitude attenuation and the phase of the received signal.
进一步,所述卡尔曼跟踪环路设计方法包括:Further, the Kalman tracking loop design method includes:
第一步,建立时变等离子体鞘套电子密度模型求解接收信号的幅度衰减r(tn)和相移使用双高斯模型确定时不变的等离子体鞘套信道的电子密度模型Ne(zm);或者通过RAM-C实测数据确定不同飞行高度上的时不变的等离子体鞘套信道的电子密度模型Ne(zm);在时不变电子信道基础上加入时变抖动Δ建立时变等离子体鞘套电子密度模型Ne(zm,tn),根据均匀等离子体中电磁波传输理论计算信号穿过等离子体鞘套之后的幅度衰减r(tn)和相移 The first step is to establish a time-varying plasma sheath electron density model to solve the amplitude attenuation r(t n ) and phase shift of the received signal Use the double Gaussian model to determine the time-invariant plasma sheath channel electron density model Ne(z m ); or determine the time-invariant plasma sheath channel electron density model at different flight heights through RAM-C measured data Ne(z m ); on the basis of the time-invariant electron channel, the time-varying jitter Δ is added to establish a time-varying plasma sheath electron density model Ne(z m , t n ), and the signal passing through the plasma is calculated according to the electromagnetic wave transmission theory in uniform plasma. Amplitude decay r(t n ) and phase shift after plasma sheath
第二步,建立接收信号幅度衰减除去均值后的自回归模型r′(tn),计算相移统计特性即相移的均值和方差输入仿真得到的接收信号的幅度衰减r(tn)和相移使用Levinson-Durbin算法求解得到自回归模型的一次迭代系数α2,1、二次迭代系数α2,2和迭代噪声方差σν,得到接收信号幅度衰减的自回归模型,使用输入相移计算其均值和方差 The second step is to establish an autoregressive model r'(t n ) after the amplitude attenuation of the received signal is removed and the mean value is removed, and the statistical characteristics of the phase shift, that is, the mean value of the phase shift, are calculated. and variance Enter the simulated amplitude attenuation r(t n ) and phase shift of the received signal The first iteration coefficient α 2,1 , the second iteration coefficient α 2,2 and iterative noise variance σ ν of the autoregressive model are obtained by using the Levinson-Durbin algorithm to obtain the autoregressive model of the amplitude attenuation of the received signal, and the input phase shift is used to calculate its mean and variance
第三步,设计Kalman滤波器,输入跟踪环路电路产生的相位噪声υ1,n,多普勒频率噪声υ2,n,多普勒加速度噪声υ3,n的协方差矩阵Q,鉴相器输出端观测噪声的协方差矩阵R,接收机积分时间Ts,接收信号幅度衰减除去均值的自回归模型的一次迭代系数α2,1、二次迭代系数α2,2和迭代噪声方差σν,幅度衰减均值mean(r(tn)),接收信号相移的均值和方差设计状态变量包括接收信号幅度衰减和相位的Kalman滤波器的状态方程Xn=AXn-1+BYn-1+Wn-1和观测方程Zn=HnXn+Vn;The third step is to design the Kalman filter, input the phase noise υ 1,n generated by the tracking loop circuit, the Doppler frequency noise υ 2,n , the Doppler acceleration noise υ 3,n The covariance matrix Q, the phase detection The covariance matrix R of the observed noise at the output of the receiver, the receiver integration time T s , the first iteration coefficient α 2,1 , the second iteration coefficient α 2,2 and the iterative noise variance σ of the autoregressive model of the received signal amplitude attenuation and mean removal ν , the mean amplitude attenuation mean(r(t n )), the mean value of the phase shift of the received signal and variance The design state variables include the state equation X n =AX n-1 +BY n-1 +W n-1 and the observation equation Z n =H n X n +V n of the Kalman filter of the received signal amplitude attenuation and phase;
第四步,输入Kalman滤波器的状态方程:Xn=AXn-1+BYn-1+Wn-1和观测方程:Zn=HnXn+Vn,鉴相器输出的实际观测值Zn,观测向量的初始值X0,观测向量协方差矩阵的初始值P0,本地振荡器的初始相位θvco和粗捕获之后的多普勒频偏wd,环路更新时间Ts,依Kalman滤波环路的跟踪的步骤实现等离子体鞘套信道下Kalman滤波器跟踪环路。The fourth step, input the state equation of the Kalman filter: X n =AX n-1 +BY n-1 +W n-1 and the observation equation: Z n =H n X n +V n , the actual output of the phase detector The observation value Z n , the initial value X 0 of the observation vector, the initial value P 0 of the covariance matrix of the observation vector, the initial phase θ vco of the local oscillator and the Doppler frequency offset w d after coarse acquisition, the loop update time T s , the Kalman filter tracking loop under the plasma sheath channel is realized according to the tracking steps of the Kalman filter loop.
进一步,所述第一步时变等离子体鞘套信道下幅度衰减和相移计算建立包括:Further, the first step of calculating and establishing the amplitude attenuation and phase shift under the time-varying plasma sheath channel includes:
(1)计算固定时刻的等离子体鞘套电子密度随飞行器表面具体的分布,使用NASA的RAM-C实测的数据或者双高斯分布:(1) Calculate the specific distribution of the plasma sheath electron density with the surface of the aircraft at a fixed time, using the data measured by NASA's RAM-C or the double Gaussian distribution:
输入高超声速飞行器飞行过程中表面等离子体鞘套厚度为Z、等离子体鞘套分层为M,其中每一层的厚度为dm,峰值电子密度ne,max,第一高斯函数影响参数σ1和第二高斯函数影响参数σ2取值为定值,zT为等离子体鞘套厚度,zB为边界层厚度,确定时不变离子体鞘套信道的电子密度模型Ne(zm);Input the thickness of the surface plasmon sheath during the flight of the hypersonic vehicle is Z, the layer of the plasma sheath is M, the thickness of each layer is d m , the peak electron density ne ,max , and the first Gaussian function influence parameter σ 1 and the second Gaussian function influence parameter σ 2 take a fixed value, z T is the thickness of the plasma sheath, z B is the thickness of the boundary layer, and the electron density model Ne(z m ) of the time-invariant plasma sheath channel is determined. ;
(2)计算时变等离子体鞘套的电子密度分布,产生是标准差为1的非平稳有色噪声n(tn),在时不变等离子体鞘套的基础上加入电子密度的抖动因子Δ,建立时变等离子体鞘套电子密度分布为:(2) Calculate the electron density distribution of the time-varying plasma sheath, and generate a non-stationary colored noise n(t n ) with a standard deviation of 1, and add the jitter factor Δ of the electron density on the basis of the time-varying plasma sheath , the electron density distribution of the time-varying plasma sheath is established as:
Ne(zm,tn)=Ne(zm)*[1+Δ*n(tn)];Ne(z m ,t n )=Ne(z m )*[1+Δ*n(t n )];
(3)计算每一层的幅度衰减系数和相移系数:根据均匀等离子体中电磁波传播理论,输入ε0为真空中绝对介电常数,me为自由电子质量,e为自由电子电荷数,求得时变等离子体的特征频率输入等离子体的碰撞频率νen,入射电磁波的角频率ω,光速c,计算每一层的信号幅度衰减系数,和相移系数:(3) Calculate the amplitude attenuation coefficient and phase shift coefficient of each layer: According to the electromagnetic wave propagation theory in uniform plasma, input ε 0 is the absolute dielectric constant in vacuum, me is the free electron mass, e is the free electron charge number, Finding the Eigenfrequencies of Time-Varying Plasma Enter the collision frequency ν en of the plasma, the angular frequency ω of the incident electromagnetic wave, the speed of light c, and calculate the signal amplitude attenuation coefficient and phase shift coefficient for each layer:
(4)计算信号穿过整个等离子体鞘套的幅度衰减和相移为式:(4) Calculate the amplitude attenuation and phase shift of the signal passing through the entire plasma sheath as:
进一步,所述第二步建立接收信号幅度衰减除去均值后的自回归模型r′(tn),计算相移统计特性即相移的均值和方差包含以下步骤:Further, in the second step, an autoregressive model r'(t n ) is established after the amplitude attenuation of the received signal is removed and the mean value is removed, and the statistical characteristic of the phase shift, that is, the mean value of the phase shift is calculated. and variance Contains the following steps:
(1)将得到的幅度衰减去均值:求解信号幅度衰减的均值为mean(r(tn)),去掉均值后的信号幅度衰减为r′(tn)=r(tn)-mean(r(tn)),将去掉均值后的数据r′(tn)使用自回归模型表示为:(1) Remove the mean value of the obtained amplitude attenuation: the mean value of the signal amplitude attenuation is mean(r(t n )), and the signal amplitude attenuation after removing the mean value is r′(t n )=r(t n )-mean( r(t n )), the data r′(t n ) after removing the mean is expressed as:
r′(tn)=α2,1r(tn-1)+α2,2r(tn-2)+v(n);r'(t n )=α 2,1 r(t n-1 )+α 2,2 r(t n-2 )+v(n);
使用Levinson-Durbin算法求解一次迭代系数α2,1、二次迭代系数α2,2、方差为σν的高斯白噪声v(n);Use the Levinson-Durbin algorithm to solve the Gaussian white noise v(n) with the first iteration coefficient α 2,1 , the second iteration coefficient α 2,2 , and the variance σ ν ;
(2)计算相移的统计特性:输入相移的仿真结果,相移服从高斯分布函数,按照高斯分布函数的统计特性,求解输入相移的均值和方差 (2) Calculate the statistical characteristics of the phase shift: input the simulation results of the phase shift, the phase shift obeys the Gaussian distribution function, and solve the mean value of the input phase shift according to the statistical characteristics of the Gaussian distribution function and variance
进一步,所述第三步Kalman滤波器设计包括:Further, the third step Kalman filter design includes:
(1)确定n时刻输入信号的和本地振荡器真实相位差Δθn的表达式:根据上一时刻的真实相位差Δθn-1,上一时刻的多普勒频率ωdn-1、多普勒加速度wan-1和等离子体鞘套信道产生的相位噪声电路产生的噪声υ1,n,则n时刻接收信号和本地振荡器的真实相位差Δθn表示为:(1) Determine the expression of the real phase difference Δθ n between the input signal and the local oscillator at time n: According to the real phase difference Δθ n-1 at the previous time, the Doppler frequency ωd n-1 and the Doppler frequency at the previous time Phase noise generated by the Le acceleration wan -1 and the plasma sheath channel The noise υ 1,n generated by the circuit, then the real phase difference Δθ n between the received signal and the local oscillator at time n is expressed as:
(2)确定Kalman滤波器的状态方程:根据自回归模型和动力学方程得到同时跟踪幅度衰减和载波相位的Kalman滤波器状态方程为:(2) Determine the state equation of the Kalman filter: According to the autoregressive model and the dynamic equation, the state equation of the Kalman filter that simultaneously tracks the amplitude attenuation and the carrier phase is obtained as:
(3)确定Kalman滤波器的观测方程:观测变量Zn为鉴相器的输出U0(tn)i、U0(tn)q加上观测噪声,表示为:(3) Determine the observation equation of the Kalman filter: the observation variable Z n is the output U 0 (t n ) i and U 0 (t n ) q of the phase detector plus the observation noise, which is expressed as:
将观测方程表示为线性形式,即将鉴相器的输出h(Xn)线性化。Express the observation equation in linear form, that is, linearize the output h(X n ) of the phase detector.
进一步,所述鉴相器的输出U0(tn)i、U0(tn)q:Further, the outputs U 0 (t n ) i and U 0 (t n ) q of the phase detector:
1)考虑鉴相器的速度和计算复杂度,鉴相器未经过滤波处理的输出表示为:1) Considering the speed and computational complexity of the phase detector, the unfiltered output of the phase detector is expressed as:
θe(tn)=y(tn)×UVCO;θ e (t n )=y(t n )×U VCO ;
其中y(tn)为接收信号,UVCO为本地振荡器产生的载波信号;Where y(t n ) is the received signal, and U VCO is the carrier signal generated by the local oscillator;
2)将θe(tn)经过低通滤波器之后的表示式作为鉴相器的最终输出:2) Take the expression of θ e (t n ) after passing through the low-pass filter as the final output of the phase detector:
进一步,所述观测方程线性化实现方法包括:Further, the method for realizing linearization of the observation equation includes:
线性化将观测向量Zn由式表示为Zn=HnXn+Vn,求解Hn方法为:求得:Linearization converts the observation vector Z n by the formula Expressed as Z n =H n X n +V n , the method for solving H n is: Get:
进一步,所述第四步Kalman滤波环路的跟踪的实现包括:Further, the realization of the tracking of the Kalman filter loop in the fourth step includes:
(1)用上一时刻状态向量最优值进行预估计 (1) Pre-estimate with the optimal value of the state vector at the previous moment
(2)预估计误差方差 (2) Pre-estimation error variance
(3)Kalman滤波器增益计算 (3) Kalman filter gain calculation
(4)最优状态向量 (4) Optimal state vector
(5)更新误差方差Pn=[1-KnHn]Pn,n-1;(5) Update error variance P n =[1-K n H n ]P n,n-1 ;
(6)更新本地振荡器的振荡频率wvco,n=wd+ωdn-1和初始相位θvco,n=Δθn-1 (6) Update the oscillation frequency of the local oscillator w vco,n =w d +ωd n-1 and the initial phase θ vco,n =Δθ n-1
本发明的另一目的在于提供一种由所述卡尔曼跟踪环路设计方法得到的卡尔曼跟踪环路,所述卡尔曼跟踪环路包括鉴相器、Kalman滤波器、本地振荡器;考虑信号通过等离子体鞘套后的幅度衰减的Kalman滤波器。Another object of the present invention is to provide a Kalman tracking loop obtained by the Kalman tracking loop design method, wherein the Kalman tracking loop includes a phase detector, a Kalman filter, and a local oscillator; considering the signal Amplitude attenuation Kalman filter after passing through the plasma sheath.
本发明的另一目的在于提供一种搭载所述卡尔曼跟踪环路的航天飞行器。Another object of the present invention is to provide a spacecraft equipped with the Kalman tracking loop.
结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明建立时变等离子体鞘套模型并计算等离子体鞘套下接收信号的幅度衰减和相移;建立幅度衰减的自回归模型计算相移的统计特性;在此基础上设计卡尔曼滤波器的状态方程和观测方程;设计高超声速飞行器新型卡尔曼跟踪环路。本发明避免了传统锁相环跟踪在等离子体鞘套下由于忽略幅度衰减而引起的失锁问题,为高超声速飞行器的信号稳定跟踪提供了新思路。本发明针对高速飞行器快速测控跟踪需求,在复杂信道条件下同时考虑接收信号的幅度衰减和相移以及大动态多普勒频偏,设计新型基于卡尔曼滤波的跟踪环路。Combined with all the above technical solutions, the advantages and positive effects of the present invention are as follows: the present invention establishes a time-varying plasma sheath model and calculates the amplitude attenuation and phase shift of the received signal under the plasma sheath; establishes an autoregressive amplitude attenuation The model calculates the statistical characteristics of the phase shift; on this basis, the state equation and observation equation of the Kalman filter are designed; a new Kalman tracking loop for the hypersonic vehicle is designed. The invention avoids the problem of losing lock caused by ignoring the amplitude attenuation of the traditional phase-locked loop tracking under the plasma sheath, and provides a new idea for the stable tracking of the signal of the hypersonic aircraft. Aiming at the fast measurement, control and tracking requirements of high-speed aircraft, the present invention designs a new tracking loop based on Kalman filtering while considering the amplitude attenuation and phase shift of the received signal and the large dynamic Doppler frequency offset under complex channel conditions.
本发明通过对等离子体鞘套信道下接收信号的幅度衰减和相移进行分析,计算幅度衰减的自回归模型和相移的统计特性,设计适用于等离子体鞘套信道的Kalman滤波器,实现高超飞行器等离子体鞘套信道下新型Kalman滤波环路设计。The invention analyzes the amplitude attenuation and phase shift of the received signal under the plasma sheath channel, calculates the autoregressive model of the amplitude attenuation and the statistical characteristics of the phase shift, designs a Kalman filter suitable for the plasma sheath channel, and realizes high Design of a new Kalman filter loop under the aircraft plasma sheath channel.
本发明将等离子体鞘套作用下接收信号的幅度衰减考虑到跟踪环路设计中,建立同时跟踪接收信号幅度衰减和相位的卡尔曼滤波器,避免了由于接收信号的严重幅度衰减引起的环路失锁问题;利用卡尔曼滤波器代替了传统环路滤波器,在工作过程中,其带宽并不是定值而是实时调整为最优值,不存在传统环路滤波器中大动态多普勒和低信噪比引起的带宽设计冲突问题。本发明对高超声速飞行器的接收信号的幅度衰减和相移及相关参数可提前存储在接收机上,跟踪环路在工作中仅存储上一时刻的值,因此算法实时性很好。The invention takes the amplitude attenuation of the received signal under the action of the plasma sheath into consideration in the design of the tracking loop, establishes a Kalman filter that simultaneously tracks the amplitude attenuation and phase of the received signal, and avoids the loop caused by the severe amplitude attenuation of the received signal Loss of lock problem; the traditional loop filter is replaced by a Kalman filter. During the working process, its bandwidth is not a fixed value but is adjusted to an optimal value in real time, and there is no large dynamic Doppler in the traditional loop filter. And the bandwidth design conflict problem caused by low signal-to-noise ratio. The amplitude attenuation, phase shift and related parameters of the received signal of the hypersonic aircraft can be stored in the receiver in advance, and the tracking loop only stores the value of the last moment during operation, so the algorithm has good real-time performance.
附图说明Description of drawings
图1是本发明实施例提供的卡尔曼跟踪环路设计方法的流程图。FIG. 1 is a flowchart of a method for designing a Kalman tracking loop provided by an embodiment of the present invention.
图2是本发明实施例提供的Kalman跟踪环路的结构图。FIG. 2 is a structural diagram of a Kalman tracking loop provided by an embodiment of the present invention.
图3是本发明实施例提供的时变等离子体密度分层模型图。FIG. 3 is a diagram of a time-varying plasma density layering model provided by an embodiment of the present invention.
图4是本发明实施例提供的等离子体鞘套下的幅度衰减图。FIG. 4 is a graph of amplitude attenuation under a plasma sheath provided by an embodiment of the present invention.
图5是本发明实施例提供的等离子体鞘套下的相移图。FIG. 5 is a phase shift diagram under a plasma sheath provided by an embodiment of the present invention.
图6是本发明实施例提供的实施例1-实施例7中Kalman跟踪环路相位跟踪结果图。FIG. 6 is a result diagram of the phase tracking of the Kalman tracking loop in
图7是本发明实施例提供的飞行器飞行在71km时Kalman跟踪环路相位跟踪结果图。FIG. 7 is a phase tracking result diagram of a Kalman tracking loop when the aircraft flies at 71 km according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
针对现有技术存在的问题,本发明提供了一种卡尔曼跟踪环路设计方法、卡尔曼跟踪环路、航天飞行器,下面结合附图对本发明作详细的描述。Aiming at the problems existing in the prior art, the present invention provides a Kalman tracking loop design method, a Kalman tracking loop, and an aerospace vehicle. The present invention will be described in detail below with reference to the accompanying drawings.
如图1所示,本发明实施例提供的卡尔曼跟踪环路设计方法包括以下步骤:As shown in FIG. 1 , the Kalman tracking loop design method provided by the embodiment of the present invention includes the following steps:
S101:确定时变等离子体模型计算接收信号的幅度衰减和相移;S101: Determine the time-varying plasma model to calculate the amplitude attenuation and phase shift of the received signal;
S102:计算幅度衰减去掉均值之后的自回归模型和相移的统计特性;S102: Calculate the statistical characteristics of the autoregressive model and the phase shift after the amplitude attenuation is removed from the mean;
S103:设计状态变量和观测变量同时考虑幅度衰减和相位的Kalman滤波器;S103: Design a Kalman filter that considers both the amplitude attenuation and the phase of the state variable and the observed variable;
S104:设计等离子体鞘套下Kalman滤波跟踪环路。S104: Design a Kalman filter tracking loop under the plasma sheath.
下面结合具体实施例对本发明的技术方案作进一步的描述。The technical solutions of the present invention will be further described below with reference to specific embodiments.
实施例1Example 1
目前跟踪环路的设计均针对信号幅度衰减可以忽略不计的应用场景,高超声速飞行器等离子体鞘套信道下接收信号幅度衰减严重,此时传统的跟踪环路极易失锁。本发明对时变等离子体下信号的幅度衰减和相移进行仿真分析,得到幅度衰减的自回归模型和相移统计特性,在此基础上,设计同时考虑信号幅度衰减和相移的Kalman滤波器,本发明实现了一种高超声速飞行器新型卡尔曼跟踪环路设计方法。The current tracking loops are designed for application scenarios where the signal amplitude attenuation is negligible. The received signal amplitude attenuation is severe in the plasma sheath channel of the hypersonic aircraft. At this time, the traditional tracking loop is very easy to lose lock. The invention simulates and analyzes the amplitude attenuation and phase shift of the signal under the time-varying plasma, and obtains the autoregressive model of the amplitude attenuation and the statistical characteristics of the phase shift. On this basis, the Kalman filter considering the signal amplitude attenuation and phase shift is designed , The present invention realizes a new Kalman tracking loop design method for hypersonic aircraft.
本发明提供的高超声速飞行器等离子体鞘套信道下新型Kalman跟踪环路设计方法包括以下步骤:The new Kalman tracking loop design method under the plasma sheath channel of the hypersonic aircraft provided by the present invention includes the following steps:
第一步,建立时变等离子体鞘套电子密度模型并求解接收信号的幅度衰减r(tn)和相移使用双高斯模型确定时不变的等离子体鞘套信道的电子密度模型Ne(zm)。或者通过RAM-C实测数据确定不同飞行高度上的时不变的等离子体鞘套信道的电子密度模型Ne(zm)。在时不变电子信道基础上加入时变抖动Δ建立时变等离子体鞘套电子密度模型Ne(zm,tn)。根据均匀等离子体中电磁波传输理论计算信号穿过等离子体鞘套之后的幅度衰减r(tn)和相移 The first step is to establish a time-varying plasma sheath electron density model and solve the amplitude attenuation r(t n ) and phase shift of the received signal The electron density model Ne(z m ) for the time-invariant plasma sheath channel was determined using a double Gaussian model. Alternatively, the electron density model Ne(z m ) of the time-invariant plasma sheath channel at different flight heights can be determined from the measured data of RAM-C. A time-varying plasma sheath electron density model Ne(z m , t n ) is established by adding time-varying jitter Δ on the basis of the time-invariant electron channel. Calculate the amplitude attenuation r(t n ) and phase shift of the signal after passing through the plasma sheath according to the theory of electromagnetic wave transmission in homogeneous plasma
本发明通过建立时变等离子体鞘套电子密度分布模型,计算接收信号穿过等离子体鞘套后的幅度衰减和相移,以便后续建立幅度衰减自回归模型,计算相移统计特性。The invention calculates the amplitude attenuation and phase shift of the received signal after passing through the plasma sheath by establishing a time-varying plasma sheath electron density distribution model, so as to subsequently establish an amplitude attenuation autoregressive model and calculate the phase shift statistical characteristics.
第二步,建立接收信号幅度衰减除去均值后的自回归模型r′(tn),计算相移统计特性即相移的均值和方差输入仿真得到的接收信号的幅度衰减r(tn)和相移使用Levinson-Durbin算法求解自回归模型的一次迭代系数α2,1、二次迭代系数α2,2和迭代噪声方差σν,得到去除均值之后的幅度衰减自回归模型:The second step is to establish an autoregressive model r'(t n ) after the amplitude attenuation of the received signal is removed and the mean value is removed, and the statistical characteristics of the phase shift, that is, the mean value of the phase shift, are calculated. and variance Enter the simulated amplitude attenuation r(t n ) and phase shift of the received signal Use the Levinson-Durbin algorithm to solve the first iteration coefficient α 2,1 , the second iteration coefficient α 2,2 and iterative noise variance σ ν of the autoregressive model, and obtain the amplitude decay autoregressive model after removing the mean:
r′(tn)=α2,1r(tn-1)+α2,2r(tn-2)+v(n);r'(t n )=α 2,1 r(t n-1 )+α 2,2 r(t n-2 )+v(n);
使用输入相移计算其均值和方差 Calculate its mean using the input phase shift and variance
本发明针对信号的幅度衰减建立了对应的自回归模型,将除去均值的幅度衰减表示成二阶迭代的方式,使得设计Kalman滤波器状态方程时,将幅度衰减和相位同时考虑进状态变量成为可能。计算等离子体鞘套影响下信号相移的统计特性,为Kalman滤波器设计提供基础。The invention establishes a corresponding autoregressive model for the amplitude attenuation of the signal, and expresses the amplitude attenuation except the mean value as a second-order iterative method, so that it is possible to consider the amplitude attenuation and the phase into the state variables when designing the state equation of the Kalman filter. . Calculate the statistical characteristics of the signal phase shift under the influence of the plasma sheath, which provides the basis for the Kalman filter design.
第三步,设计Kalman滤波器:输入跟踪环路电路产生的相位噪声υ1,n,多普勒频率噪声υ2,n,多普勒加速度噪声υ3,n的协方差矩阵Q,鉴相器输出端观测噪声的协方差矩阵R,接收机积分时间Ts,接收信号幅度衰减除去均值的自回归模型的一次迭代系数α2,1、二次迭代系数α2,2和迭代噪声方差σν,幅度衰减均值mean(r(tn)),接收信号相移的均值和方差设计状态变量包括接收信号幅度衰减和相位的Kalman滤波器的状态方程Xn=AXn-1+BYn-1+Wn-1和观测方程Zn=HnXn+Vn。其中状态方程具体表示为:The third step is to design the Kalman filter: input the phase noise υ 1,n generated by the tracking loop circuit, the Doppler frequency noise υ 2,n , the Doppler acceleration noise υ 3,n covariance matrix Q, phase detection The covariance matrix R of the observed noise at the output of the receiver, the receiver integration time T s , the first iteration coefficient α 2,1 , the second iteration coefficient α 2,2 and the iterative noise variance σ of the autoregressive model of the received signal amplitude attenuation and mean removal ν , the mean amplitude attenuation mean(r(t n )), the mean value of the phase shift of the received signal and variance The design state variables include the state equation Xn =AXn -1 +BYn -1 + Wn -1 and the observation equation Zn= HnXn + Vn for the Kalman filter of the received signal amplitude attenuation and phase. The state equation is specifically expressed as:
观测方程具体表示为:The observation equation is specifically expressed as:
本发明通过分析等离子体鞘套信道下接收信号的幅度衰减和相移特性,设计出状态变量和观测变量同时包括信号幅度衰减和相移的状态方程和观测方程,使得Kalman滤波器考虑了幅度衰减的影响,数学模型更符合信号跟踪时的真实状态。By analyzing the amplitude attenuation and phase shift characteristics of the received signal under the plasma sheath channel, the invention designs the state equation and the observation equation that the state variable and the observation variable include the signal amplitude attenuation and phase shift at the same time, so that the Kalman filter considers the amplitude attenuation The mathematical model is more in line with the real state when the signal is tracked.
第四步,实现新型Kalman跟踪环路:输入Kalman滤波器的状态方程:Xn=AXn-1+BYn-1+Wn-1和观测方程:Zn=HnXn+Vn,鉴相器输出的实际观测量Zn,观测向量的初始值X0,观测向量协方差矩阵的初始值P0,本地振荡器的初始相位θvco和粗捕获之后的多普勒频偏wd,环路更新时间Ts,依Kalman滤波环路的跟踪的步骤实现高超声速飞行器新型卡尔曼环路跟踪:The fourth step is to realize the new Kalman tracking loop: input the state equation of the Kalman filter: X n =AX n-1 +BY n-1 +W n-1 and the observation equation: Z n =H n X n +V n , the actual observation quantity Z n output by the phase detector, the initial value X 0 of the observation vector, the initial value P 0 of the covariance matrix of the observation vector, the initial phase θ vco of the local oscillator and the Doppler frequency offset w after coarse acquisition d , the loop update time T s , the new Kalman loop tracking of the hypersonic vehicle is realized according to the tracking steps of the Kalman filter loop:
1)用上一时刻状态向量最优值进行预估计 1) Pre-estimate with the optimal value of the state vector at the previous moment
2)预估计误差方差 2) Pre-estimated error variance
3)Kalman滤波器增益计算 3) Kalman filter gain calculation
4)最优状态向量 4) Optimal state vector
5)更新误差方差Pn=[1-KnHn]Pn,n-1;5) Update error variance P n =[1-K n H n ]P n,n-1 ;
6)更新本地振荡器的产生信号的振荡频率wvco,n=wd+ωdn-1和初始相位θvco,n=Δθn-1。6) Update the oscillation frequency w vco,n =w d +ωd n-1 and the initial phase θ vco,n =Δθ n-1 of the generated signal of the local oscillator.
本发明提供了高超声速飞行器新型卡尔曼跟踪环路的整体设计思路,其跟踪环路结构如图2所示。由鉴相器、Kalman滤波器、本地振荡器组成。将信号通过等离子体鞘套后的幅度衰减考虑进Kalman滤波器设计中,使得跟踪环路的数学模型更加符合现实的跟踪情况,在幅度衰减严重的情况下也能实现信号载波的稳定跟踪。The present invention provides the overall design idea of the new Kalman tracking loop of the hypersonic aircraft, and the structure of the tracking loop is shown in FIG. 2 . It consists of a phase detector, a Kalman filter, and a local oscillator. The amplitude attenuation of the signal after passing through the plasma sheath is taken into account in the design of the Kalman filter, so that the mathematical model of the tracking loop is more in line with the actual tracking situation, and the stable tracking of the signal carrier can also be achieved in the case of severe amplitude attenuation.
实施例2Example 2
高超声速飞行器新型卡尔曼跟踪环路设计方法同实施例1,计算信号穿过等离子体鞘套之后的幅度衰减r(tn)和相移包括如下步骤:The design method of the new Kalman tracking loop for hypersonic aircraft is the same as that in Example 1, and the amplitude attenuation r(t n ) and phase shift of the signal after passing through the plasma sheath are calculated It includes the following steps:
第一步,如图3所示建立时变等离子体鞘套电子密度分布:对于固定时刻,随着等离子体鞘套厚度变化的电子密度分布Ne(z)可以表示为:The first step is to establish the electron density distribution of the time-varying plasma sheath as shown in Figure 3: For a fixed time, the electron density distribution Ne(z) that changes with the thickness of the plasma sheath can be expressed as:
其中ne,max表示动态等离子体鞘套最大电子密度;zB为边界层位置;zT为等离子鞘套厚度;σ1、σ2表示了等离子鞘套电子密度变化系数,根据NASA的RAM-C工程收集的数据资料,可知当飞行器的飞行高度为30km时,等离子鞘套对接收信号的影响达到最差的状态,此时ne,max=7.7×1018m-3,zT=15cm,zB=5cm,σ1=1,σ2=0.5。在求得固定时刻的Ne(z)后,等离子体电子密度的时变模型可表示为:where n e,max represents the maximum electron density of the dynamic plasma sheath; z B is the boundary layer position; z T is the thickness of the plasma sheath ; According to the data collected by Project C, when the flying height of the aircraft is 30km, the influence of the plasma sheath on the received signal reaches the worst state. At this time, ne ,max = 7.7×10 18 m -3 , z T = 15cm , z B =5 cm, σ 1 =1, σ 2 =0.5. After obtaining Ne(z) at a fixed time, the time-varying model of plasma electron density can be expressed as:
Ne(z,t)=Ne(z)*[1+Δ*n(t)];Ne(z,t)=Ne(z)*[1+Δ*n(t)];
其中Δ是等离子体中电子的相对抖动强度,其值一般在0-20%之间,本专利中取值为10%,n(t)是标准差为1的非平稳有色噪声。where Δ is the relative jitter strength of electrons in the plasma, and its value is generally between 0-20%, in this patent the value is 10%, and n(t) is the non-stationary colored noise with a standard deviation of 1.
第二步,计算时变的等离子体鞘套特征频率ωp(zm,tn):输入Ne(zm,tn)表示tn时刻第m层等离子体的电子密度,自由电子电荷数e=1.6×10-19C,真空中绝对介电常数ε0=8.854×10-12F/m,自由电子质量me=9.1×10-31kg。时变的等离子体鞘套特征频率ωp(zm,tn)具体可以表示为:The second step is to calculate the time-varying plasma sheath characteristic frequency ω p (z m , t n ): the input Ne (z m , t n ) represents the electron density of the m-th layer of plasma at the time of t n , and the free electron charge Number e =1.6×10 −19 C, absolute dielectric constant in vacuum ε 0 =8.854×10 −12 F/m, free electron mass me = 9.1×10 −31 kg. The time-varying plasma sheath characteristic frequency ω p (z m , t n ) can be specifically expressed as:
第三步,计算分层之后每层幅度衰减系数α(zm,tn)和相移β(zm,tn):输入时变等离子体鞘套特征频率ωp(zm,tn),等离子体的碰撞频率νen=5GHz,入射电磁波的角频率ω=2π×30×109rad/s,光速c=3×108m/s。根据均匀等离子体中的电磁波传播理论,tn时刻第m层的幅度衰减系数α(zm,tn)和相移β(zm,tn)表达式如下:The third step is to calculate the amplitude attenuation coefficient α(z m , t n ) and phase shift β(z m , t n ) of each layer after delamination: input the time-varying plasma sheath eigenfrequency ω p (z m , t n ) ), the collision frequency of the plasma is ν en =5GHz, the angular frequency of the incident electromagnetic wave is ω=2π×30×10 9 rad/s, and the speed of light is c=3×10 8 m/s. According to the electromagnetic wave propagation theory in homogeneous plasma, the amplitude attenuation coefficient α(z m , t n ) and phase shift β(z m , t n ) of the m- th layer at time t n are expressed as follows:
第四步,计算信号在等离子体鞘套信道下的幅度衰减r(tn)和相移输入等离子体鞘套每层的幅度衰减系数α(zm,tn)和相移β(zm,tn)。信号穿过等离子体后的整体幅度衰减r(tn)和相移表示为:The fourth step is to calculate the amplitude attenuation r(t n ) and phase shift of the signal under the plasma sheath channel Enter the amplitude decay coefficient α(z m ,t n ) and the phase shift β(z m ,t n ) for each layer of the plasma sheath. Overall amplitude attenuation r(t n ) and phase shift of the signal after passing through the plasma Expressed as:
仿真得等离子体鞘套信道下幅度衰减如图4所示。相移如图5所示。The simulated amplitude attenuation under the plasma sheath channel is shown in Figure 4. The phase shift is shown in Figure 5.
实施例3Example 3
高超声速飞行器新型卡尔曼跟踪环路设计方法。同实施例1-实施例2,建立接收信号幅度衰减除去均值后的自回归模型r′(tn),计算相移统计特性即相移的均值和方差包括如下步骤:A new Kalman tracking loop design method for hypersonic vehicles. Same as
第一步,将得到的信号幅度衰减r(tn)去均值得到r′(tn):The first step is to de-average the obtained signal amplitude attenuation r(t n ) to obtain r′(t n ):
r′(tn)=r(tn)-mean(r(tn));r'(t n )=r(t n )-mean(r(t n ));
第二步,对去掉均值后的数据r′(tn)建立自回归模型:采用二阶自回归模型:The second step is to establish an autoregressive model for the data r'(t n ) after removing the mean: use the second-order autoregressive model:
r′(tn)=α2,1r(tn-1)+α2,2r(tn-2)+v(n);r'(t n )=α 2,1 r(t n-1 )+α 2,2 r(t n-2 )+v(n);
其中v(n)是服从方差σν的高斯分布,σν、α2,1、α2,2均是待求解的参数,输入第一步中得到的r′(tn),使用Levinson-Durbin算法求解得到参数结果:where v(n) is a Gaussian distribution subject to variance σ ν , σ ν , α 2,1 , α 2,2 are all parameters to be solved, input r′(t n ) obtained in the first step, and use Levinson- The Durbin algorithm solves the parameter results:
第三步,计算等离子体鞘套引起的相移统计特性:现有的研究表明等离子体鞘套信道下的相移统计特性呈现高斯分布,输入相移计算最恶劣飞行环境下的相移的均值方差为:The third step is to calculate the statistical characteristics of the phase shift caused by the plasma sheath: the existing research shows that the statistical characteristics of the phase shift under the plasma sheath channel are Gaussian Calculate the mean value of the phase shift for the worst flight conditions variance for:
实施例4Example 4
高超声速飞行器新型卡尔曼跟踪环路设计方法同实施例1-实施例3,计算设计Kalman滤波器的状态方程包括如下步骤:The design method of the new Kalman tracking loop of the hypersonic aircraft is the same as that of
第一步,建立接收端信号模型y(tn)为:The first step is to establish the receiver signal model y(t n ) as:
其中r(tn)是由等离子体鞘套产生的幅度衰减;A是原始信号的幅度大小,为了简化运算在本专利中取值为1;载波相位包括由粗捕获之后剩余多普勒频偏和多普勒加速度引起的相位、受等离子鞘套影响的相位噪声和初始相位;是接收机产生的噪声服从均值为0方差为的高斯分布。即 where r(t n ) is the amplitude attenuation produced by the plasma sheath; A is the amplitude of the original signal, which is set to 1 in this patent to simplify the operation; the carrier phase Including phase due to residual Doppler frequency offset and Doppler acceleration after coarse acquisition, phase noise and initial phase due to plasma sheath; is that the noise generated by the receiver obeys the mean of 0 and the variance is Gaussian distribution. which is
第二步,计算鉴相器输出U0(tn):考虑到跟踪环路的实时性和算法复杂度,传统PLL跟踪环路的鉴相器一般采用本地振荡信号与接收信号相乘之后通过低通滤波器的结果作为鉴相器的输出。本地振荡器产生信号UVCO和接收信号y(tn)相乘的结果θe(tn)表示为:The second step is to calculate the phase detector output U 0 (t n ): considering the real-time nature of the tracking loop and the complexity of the algorithm, the phase detector of the traditional PLL tracking loop generally uses the local oscillator signal and the received signal to be multiplied by the received signal. The result of the low pass filter is used as the output of the phase detector. The result of multiplying the local oscillator generated signal U VCO and the received signal y(t n ) θ e (t n ) is expressed as:
θe(tn)=y(tn)×UVCO;θ e (t n )=y(t n )×U VCO ;
其中包括低频分量和高频分量,将θe(tn)通过低通滤波器之后,鉴相器输出的同相分量和正交分量可以表达如下,其中Δθn为接收信号和本地振荡器产生信号真实相位差:It includes low-frequency components and high-frequency components. After passing θ e (t n ) through the low-pass filter, the in-phase and quadrature components output by the phase detector can be expressed as follows, where Δθ n is the received signal and the signal generated by the local oscillator True Phase Difference:
第三步,估计接收信号和本地振荡器产生信号之间的相位差Δθn:输入上一时刻Kalman滤波跟踪环路估计的最优相位差Δθn-1、在Ts时间段内的多普勒频率ωdn-1、多普勒加速度wan-1和由于等离子体产生的相位噪声电路产生的噪声υ1,n,该时刻的Δθn可以估计为:The third step is to estimate the phase difference Δθ n between the received signal and the signal generated by the local oscillator: input the optimal phase difference Δθ n-1 estimated by the Kalman filtering tracking loop at the previous moment, and the Dopp in the T s time period Le frequency ωd n-1 , Doppler acceleration wa n-1 and phase noise due to plasma The noise υ 1,n generated by the circuit, Δθ n at this moment can be estimated as:
第四步,设计Kalman滤波器的状态方程Xn=AXn-1+BYn-1+Wn-1:与传统的Kalman滤波跟踪环路不同,其状态方程中的状态变量同时包括信号的相位信息Δθn和幅度衰减信息r′(tn)。结合式r′(tn)=α2,1r(tn-1)+α2,2r(tn-2)+v(n)表示的去掉均值之后幅度衰减自回归模型、式表示的相位差估计方法、动力学方程。将状态变量定义为[Δθn ωdn wan r′ r′n-1]T,则新型Kalman滤波器的状态方程Xn=AXn-1+BYn-1+Wn-1表示为:The fourth step is to design the state equation of the Kalman filter X n =AX n-1 +BY n-1 +W n-1 : Different from the traditional Kalman filter tracking loop, the state variables in the state equation also include the signal's Phase information Δθ n and amplitude attenuation information r'(t n ). The combined formula r'(t n )=α 2,1 r(t n-1 )+α 2,2 r(t n-2 )+v(n) represents the amplitude decay autoregressive model after removing the mean, the formula Represented phase difference estimation method, dynamic equation. Defining the state variable as [Δθ n ωd n wa n r′ r′ n-1 ] T , the state equation of the new Kalman filter X n =AX n-1 +BY n-1 +W n-1 is expressed as:
实施例5Example 5
高超声速飞行器新型卡尔曼跟踪环路设计方法同实施例1-实施例4,计算设计Kalman滤波器的观测方程Zn=HnXn+Vn包括如下步骤:The design method of a new type of Kalman tracking loop for hypersonic aircraft is the same as that of
第一步,确定观测变量:观测变量Zn为鉴相器的同相输出U0(tn)i、U0(tn)q加上观测噪声ni,n、nq,n,表示为:The first step is to determine the observation variable: the observation variable Z n is the in-phase output U 0 (t n ) i , U 0 (t n ) q of the phase detector plus the observation noise n i,n , n q,n , expressed as :
第二步,建立观测方程:将观测变量线性化表示为状态变量Xn和观测矩阵Hn相乘的形式,一般求解Hn方法为求得:The second step is to establish the observation equation: the linearization of the observation variable is expressed as the form of multiplying the state variable X n and the observation matrix H n , and the general method for solving H n is: Get:
观测方程的具体表达形式为:The specific expression of the observation equation is:
实施例6Example 6
高超声速飞行器新型卡尔曼跟踪环路设计方法同实施例1-实施例5,计算高超声速飞行器新型卡尔曼跟踪环路设计步骤如下:The design method of the new Kalman tracking loop of the hypersonic aircraft is the same as that of
第一步,用上一时刻状态向量最优值进行预估计其中Yn-1为常值1,输入跟踪环路的状态变量初始值X0=[0 ωd0 wa0 00]T,其中ωd0为粗捕获之后的多普勒频偏取值为3KHz,wa0为初始的多普勒加速度取值为800KHz。An,n-1为状态变量在本专利中是定值:The first step is to use the optimal value of the state vector at the previous moment to pre-estimate where Y n-1 is a constant value of 1, The initial value of the state variable of the input tracking loop X 0 =[0 ωd 0 wa 0 00] T , where ωd 0 is the Doppler frequency offset after rough acquisition, which is 3KHz, and wa 0 is the initial Doppler acceleration. The value is 800KHz. A n,n-1 is a state variable which is a fixed value in this patent:
其中Ts=8.3×10-7。where T s =8.3×10 −7 .
第二步,预估计误差方差其中An,n-1与步骤6.1)的表达式相同,输入初始的 其中为等离子体鞘套影响下相移的方差σν为自回归模型中的变量σν=0.005,σ1,n、σ2,n、σ3,n分别为电路引起的相位噪声、多普勒频偏噪声、多普勒加速度噪声的方差,取值分别为0.1、0.3、0.3。The second step is to pre-estimate the error variance where A n,n-1 is the same as the expression in step 6.1), enter the initial in is the variance of the phase shift under the influence of the plasma sheath σ ν is the variable in the autoregressive model σ ν = 0.005, σ 1,n , σ 2,n , σ 3,n are the variances of the phase noise, Doppler frequency offset noise, and Doppler acceleration noise caused by the circuit, respectively , the values are 0.1, 0.3, and 0.3, respectively.
第三步,Kalman滤波器增益计算其中Hn为观测矩阵,具体表达式为:The third step, Kalman filter gain calculation where H n is the observation matrix, and the specific expression is:
其中mean(r(n))为等离子体鞘套引起的幅度衰减的均值,mean(r(tn))=0.2186。R为观测噪声的协方差矩阵,具体表示为:where mean(r(n)) is the mean value of the amplitude attenuation caused by the plasma sheath, mean(r(t n ))=0.2186. R is the observation noise The covariance matrix of , specifically expressed as:
其中为接收机的信噪比,取值为0dB,Ts为相关时间。in is the signal-to-noise ratio of the receiver, the value is 0dB, and T s is the correlation time.
第四步,求解最优状态向量其中Zn为实际的观测变量值,h(Xn)是鉴相器的理论输出值。具体表达式为:The fourth step is to solve the optimal state vector Among them, Z n is the actual observed variable value, and h(X n ) is the theoretical output value of the phase detector. The specific expression is:
第五步,更新误差方差Pn=[1-KnHn]Pn,n-1。The fifth step, update the error variance P n =[1-K n H n ]P n,n-1 .
第六步,更新本地振荡器的产生信号的振荡频率wvco,n=ωdn-1和初始相位θvco,n=Δθn-1。In the sixth step, the oscillation frequency w vco,n =ωd n-1 and the initial phase θ vco,n =Δθ n-1 of the generated signal of the local oscillator are updated.
第七步,以Ts为更新时间,重复第一步-第六步即可实现等离子体鞘套信道下新型Kalman滤波载波跟踪环路。The seventh step, taking T s as the update time, repeats the first to sixth steps to realize the new Kalman filter carrier tracking loop under the plasma sheath channel.
下面结合仿真对本发明的技术效果作详细的描述。The technical effects of the present invention will be described in detail below in conjunction with simulation.
1、仿真条件:1. Simulation conditions:
等离子体鞘套的厚度为15cm,均分为150份,等离子体内部的碰撞频率νen=5GHz,入射电磁波的角频率ω=2π×30×109rad/s,接收端多普勒频偏为3KHz,多普勒加速度为800KHz/s,接收机积分时间Ts为8×10-7s,接收端信噪比为0dB。The thickness of the plasma sheath is 15cm, which is equally divided into 150 parts. The collision frequency inside the plasma is ν en = 5GHz, the angular frequency of the incident electromagnetic wave is ω = 2π×30×10 9 rad/s, and the Doppler frequency offset at the receiving end is is 3KHz, the Doppler acceleration is 800KHz/s, the receiver integration time T s is 8×10 -7 s, and the signal-to-noise ratio at the receiver is 0dB.
2、仿真结果和分析:2. Simulation results and analysis:
图6是本实施例1-实施例7中高超声速飞行器新型卡尔曼跟踪环路对接收信号载波相位的跟踪结果图,是在飞行器所处环境对接收信号影响最恶劣的情况下进行实时跟踪,从图6中可以看出,本发明的新型卡尔曼跟踪环路可以实现载波相位的平稳跟踪。用本专利提出的方法对飞行高度为71km时的接收信号进行跟踪,结果如图7所示。可见在飞行高度为71km处的接收信号和本地载波相位差在±1.5°之内浮动。结合仿真结果可以看出相比于传统PLL跟踪环路完全失锁,考虑幅度衰减的高超声速飞行器新型卡尔曼跟踪环路可以实现临近空间下的载波跟踪。FIG. 6 is a graph of the tracking results of the carrier phase of the received signal by the new Kalman tracking loop of the hypersonic aircraft in the
本发明公开了一种高超声速飞行器新型卡尔曼跟踪环路设计方案,主要解决了等离子体鞘套信道下由于接收信号幅度衰减而引起的传统锁相环跟踪环路失锁问题。实现过程是:建立时变等离子体鞘套模型并计算等离子体鞘套下接收信号的幅度衰减和相移;建立幅度衰减的自回归模型和相移的统计特性;在此基础上设计卡尔曼滤波器的状态方程和观测方程;设计高超声速飞行器新型卡尔曼跟踪环路。本发明避免了传统锁相环跟踪在等离子体鞘套下由于忽略幅度衰减而引起的失锁问题,为高超声速飞行器的信号稳定跟踪提供了新思路。The invention discloses a new Kalman tracking loop design scheme for a hypersonic aircraft, which mainly solves the problem of loss of lock of the traditional phase-locked loop tracking loop caused by the attenuation of the received signal amplitude under the plasma sheath channel. The realization process is: establish a time-varying plasma sheath model and calculate the amplitude attenuation and phase shift of the received signal under the plasma sheath; establish an autoregressive model of amplitude attenuation and statistical characteristics of phase shift; on this basis, design a Kalman filter Equations of state and observation equations of aircraft; design of a new Kalman tracking loop for hypersonic vehicles. The invention avoids the problem of losing lock caused by ignoring the amplitude attenuation of the traditional phase-locked loop tracking under the plasma sheath, and provides a new idea for the stable tracking of the signal of the hypersonic aircraft.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art is within the technical scope disclosed by the present invention, and all within the spirit and principle of the present invention Any modifications, equivalent replacements and improvements made within the scope of the present invention should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010165702.0A CN111444663B (en) | 2020-03-11 | 2020-03-11 | Kalman tracking loop design method, Kalman tracking loop, spacecraft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010165702.0A CN111444663B (en) | 2020-03-11 | 2020-03-11 | Kalman tracking loop design method, Kalman tracking loop, spacecraft |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111444663A true CN111444663A (en) | 2020-07-24 |
CN111444663B CN111444663B (en) | 2023-05-12 |
Family
ID=71650574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010165702.0A Active CN111444663B (en) | 2020-03-11 | 2020-03-11 | Kalman tracking loop design method, Kalman tracking loop, spacecraft |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111444663B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112638022A (en) * | 2020-12-19 | 2021-04-09 | 西安电子科技大学 | Electron collision frequency diagnosis method, system, medium, device, terminal and application |
CN112737659A (en) * | 2020-12-03 | 2021-04-30 | 西安电子科技大学 | Remote measuring channel incoherent large-scale SIMO processing method, system and application |
CN115941021A (en) * | 2022-10-24 | 2023-04-07 | 西安电子科技大学 | A LDPC-BICM-ID system based on power modulation in hypersonic vehicle telemetry SIMO channel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018014602A1 (en) * | 2016-07-19 | 2018-01-25 | 东南大学 | Volume kalman filtering method suitable for high-dimensional gnss/ins deep coupling |
CN110531393A (en) * | 2019-07-27 | 2019-12-03 | 金华航大北斗应用技术有限公司 | Weak signal tracking based on adaptive Kalman filter |
-
2020
- 2020-03-11 CN CN202010165702.0A patent/CN111444663B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018014602A1 (en) * | 2016-07-19 | 2018-01-25 | 东南大学 | Volume kalman filtering method suitable for high-dimensional gnss/ins deep coupling |
CN110531393A (en) * | 2019-07-27 | 2019-12-03 | 金华航大北斗应用技术有限公司 | Weak signal tracking based on adaptive Kalman filter |
Non-Patent Citations (2)
Title |
---|
丛丽;岳崧;李瑾;金天;: "INS控制量辅助GNSS卡尔曼跟踪环路方法" * |
沈飞;李荣冰;刘建业;韩志凤;周颖;: "基于卡尔曼滤波的北斗接收机高灵敏度跟踪算法研究" * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112737659A (en) * | 2020-12-03 | 2021-04-30 | 西安电子科技大学 | Remote measuring channel incoherent large-scale SIMO processing method, system and application |
CN112737659B (en) * | 2020-12-03 | 2022-04-08 | 西安电子科技大学 | Incoherent large-scale SIMO processing method, system and application for telemetry channel |
CN112638022A (en) * | 2020-12-19 | 2021-04-09 | 西安电子科技大学 | Electron collision frequency diagnosis method, system, medium, device, terminal and application |
CN115941021A (en) * | 2022-10-24 | 2023-04-07 | 西安电子科技大学 | A LDPC-BICM-ID system based on power modulation in hypersonic vehicle telemetry SIMO channel |
CN115941021B (en) * | 2022-10-24 | 2025-01-28 | 西安电子科技大学 | A LDPC-BICM-ID system based on power modulation in SIMO channel for hypersonic vehicle telemetry |
Also Published As
Publication number | Publication date |
---|---|
CN111444663B (en) | 2023-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111444663A (en) | Kalman tracking loop design method, Kalman tracking loop, space vehicle | |
CN103235306B (en) | A kind of high-speed maneuver aircraft that is applicable to carries the motion compensation process of SAR imaging | |
CN104021289A (en) | Non-Gaussian unsteady-state noise modeling method | |
CN110006427B (en) | BDS/INS tightly-combined navigation method in low-dynamic high-vibration environment | |
CN105093243A (en) | GNSS carrier loop circuit tracking method based on stochastic resonance algorithm | |
CN106707271B (en) | A kind of adaptive angleonly tracking method based on digital phase-locked loop | |
You et al. | Minimum weighted Frobenius norm discrete-time FIR filter with embedded unbiasedness | |
Zhou et al. | Correction of ionospheric distortion on HF hybrid sky-surface wave radar calibrated by direct wave | |
Abdolkarimi et al. | A hybrid data fusion approach to AI-assisted indirect centralized integrated SINS/GNSS navigation system during GNSS outage | |
CN105929419B (en) | A kind of GPS carrier tracking based on BP artificial neural network | |
CN105301593A (en) | Flight target altitude estimation method based on dual-frequency RCS information fusion | |
Radhika et al. | Performance evaluation of IMM-based nonlinear filters for a highly maneuvering aircraft | |
Stinco et al. | Non‐cooperative target recognition in multistatic radar systems | |
Jamel | Performance enhancement of smart antennas algorithms for mobile communications system | |
Voyskovskiy et al. | Accuracy improvement of inertial navigation by special methods of measurements using microelectromechanical systems | |
CN106772479B (en) | A kind of Inertia information secondary satellite signal trace loop circuit processing method | |
CN106066471A (en) | The localization method of a kind of mobile target and system | |
CN118551181B (en) | Noise suppression method in space gravitational wave detection | |
CN115859062A (en) | Variational Bayes-based CKF tracking method and device | |
CN107576976B (en) | A Robust DUPLL Carrier Tracking Method for Composite GNSS Signals | |
Xiang et al. | Active cancellation stealth analysis of warship for LFM radar | |
Parshin et al. | Development of digital algorithm for flicker noise adaptive non-linear filtering | |
RezazadehReyhani et al. | An analog adaptive notch filter based on the noise cancellation principle | |
Jose et al. | The design of a Kalman filter for range estimation in UAV using FMCW Radar Altimeter | |
CN114660638A (en) | A frequency-locked loop-assisted vector phase-locked loop system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |