CN111435083A - 行人航迹推算方法、导航方法及装置、手持终端及介质 - Google Patents

行人航迹推算方法、导航方法及装置、手持终端及介质 Download PDF

Info

Publication number
CN111435083A
CN111435083A CN201910028497.0A CN201910028497A CN111435083A CN 111435083 A CN111435083 A CN 111435083A CN 201910028497 A CN201910028497 A CN 201910028497A CN 111435083 A CN111435083 A CN 111435083A
Authority
CN
China
Prior art keywords
pedestrian
acceleration
handheld terminal
attitude
dead reckoning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910028497.0A
Other languages
English (en)
Inventor
赵晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alibaba Group Holding Ltd
Original Assignee
Alibaba Group Holding Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alibaba Group Holding Ltd filed Critical Alibaba Group Holding Ltd
Priority to CN201910028497.0A priority Critical patent/CN111435083A/zh
Publication of CN111435083A publication Critical patent/CN111435083A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

本发明实施例提供了一种行人航迹推算方法、导航方法及装置、手持终端及介质,所述行人航迹推算方法包括:获取手持终端对应的每一步的三轴加速度;基于获取到的手持终端对应的每一步的三轴加速度,计算所述手持终端当前姿态的旋转矩阵;将获取到的三轴加速度按照计算得到的旋转矩阵旋转到水平,得到水平方向的二维加速度;提取所述二维加速度的特征向量,选取特征值大的特征向量作为行人航向。采用上述方案可以提高行人航迹的方向推算准确度。

Description

行人航迹推算方法、导航方法及装置、手持终端及介质
技术领域
本发明实施例涉及导航技术领域,尤其涉及一种行人航迹推算方法、导航方法及装置、手持终端及介质。
背景技术
行人航迹推算(Pedestrian Dead Reckoning,PDR)是利用手机等手持终端的惯性传感器计算人的步长和方向,进行行人航迹推算,其推算轨迹除了可以应用于定位场景中之外,还可以应用于众包的轨迹恢复来构建室内指纹。
目前,PDR通常将手机惯性传感器的Y轴作为行人前进方向,但是经常遇到手机方向和行人方向不一致的场景,因此PDR推算的航向会出现偏差。
发明内容
本发明实施例的一个方面,提供了一种行人航迹推算方法、装置、手持终端及介质,以提高行人航迹的方向推算准确度。
本发明实施例的另一方面,还提供了一种行人导航方法、装置、手持终端及介质,以提高行人导航准确度。本发明实施例提供了一种行人航迹推算方法,包括:获取手持终端对应的每一步的三轴加速度;基于获取到的手持终端对应的每一步的三轴加速度,计算所述手持终端当前姿态的旋转矩阵;将获取到的三轴加速度按照计算得到的旋转矩阵旋转到水平,得到水平方向的二维加速度;提取所述二维加速度的特征向量,选取特征值大的特征向量作为行人航向。
可选地,在计算手持终端当前的旋转矩阵之前,还包括:确定所述行人在预设时间窗口内直行。
可选地,当在所述预设时间窗口的行人航向均值小于预设角度阈值时,确定所述行人在预设时间窗口内直行。
可选地,所述角度阈值的范围为±15°之间。
可选地,所述获取手持终端对应的每一步的三轴加速度,包括:识别每一步的波峰和波谷,选取测量得到的加速度峰值大于预设的峰值阈值,且相邻两个峰值之间的时间差大于预设时间阈值的加速度峰值作为相应步的候选加速度参与计算手持终端的姿态。
可选地,所述获取手持终端对应的每一步的三轴加速度,包括:识别每一步的波峰和波谷;基于识别出的每一步的波峰和波谷,区分出奇数步和偶数步;对于奇数步和偶数步,选取测量得到的加速度峰值分别大于预设的相应的峰值阈值,且相邻两个峰值之间的时间差分别大于预设时间阈值的加速度峰值作为相应奇数步和偶数步的候选加速度,分别参与计算手持终端的姿态。
本发明实施例还提供了一种行人导航方法,包括:定位行人当前位置,包括采用上述任一实施例所述的行人航迹推算方法确定行人航向;基于获取到的目标位置和所述定位得到的行人当前位置,进行导航。
本发明实施例还提供了一种行人航迹推算装置,包括:加速度获取单元,适于获取每一步的三轴加速度;姿态计算单元,适于基于所述加速度获取单元获取到的每一步的三轴加速度,计算手持终端的姿态矩阵;旋转单元,适于将测量得到的三轴加速度按照解得的姿态矩阵旋转到水平,得到水平方向的二维加速度;
特征向量提取单元,适于提取所述二维加速度的特征向量;航向确定单元,适于选取特征值大的特征向量作为行人方向。
可选地,所述行人航迹推算装置还包括:直行判断单元,适于确定所述行人在预设时间窗口内是否直行,并在确定在预设时间窗口内直行时,触发所述姿态计算单元进行计算。
可选地,所述直行判断单元,适于在所述时间窗口的行人航向均值小于预设角度阈值时,确定所述行人在所述时间窗口内直行。
可选地,所述角度阈值的范围为±15°之间。
可选低,所述加速度获取单元包括:第一识别子单元,适于识别每一步的波峰和波谷;第一处理子单元,适于选取测量得到的加速度峰值大于预设的峰值阈值,且相邻两个峰值之间的时间差大于预设时间阈值的加速度峰值作为候选加速度输入所述姿态计算单元。
可选地,所述加速度获取单元包括:第二识别子单元,适于识别每一步的波峰和波谷;区分子单元,适于基于识别出的每一步的波峰和波谷,区分出奇数步和偶数步;第二处理子单元,对于奇数步和偶数步,适于选取测量得到的加速度峰值分别大于预设的相应的峰值阈值,且相邻两个峰值之间的时间差分别大于预设时间阈值的加速度峰值作为相应奇数步和偶数步的候选加速度分别参与计算手持终端的姿态。
本发明实施例还提供了一种手持终端,包括惯性传感器和上述任一实施例所述的行人航迹推算装置;所述惯性传感器包括三轴加速度计。
可选地,所述惯性传感器还包括以下至少一种:陀螺仪、磁力计、脉冲计,各惯性传感器的输出作为所述姿态计算单元的输入。
本发明实施例还提供了另一种手持终端,包括:定位模块,所述定位模块适于定位行人当前位置,所述定位模块包括上述任一实施例所述的行人航迹推算装置;导航模块,适于基于获取到的目标位置和所述定位模块定位得到的行人当前位置,进行导航。
本发明实施例还提供了另一种手持终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述任一实施例所述方法的步骤。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一实施例所述的行人航迹推算方法的步骤。
采用本发明实施例,并非将行人的前向方向简单等同于手持终端的前向方向,而是根据手持终端对应的每一步的三轴加速度,计算所述手持终端的姿态矩阵,进而将获取到的三轴加速度按照解得的姿态矩阵旋转到水平方向,得到水平方向的二维加速度,并提取所述二维加速度的特征向量,选取特征值大的特征向量作为行人航向,从而可以如实反映手持终端姿态与行人之间的关系,故而可以提高行人航向推算的准确度。
进一步地,在确定所述行人在预设的时间窗口内直行时,才计算手持终端的姿态矩阵,可以避免单次测量误差导致误判,故可以进一步提高所推算得到的行人航向的准确性。
进一步地,在所述预设时间窗口的行人航向均值小于预设角度阈值时,确定所述行人在预设时间窗口内直行,所述角度阈值的范围为±15°之间,既可以避免范围太大导致误差太大,也可以避免设置太小导致触发行人航向推算的次数太少而漏判,因而可以进一步提高行人航向推算的准确度。
进一步地,识别每一步的波峰和波谷,选取测量得到的加速度峰值大于预设的峰值阈值,且相邻两个峰值之间的时间差大于预设时间阈值的加速度峰值作为候选加速度参与计算手持终端的姿态,可以减少噪声干扰,使得计步更加准确,进一步提高行人航向推算的准确度。
进一步地,通过识别每一步的波峰和波谷,区分出奇数步和偶数步,继而对于奇数步和偶数步,选取测量得到的加速度峰值分别大于预设的相应的峰值阈值,且相邻两个峰值之间的时间差分别大于预设的相应的时间阈值的加速度峰值作为相应奇数步和偶数步的候选加速度,分别参与计算手持终端的姿态,采用上述方法区分出奇偶步并分别获取奇数步和偶数步的候选加速度,分别采集计算手持终端的姿态,可以使获得的每一步的三轴加速度更加准确,进而可以提高行人航向推算的准确度。
进一步地,采用AHRS融合算法计算手持终端的姿态矩阵,可以提高所计算得到的手持终端的姿态的准确性,进而可以提高行人航向推算的准确度。
进一步地,由于定位行人位置过程中通过姿态变换推算得到行人实际航向,故可以提高行人导航的精度。
附图说明
图1示出了现有技术中一种行人航迹推算方法中确定行人航向示意图;
图2示出了本发明实施例中一种行人航迹推算方法的流程图;
图3示出了本发明实施例中一种实时测量得到的加速度a的波动曲线示意图;
图4示出了本发明实施例中一种地理坐标系和手持终端坐标系之间的关系示意图;
图5示出了本发明实施例中另一种行人航迹推算方法的流程图;
图6示出了本发明实施例中提取得到的水平方向的二维加速度的特征向量图;
图7示出了本发明实施例中一种采用AHRS融合算法计算手持终端当前姿态的旋转矩阵的方法的流程图;
图8示出了某室内空间电子地图平面图;
图9示出了某行人在图8所示室内空间的行走数据,采用不同的行人航迹推算方法所得到的两组行人航迹对比示意图;
图10示出了是本发明实施例中一种行人导航方法的流程图;
图11示出了本发明实施例中一种行人航迹推算装置的结构示意图;
图12示出了本发明实施例中一种加速度获取单元的结构示意图;
图13示出了本发明实施例中另一种加速度获取单元的结构示意图;
图14示出了本发明实施例中一种手持终端的结构示意图;
图15示出了本发明实施例中另一种手持终端的结构示意图。
具体实施方式
如图1所示,人体的自然行走包括前向、侧向以及垂直三个分量,其3个分量分别对应YP、XP、ZP三个坐标轴的方向,手机坐标轴即手机中惯性传感器的坐标轴。将手机握在手掌行走过程中,手机纵轴对应YD轴、横轴对应XD轴、垂直于屏幕ZD轴,手机的纵轴YD轴与行人的前向分量重合。目前,在行人航迹推算过程中,将手机Y轴作为行人前进方向,即前向轴所在方向。
然而,在手机使用过程中,经常遇到手机方向与行人前进方向不一致的情况。发明人经研究发现,行人在行进过程中,很多时候手机是放在背包和口袋中,在这些场景中,手机Y轴方向并非行人前进方向,因此直接将手机Y轴方向作为行人前进方向应用于PDR推算,推算的航向会出现偏差。然而,由于手机实际放置的位置和方向灵活多变且难以确定,PDR的航向偏差问题一直未能得到有效解决。
为了减小PDR推算的航向偏差,本发明实施例通过加速度计计算手持终端对应的每一步的三轴加速度,并通过计算所述手持终端的姿态矩阵,进而将测量得到的三轴加速度按照计算得到的姿态矩阵旋转到水平,从而得到水平方向的二维加速度,进而提取所述二维加速度的特征向量,选取特征值较大的特征向量作为行人航向,在这一行人航迹推算过程,由于能够如实反映手持终端姿态与行人之间的关系,故而可以提高行人航向推算的准确度。
为使本领域技术人员更好地理解和实现本发明实施例的方案和效果,以下参照附图,通过具体的应用场景进行详细说明。
参照图2所示的行人航迹推算方法的流程图,本发明实施例提供了一种行人航迹推算方法,具体步骤如下:
S21,获取每一步的三轴加速度。
人在沿直线行走过程中,水平方向会出现加速和减速,这种速度的变化可以通过加速度计检测出来,加速度的方向与行人的前进方向一致。
如图3所示本发明一实施例中实时测量得到的加速度a的波动曲线示意图,其中横轴为时间轴t,单位为ms,纵轴为加速度轴a,单位为g。曲线accScalarNoGravity为测量得到的加速度模值,为避免信号干扰,对曲线accScalarNoGravity进行滤波处理后得到曲线accFiltered,在本发明一实施例中,通过低通滤波的方式进行滤波处理。
随着行人走动,加速度值在不断变化,形成自然的曲线,通常一个波峰波谷对应一步。
在具体实施中,为使计步更加准确,可以选取测量得到的加速度峰值大于预设的峰值阈值,且相邻两个峰值之间的时间差大于预设时间阈值的加速度峰值作为候选加速度参与后续步骤的运算,如图3所示,对曲线accFiltered中的测量值经上述处理后,得到的候选加速度峰值为波峰peak点,波谷stepNow,其中波峰peak点对应脚在空中最高点的时刻,波谷stepNow点对应脚落地的时刻。
在具体实施中,由于手持终端在行人身上放置的部位不同,左右脚对应的加速度可能会有相对较大的差别,为进一步提高计步的准确性,可以识别每一步的波峰和波谷,例如识别到奇数步为左脚移动,偶数步为右脚移动。基于识别出的每一步的波峰和波谷,可以区分出奇数步和偶数步,进而对于奇数步和偶数步,可以选取测量得到的加速度峰值分别大于预设的相应的峰值阈值,且相邻两个峰值之间的时间差分别大于预设时间阈值的加速度阈值作为相应奇数步和偶数步的候选加速度,分别参与计算手持终端的姿态。例如,对于奇数步和偶数步,分别预设第一峰值阈值和第二峰值阈值,将奇数步的峰值和第一峰值阈值进行比较,将偶数步的峰值阈值和第二峰值阈值进行比较。
S22,基于获取到的手持终端对应的每一步的三轴加速度,计算手持终端当前姿态的旋转矩阵。
在具体实施中,手持终端上可以设置一种或多种惯性传感器,例如,可以设置加速度计、陀螺仪、地磁计、脉冲计等。相应地,可以单独采用加速度计检测手持终端的姿态,也可以单独采用陀螺仪来检测手持终端的姿态,进而计算得到所述手持终端当前姿态的旋转矩阵。
在具体实施中,单个惯性传感器测量到的手持终端的姿态由于某些原因可能产生一定的偏差,例如,加速度计测量结果容易受到震动影响,而低成本的MEMS陀螺仪存在零偏和温度漂移等现象。为提高手持终端的姿态矩阵的精度,可以采用基于两种以上的惯性传感器融合的方式进行姿态估计,计算得到所述手持终端当前姿态的旋转矩阵。
在具体实施中,可以采用姿态航向参考系统(Attitude and Heading ReferenceSystem,AHRS)融合算法计算所述手持终端当前姿态的旋转矩阵。
在本发明一实施例中,基于加速度计测量得到的三轴加速度和陀螺仪测量得到的三轴角速度,采用AHRS融合算法计算手持终端当前姿态的旋转矩阵。
在本发明另一实施例中,基于加速度计测量得到的三轴加速度、陀螺仪测量得到的三轴角速度以及磁力计测量得到的三轴磁力强度,采用AHRS融合算法计算手持终端当前姿态的旋转矩阵。
在本发明又一实施例中,基于加速度计测量得到的三轴加速度、陀螺仪测量得到的三轴角速度、磁力计测量得到的三轴磁力强度以及脉冲计测量得到的三轴脉冲强度,采用AHRS融合算法计算手持终端当前姿态的旋转矩阵。
S23,将获取到的三轴加速度按照计算得到的姿态矩阵旋转到水平,得到水平方向的二维加速度。
如图4所示的本发明实施例中的一种地理坐标系和手持终端坐标系之间的关系示意图,为准确推算行人航向,确定手持设备中的惯性传感器测量的坐标系为XDYDZD测量坐标系,行人行走所在的坐标系为XPYPZP地理坐标系,通过姿态旋转,可以将加速度计在XDYDZD测量坐标系测量得到的加速度转换得到其在XPYPZP地理坐标系水平方向的三维加速度。
对于计算得到旋转后的三轴加速度,可以取其水平方向两个轴的数据,得到水平方向的二维加速度。
S24,提取所述二维加速度的特征向量,选取特征值大的特征向量作为行人航向。
在具体实施中,可以采用多种方法提取所述二维加速度的特征向量,例如可以采用主成分分析(Principal Component Analysis,PCA)方法提取所述二维加速度的特征向量。
采用上述实施例,首先获取每一步的三轴加速度,计算手持终端当前姿态的旋转矩阵,进而将获取到的三轴加速度按照计算得到的姿态矩阵旋转到水平,提取水平方向的二维加速度的特征向量,并选取特征值大的特征向量作为行人航向,这一推算过程能够真实还原手持设备内惯性传感器坐标系与行人所在的地理坐标系的真实位置关系,故而不论手持终端在行人身上如何放置,放置在哪里,或者处于何种姿态,均可以推算得到行人的真实航向,故可以提高航向推算的准确度。
在具体实施中,可以根据需要或具体情境对上述方案作进一步的扩展或优化,以下参照附图通过具体实施例进行详细说明,可以理解的是,以下示例并不适于对本发明保护范围的限制。
参照图5所示的行人航迹推算方法的流程图,在本发明一实施例中,所采用的行人航迹推算方法可以包括如下步骤:
S51,确定所述行人在预设时间窗口内直行。
在具体实施中,为避免单次测量误差导致误判,可以在确定所述行人在预设时间窗口内直行时才执行后续的行人航迹推算过程。在本发明一实施例中,若判定在所述预设时间窗口的行人航向均值小于预设角度阈值,则确定所述行人在预设时间窗口内直行。
在具体实施中,可以基于本发明实施例上一时间窗口确定的行人航向基础上进行判断。
可以基于推算的精度需求,根据经验或通过实验选取满足要求的角度阈值。若设置过大,则引入误差过大,若设置过小,则触发行人航迹推算过程的次数又太小。在具体实施中,所述角度阈值的范围为±15°之间。在本发明一实施例中,所述角度阈值为±5°。
S52,获取测量得到的每一步的三轴加速度,选取所述时间窗口内满足预设条件的三轴加速度作为候选三轴加速度。
在具体实施中,可以获取加速度计测量得到的每一步的三轴加速度,识别每一步的波峰和波谷,区分出奇数步和偶数步,并针对奇数步和偶数步分别计算,进而可以选取所述时间窗口内测量得到的加速度峰值大于预设的相应的峰值阈值,且相邻两个峰值之间的时间差大于预设时间阈值的加速度峰值作为候选加速度参与后续步骤的运算。
S53,计算手持终端当前姿态的旋转矩阵。
在具体实施中,如前述实施例所述,可以采用AHRS融合算法计算手持终端当前姿态的旋转矩阵。
S54,将获取到的三轴加速度按照计算得到的旋转矩阵旋转到水平,得到水平方向的二维加速度。
如图4所示,为准确推算行人航向,确定手持设备中的惯性传感器测量的坐标系为XDYDZD测量坐标系,行人行走所在的坐标系为XPYPZP地理坐标系,通过姿态旋转,可以将加速度计在XDYDZD测量坐标系测量得到的加速度转换得到其在XPYPZP地理坐标系的三维加速度。
在具体实施中,可以采用公式(1)得到地理坐标系XPYPZP的三维加速度:
Figure BDA0001943369330000091
其中,
Figure BDA0001943369330000092
为三轴加速度测量矢量值,
Figure BDA0001943369330000093
为计算得到的当前姿态的旋转矩阵,
Figure BDA0001943369330000094
为旋转后的三轴加速度矢量。
在具体实施中,
Figure BDA0001943369330000095
可采用重力加速度归一后的三轴加速度矢量,以消除噪声干扰,提高测量精度。
对于计算得到的旋转后的三轴加速度
Figure BDA0001943369330000101
可以取其水平方向两个轴的数据,得到水平方向的二维加速度。
S55,提取所述二维加速度的特征向量,选取特征值大的特征向量作为行人航向。
在具体实施中,可以采用PCA算法对提取所述二维加速度的特征向量,具体步骤如下:
1)将步骤S54计算得到的所述时间窗口内满足预设条件的加速度数据共m条按列组成2行m列矩阵Xb
2)将Xb的每一行进行零均值化,得到零均值化后的矩阵X。
其中,所谓零均值化,即减去这一行的均值。
Figure BDA0001943369330000102
3)求出协方差矩阵。
协方差矩阵是把两个维度的分散程度结合起来的一种数学表示,其描述了二维变量分散程度的分布,例如,有m个n维数据记录,将其按列排成n乘m的矩阵X,设
Figure BDA0001943369330000103
则C是一个对称矩阵,其对角线分别是各个字段的方差,而反对角线元素相同,表示两个维度的协方差。
在具体实施中,可以采用公式(3)得到:
Figure BDA0001943369330000104
4)求出协方差矩阵的特征值及对应的特征向量。
设求解得到在所述时间窗口内二维加速度在水平方向的特征值和特征向量如图6所示,其中特征向量YawPedestrian和特征向量YawLegRotation的方向相互正交。由图6可知,特征向量YawPedestrian的特征值大于特征向量YawLegRotation的特征值,故选取特征向量YawPedestrian作为行人航向。
为使本领域技术人员更好地理解AHRS算法的计算原理,以下以基于加速度计测量得到的三轴加速度和陀螺仪测量得到的三轴角速度为例,如图7所示,以下通过具体步骤如何计算手持终端当前姿态的旋转矩阵进行详细说明。
S71,进行重力加速度归一化。
在静止或匀速运动时的加速度计,满足约束条件三轴模值等于9.8。利用所述约束条件进行归一化,可以消除噪声干扰,提高测量精度。
在具体实施中,可以采用公式(4)进行归一化处理,其中a为三轴加速度计原始数据,a'为归一化后的3轴加速度矢量。
Figure BDA0001943369330000111
S72,提取四元数的等效余弦矩阵中的重力分量。
在具体实施中,可以采用公式(5)进行提取,其中,q为上一时刻计算的四元数,v为由四元数解算的三轴加速度矢量。
Figure BDA0001943369330000112
S73,计算姿态误差。
在具体实施中,其中上一时刻的加速度矢量为v,e为姿态矢量误差,将上一时刻的加速度矢量v,和当前时刻加速度计测量得到的加速度进行向量叉积,可以得到姿态矢量误差e,如公式(6)所示。
Figure BDA0001943369330000121
S74,对姿态矢量进行积分。
在具体实施中,可以采用公式(7)得到,其中,ei为姿态矢量误差的积分值,f是传感器采样频率,在本发明实施例中,可以设置为常数。
Figure BDA0001943369330000122
S75,进行互补滤波。
在具体实施中,为了减少陀螺仪的漂移误差,可以采用公式(8)进行,其中,g为三轴陀螺仪测量值,将姿态矢量误差补偿到角速率上,修正角速度积分漂移。g’为修正后的角速率。
Figure BDA0001943369330000123
S76,更新四元数。
利用修正后的角速率更新四元数,可以采用公式(9)进行,其中,q为更新前的四元数,q’为更新后的四元数。
Figure BDA0001943369330000124
S77,进行四元数归一化。
在具体实施中,可以采用公式(10)得到归一化后的四元数q”。
Figure BDA0001943369330000131
S78,将归一化后的四元数转换为旋转矩阵。
在具体实施中,可以采用公式(11)得到旋转矩阵,其中
Figure BDA0001943369330000132
为手持终端当前姿态的旋转矩阵。
Figure BDA0001943369330000133
采用本发明实施例,通过AHRS融合的方式计算手持终端当前姿态的旋转矩阵,可以提高旋转矩阵的计算精度。
如图8所示的某室内空间的电子地图平面图,图9示出了基于某行人在图8所示室内空间的行走数据,采用不同的行人航迹推算方法所得到的两组行人航迹:航迹R和航迹P。其中,航迹R是采用行人手持设备的Y轴方向作为行人前进方向所得到的行人航迹;航迹P是采用本发明实施例所述的行人航迹推算方法推算所得到的行人航迹,将航迹R和航迹P和图8所示室内空间的通道的形状及结构对比可知,航迹P更能反映行人在各时刻的实际航向和实际航迹,因而具有更高的推算准确度。
本发明实施例还提供了可应用上述行人航迹推算方法的行人导航方法,参照图10所示的行人导航方法的流程图,具体可以包括如下步骤:
S101,定位行人当前位置。
在具体实施中,定位行人当前位置,包括定位行人当前地理坐标和航向。在本发明实施例中,采用上述各实施例所述的行人航迹推算方法确定行人航向,可参照上述各实施例的具体步骤实施,不再赘述。
S102,基于获取到的目标位置和所述定位得到的行人当前位置,进行导航。
由于基于上述行人航迹推算方法能够更加准确地推算行人航向,使得定位得到的行人当前位置更加准确,因而在此基础上所规划的行人当前位置至目标位置的导航路径也更加准确,故可以增强导航的准确性。
本发明实施例还提供了能够实现上述行人航迹推算方法的行人航迹推算装置,以下结合附图,通过具体实施例进行详细说明。
参照图11所示的行人航迹推算装置110,可以包括:
加速度获取单元111,适于获取每一步的三轴加速度;
姿态计算单元112,适于基于所述加速度获取单元111获取到的每一步的三轴加速度,计算手持终端当前姿态的旋转矩阵;
旋转单元113,适于将测量得到的三轴加速度按照计算得到的姿态矩阵旋转到水平,得到水平方向的二维加速度;
特征向量提取单元114,适于提取所述二维加速度的特征向量;
航向确定单元115,适于选取特征值大的特征向量作为行人方向。
采用上述实施例所述的行人航迹推算装置110,通过姿态计算单元112计算手持终端当前姿态的旋转矩阵,并由旋转单元113将加速度获取单元111获取到的三轴加速度按照计算得到的姿态矩阵旋转到水平后,再由特征向量提取单元114提取水平方向的二维加速度的特征向量,并由航向确定单元115选取特征值大的特征向量作为行人方向,因而采用所述行人航迹推算装置110能够真实还原手持设备内惯性传感器坐标系与行人所在的地理坐标系的真实位置关系,故而不论手持终端在行人身上如何放置,放置在哪里,或者处于何种姿态,均可以推算得到行人的真实航向,故可以提高航向推算的准确度。
在具体实施中,如图11所示,行人航迹推算装置110还可以包括:直行判断单元116,适于确定所述行人在预设时间窗口内是否直行,并在确定在预设时间窗口内直行时,触发所述姿态计算单元112进行计算。
在本发明一实施例中,所述直行判断单元116,适于在所述时间窗口的行人航向均值小于预设角度阈值时,确定所述行人在所述时间窗口内直行。
在具体实施中,所述述角度阈值的范围可以设置在±15°之间。
在具体实施中,如图12所示,本发明实施例提供了一种加速度获取单元的结构示意图。参照图12,加速度获取单元111可以包括:第一识别子单元121和第一处理子单元122,其中:
第一识别子单元121,适于识别每一步的波峰和波谷;
第一处理子单元122,适于选取测量得到的加速度峰值大于预设的峰值阈值,且相邻两个峰值之间的时间差大于预设时间阈值的加速度峰值作为候选加速度输入所述姿态计算单元112。
采用上述加速度获取单元获取的候选加速度用于后续姿态计算单元的计算可以减少噪声干扰,使得计步更加准确,进一步提高行人航向推算的准确度。
在具体实施中,如图13所示,本发明实施例提供了另一种加速度获取单元的结构示意图。参照图13,加速度获取单元111可以包括:第二识别子单元131、区分子单元132和第二处理子单元133,其中:
第二识别子单元131,适于识别每一步的波峰和波谷;
区分子单元132,适于基于识别出的每一步的波峰和波谷,区分出奇数步和偶数步;
第二处理子单元133,对于奇数步和偶数步,适于选取测量得到的加速度峰值分别大于预设的相应的峰值阈值,且相邻两个峰值之间的时间差分别大于预设时间阈值的加速度峰值作为相应奇数步和偶数步的候选加速度分别参与计算手持终端的姿态。
采用上述加速度获取单元,可以区分出奇偶步,进而分别获取奇数步和偶数步的候选加速度,分别采集计算手持终端的姿态,可以使获得的每一步的三轴加速度更加准确,进而可以提高行人航向推算的准确度。
在具体实施中,所述姿态计算单元112适于采用AHRS融合算法计算手持终端的姿态矩阵。
在具体实施中,所述姿态计算单元112可以包括以下任意一种姿态计算子单元:
第一姿态计算子单元(未示出),适于基于获取到的三轴加速度、三轴角速度,采用AHRS融合算法计算手持终端的姿态矩阵;
第二姿态计算子单元(未示出),适于基于获取到的三轴加速度、三轴角速度、三轴磁力强度,采用AHRS融合算法计算手持终端的姿态矩阵;
第三姿态计算子单元(未示出),适于基于获取到的三轴加速度、三轴角速度、三轴磁力强度、三轴脉冲强度,采用AHRS融合算法计算手持终端的姿态矩阵。
如图14所示,本发明实施例提供了一种手持终端140,所述手持终端140可以包括惯性传感器141和行人航迹推算装置142。所述行人航迹推算装置142的具体实现如前实施例对行人航迹推算装置及行人航迹推算方法的介绍,此处不再赘述。在具体实施中,所述惯性传感器可以包括三轴加速度计。
采用内置了行人航迹推算装置142的手持终端140,行人不论将所述手持终端120如何随身携带或握持,对于所述行人的航迹,均可以推算的更加准确。
在具体实施中,所述手持终端140可以为手持终端、平板或者可穿戴式电子设备如智能手表等。
参照图11和图14,在具体实施中,所述惯性传感器141还可以包括陀螺仪、磁力计、脉冲计等其中一种或多种,各惯性传感器的输出可以作为所述姿态计算单元112的输入。
如图13所示,本发明实施例还提供了另一种手持终端150,所述手持终端150可以包括:定位模块151和导航模块152,其中:
所述定位模块151,适于定位行人当前位置,可以包括行人航迹推算装置153,所述行人航迹推算装置153可以参照上述行人航迹推算装置实施例的具体介绍,此处不再赘述。
所述导航模块152,适于基于获取到的目标位置和所述定位模块151定位得到的行人当前位置,进行导航。
本发明实施例还提供了一种手持终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述实施例所述的行人航迹推算方法的步骤,不再赘述。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述实施例所述的行人导航方法的步骤,此处亦不再赘述。
虽然本发明实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明实施例的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (23)

1.一种行人航迹推算方法,其特征在于,包括:
获取手持终端对应的每一步的三轴加速度;
基于获取到的手持终端对应的每一步的三轴加速度,计算所述手持终端当前姿态的旋转矩阵;
将获取到的三轴加速度按照计算得到的旋转矩阵旋转到水平,得到水平方向的二维加速度;
提取所述二维加速度的特征向量,选取特征值大的特征向量作为行人航向。
2.根据权利要求1所述的行人航迹推算方法,其特征在于,在计算手持终端当前的旋转矩阵之前,还包括:
确定所述行人在预设时间窗口内直行。
3.根据权利要求2所述的行人航迹推算方法,其特征在于,当在所述预设时间窗口的行人航向均值小于预设角度阈值时,确定所述行人在预设时间窗口内直行。
4.根据权利要求3所述的行人航迹推算方法,其特征在于,所述角度阈值的范围为±15°之间。
5.根据权利要求1所述的行人航迹推算方法,其特征在于,所述获取手持终端对应的每一步的三轴加速度,包括:
识别每一步的波峰和波谷,选取测量得到的加速度峰值大于预设的峰值阈值,且相邻两个峰值之间的时间差大于预设时间阈值的加速度峰值作为相应步的候选加速度参与计算手持终端的姿态。
6.根据权利要求1所述的行人航迹推算方法,其特征在于,所述获取手持终端对应的每一步的三轴加速度,包括:
识别每一步的波峰和波谷;
基于识别出的每一步的波峰和波谷,区分出奇数步和偶数步;
对于奇数步和偶数步,选取测量得到的加速度峰值分别大于预设的相应的峰值阈值,且相邻两个峰值之间的时间差分别大于预设时间阈值的加速度峰值作为相应奇数步和偶数步的候选加速度,分别参与计算手持终端的姿态。
7.根据权利要求1所述的行人航迹推算方法,其特征在于,所述计算手持终端的姿态,包括:
采用AHRS融合算法计算手持终端的姿态矩阵。
8.根据权利要求7所述的行人航迹推算方法,其特征在于,所述采用AHRS融合算法计算手持终端的姿态,包括以下任意一种:
基于测量得到的三轴加速度、三轴角速度,采用AHRS融合算法计算手持终端的姿态矩阵;
基于测量得到的三轴加速度、三轴角速度、三轴磁力强度,采用AHRS融合算法计算手持终端的姿态矩阵;
基于测量得到的三轴加速度、三轴角速度、三轴磁力强度、三轴脉冲强度,采用AHRS融合算法计算手持终端的姿态矩阵。
9.根据权利要求1所述的行人航迹推算方法,其特征在于,所述提取所述二维加速度的特征向量,包括:
采用主成分分析方法提取所述二维加速度的特征向量。
10.一种行人导航方法,其特征在于,包括:
定位行人当前位置,包括采用权利要求1-9任一项所述的行人航迹推算方法确定行人航向;
基于获取到的目标位置和所述定位得到的行人当前位置,进行导航。
11.一种行人航迹推算装置,其特征在于,包括:
加速度获取单元,适于获取每一步的三轴加速度;
姿态计算单元,适于基于所述加速度获取单元获取到的每一步的三轴加速度,计算手持终端的姿态矩阵;
旋转单元,适于将测量得到的三轴加速度按照解得的姿态矩阵旋转到水平,得到水平方向的二维加速度;
特征向量提取单元,适于提取所述二维加速度的特征向量;
航向确定单元,适于选取特征值大的特征向量作为行人方向。
12.根据权利要求11所述的行人航迹推算装置,其特征在于,还包括:直行判断单元,适于确定所述行人在预设时间窗口内是否直行,并在确定在预设时间窗口内直行时,触发所述姿态计算单元进行计算。
13.根据权利要求12所述的行人航迹推算装置,其特征在于,所述直行判断单元,适于在所述时间窗口的行人航向均值小于预设角度阈值时,确定所述行人在所述时间窗口内直行。
14.根据权利要求13所述的行人航迹推算装置,其特征在于,所述角度阈值的范围为±15°之间。
15.根据权利要求11所述的行人航迹推算装置,其特征在于,所述加速度获取单元包括:
第一识别子单元,适于识别每一步的波峰和波谷;
第一处理子单元,适于选取测量得到的加速度峰值大于预设的峰值阈值,且相邻两个峰值之间的时间差大于预设时间阈值的加速度峰值作为候选加速度输入所述姿态计算单元。
16.根据权利要求11所述的行人航迹推算装置,其特征在于,所述加速度获取单元包括:
第二识别子单元,适于识别每一步的波峰和波谷;
区分子单元,适于基于识别出的每一步的波峰和波谷,区分出奇数步和偶数步;
第二处理子单元,对于奇数步和偶数步,适于选取测量得到的加速度峰值分别大于预设的相应的峰值阈值,且相邻两个峰值之间的时间差分别大于预设时间阈值的加速度峰值作为相应奇数步和偶数步的候选加速度分别参与计算手持终端的姿态。
17.根据权利要求11所述的行人航迹推算装置,其特征在于,所述姿态计算单元适于采用AHRS融合算法计算手持终端的姿态矩阵。
18.根据权利要求17所述的行人航迹推算装置,其特征在于,所述姿态计算单元包括以下任意一种:
第一姿态计算子单元,适于基于获取到的三轴加速度、三轴角速度,采用AHRS融合算法计算手持终端的姿态矩阵;
第二姿态计算子单元,适于基于获取到的三轴加速度、三轴角速度、三轴磁力强度,采用AHRS融合算法计算手持终端的姿态矩阵;
第三姿态计算子单元,适于基于获取到的三轴加速度、三轴角速度、三轴磁力强度、三轴脉冲强度,采用AHRS融合算法计算手持终端的姿态矩阵。
19.一种手持终端,其特征在于,包括惯性传感器和权利要求11-17任一项所述的行人航迹推算装置;所述惯性传感器包括三轴加速度计。
20.根据权利要求19所述的手持终端,其特征在于,所述惯性传感器还包括以下至少一种:陀螺仪、磁力计、脉冲计,各惯性传感器的输出作为所述姿态计算单元的输入。
21.一种手持终端,其特征在于,包括:
定位模块,所述定位模块适于定位行人当前位置,包括权利要求11-18任一项所述的行人航迹推算装置;
导航模块,适于基于获取到的目标位置和所述定位模块定位得到的行人当前位置,进行导航。
22.一种手持终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求1至9任一项所述方法的步骤。
23.一种计算机可读存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求1至9任一项所述方法的步骤。
CN201910028497.0A 2019-01-11 2019-01-11 行人航迹推算方法、导航方法及装置、手持终端及介质 Pending CN111435083A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910028497.0A CN111435083A (zh) 2019-01-11 2019-01-11 行人航迹推算方法、导航方法及装置、手持终端及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910028497.0A CN111435083A (zh) 2019-01-11 2019-01-11 行人航迹推算方法、导航方法及装置、手持终端及介质

Publications (1)

Publication Number Publication Date
CN111435083A true CN111435083A (zh) 2020-07-21

Family

ID=71579804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910028497.0A Pending CN111435083A (zh) 2019-01-11 2019-01-11 行人航迹推算方法、导航方法及装置、手持终端及介质

Country Status (1)

Country Link
CN (1) CN111435083A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126132A (zh) * 2021-04-09 2021-07-16 内蒙古科电数据服务有限公司 一种移动巡检中轨迹校准与分析方法及系统
CN114176576A (zh) * 2021-12-11 2022-03-15 江苏智恒文化科技有限公司 基于加速度识别人体运动状态的方法
WO2024077237A1 (en) * 2022-10-07 2024-04-11 Ceva Technologies, Inc. Methods and systems for robust heading estimation in pedestrian dead reckoning navigation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104580660A (zh) * 2013-10-12 2015-04-29 深圳市汇顶科技股份有限公司 一种移动智能终端及其计步方法、系统
CN104713568A (zh) * 2015-03-31 2015-06-17 上海帝仪科技有限公司 步态识别方法以及相应的计步器
CN104964685A (zh) * 2015-06-30 2015-10-07 广州市香港科大霍英东研究院 一种手机运动姿态的判定方法
US20160313126A1 (en) * 2013-12-18 2016-10-27 Movea Method for determining the orientation of a sensor frame of reference tied to a mobile terminal furnished with a sensor assembly, carried or worn by a user and comprising at least one motion tied motion sensor
CN106705959A (zh) * 2015-11-18 2017-05-24 中兴通讯股份有限公司 检测移动终端航向的方法和装置
US20170234686A1 (en) * 2015-06-30 2017-08-17 Guangzhou Hkust Fok Ying Tung Research Institute Method and system for real-time positioning of smart device, and method for determining the motion gesture of mobile phone
CN107084718A (zh) * 2017-04-14 2017-08-22 桂林电子科技大学 基于行人航迹推算的室内定位方法
CN107449418A (zh) * 2016-12-26 2017-12-08 浙江从泰网络科技有限公司 基于加速计和磁力计的用户步行方向计算方法
CN108844533A (zh) * 2018-04-24 2018-11-20 西安交通大学 一种基于多传感器融合和姿态解算的自由姿态pdr定位方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104580660A (zh) * 2013-10-12 2015-04-29 深圳市汇顶科技股份有限公司 一种移动智能终端及其计步方法、系统
US20160313126A1 (en) * 2013-12-18 2016-10-27 Movea Method for determining the orientation of a sensor frame of reference tied to a mobile terminal furnished with a sensor assembly, carried or worn by a user and comprising at least one motion tied motion sensor
CN104713568A (zh) * 2015-03-31 2015-06-17 上海帝仪科技有限公司 步态识别方法以及相应的计步器
CN104964685A (zh) * 2015-06-30 2015-10-07 广州市香港科大霍英东研究院 一种手机运动姿态的判定方法
US20170234686A1 (en) * 2015-06-30 2017-08-17 Guangzhou Hkust Fok Ying Tung Research Institute Method and system for real-time positioning of smart device, and method for determining the motion gesture of mobile phone
CN106705959A (zh) * 2015-11-18 2017-05-24 中兴通讯股份有限公司 检测移动终端航向的方法和装置
CN107449418A (zh) * 2016-12-26 2017-12-08 浙江从泰网络科技有限公司 基于加速计和磁力计的用户步行方向计算方法
CN107084718A (zh) * 2017-04-14 2017-08-22 桂林电子科技大学 基于行人航迹推算的室内定位方法
CN108844533A (zh) * 2018-04-24 2018-11-20 西安交通大学 一种基于多传感器融合和姿态解算的自由姿态pdr定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中国卫星导航定位: "一种改进的行人航位推算算法研究", 《卫星导航定位与北斗系统应用 深化北斗应用2017》, pages 121 *
赵辉;李擎;李超;: "基于主方向的行人自主定位航向修正算法", no. 11, pages 114 - 117 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126132A (zh) * 2021-04-09 2021-07-16 内蒙古科电数据服务有限公司 一种移动巡检中轨迹校准与分析方法及系统
CN113126132B (zh) * 2021-04-09 2022-11-25 内蒙古科电数据服务有限公司 一种移动巡检中轨迹校准与分析方法及系统
CN114176576A (zh) * 2021-12-11 2022-03-15 江苏智恒文化科技有限公司 基于加速度识别人体运动状态的方法
CN114176576B (zh) * 2021-12-11 2024-05-24 江苏智恒文化科技有限公司 基于加速度识别人体运动状态的方法
WO2024077237A1 (en) * 2022-10-07 2024-04-11 Ceva Technologies, Inc. Methods and systems for robust heading estimation in pedestrian dead reckoning navigation

Similar Documents

Publication Publication Date Title
Yan et al. RIDI: Robust IMU double integration
CN107314778B (zh) 一种相对姿态的标定方法、装置及系统
Liu et al. Stereo visual-inertial odometry with multiple Kalman filters ensemble
US8930163B2 (en) Method for step detection and gait direction estimation
Panahandeh et al. Vision-aided inertial navigation based on ground plane feature detection
CN106662443B (zh) 用于垂直轨迹确定的方法和系统
US9677888B2 (en) Determining sensor orientation in indoor navigation
CN107909614B (zh) 一种gps失效环境下巡检机器人定位方法
CN109631888B (zh) 动作轨迹识别方法、装置、可穿戴设备及存储介质
CN104848861B (zh) 一种基于图像消失点识别技术的移动设备姿态测量方法
CN106814753B (zh) 一种目标位置矫正方法、装置及系统
KR102226846B1 (ko) Imu 센서와 카메라를 이용한 하이브리드 실내 측위 시스템
CN107255474B (zh) 一种融合电子罗盘和陀螺仪的pdr航向角确定方法
CN111435083A (zh) 行人航迹推算方法、导航方法及装置、手持终端及介质
US10533874B2 (en) Inertial positioning and navigation device featuring a novel walk detection method
CN107014377A (zh) 一种基于惯性定位的多功能鞋垫
Combettes et al. Walking direction estimation based on statistical modeling of human gait features with handheld MIMU
CN109540143B (zh) 多传感源动态峰值融合的行人非常规动作方向识别方法
EP3227634B1 (en) Method and system for estimating relative angle between headings
CN110672095A (zh) 一种基于微惯导的行人室内自主定位算法
Manos et al. Walking direction estimation using smartphone sensors: A deep network-based framework
CN106352885B (zh) 一种基于智能手机的盲人引领式导航路线规划的方法
Qian et al. Optical flow based step length estimation for indoor pedestrian navigation on a smartphone
CN110657802A (zh) 一种gps失效情况下的智能手环导航方法
Le Sage et al. Kalman filter design for application to an INS analysing swimmer performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination