CN111434898A - 尾气后处理系统的操控方法及尾气后处理系统和程序载体 - Google Patents

尾气后处理系统的操控方法及尾气后处理系统和程序载体 Download PDF

Info

Publication number
CN111434898A
CN111434898A CN201910027170.1A CN201910027170A CN111434898A CN 111434898 A CN111434898 A CN 111434898A CN 201910027170 A CN201910027170 A CN 201910027170A CN 111434898 A CN111434898 A CN 111434898A
Authority
CN
China
Prior art keywords
nitrogen oxide
catalytic converter
storage catalytic
oxide storage
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910027170.1A
Other languages
English (en)
Inventor
严明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to CN201910027170.1A priority Critical patent/CN111434898A/zh
Publication of CN111434898A publication Critical patent/CN111434898A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本发明公开了一种用于操控柴油发动机的尾气后处理系统(1)的方法,其中,所述尾气后处理系统(1)至少包括氮氧化物存储式催化转化器(2),所述方法至少包括以下步骤:判断预测的熄火信息是否满足预定条件;以及在预测的熄火信息满足预定条件的情况下,以确保至少使所述氮氧化物存储式催化转化器(2)在熄火时的氮氧化物负载低于预定水平的方式对所述氮氧化物存储式催化转化器(2)进行操控。还公开了一种相应的尾气后处理系统(1)和一种相应的计算机可读程序载体。根据本发明,可确保氮氧化物存储式催化转化器在熄火时的氮氧化物负载低于预定水平,从而氮氧化物存储式催化转化器可以在车辆再次启动、特别是冷启动时具有高效的吸附能力。

Description

尾气后处理系统的操控方法及尾气后处理系统和程序载体
技术领域
本发明涉及一种用于操控柴油发动机的尾气后处理系统的方法、一种相应的尾气后处理系统以及一种相应的计算机可读程序载体。
背景技术
柴油发动机由于具有可靠性好、热效率高以及输出扭矩大等特性而被广泛用于小型、重型或大型车辆、船舶、发电机以及军用坦克等机器。然而,由于柴油发动机排放的尾气中具有较高含量的氮氧化物以及其它有害成分,需要通过专用的尾气后处理系统对尾气进行处理以后才能排放到大气中,以满足日益严格的环保要求。
换言之,为了减少空气污染,对于柴油发动机的尾气进行后处理已经成为柴油发动机的标准配备。为此,尾气后处理系统通常包括氮氧化物存储式催化转化器、柴油颗粒物过滤器以及选择性催化还原转化器等功能单元,它们通过物理方法或是化学反应方法彼此配合地去除尾气中的有害成分。
然而,尾气后处理系统中的各个功能单元、例如氮氧化物存储式催化转化器和选择性催化还原转化器的工作特性各不相同,通常需要与车辆的工况相配合才能实现良好的尾气处理效果,因此,尾气后处理系统并不能确保车辆在各种工况下、特别是车辆刚启动时所排放的尾气始终符合环保要求。
为此,迫切需要对现有的尾气后处理系统进行改进,以改善其工作性能。
发明内容
本发明的目的是提供一种用于操控柴油发动机的尾气后处理系统的方法、一种相应的尾气后处理系统以及一种相应的计算机可读程序载体。
根据本发明的第一方面,提供了一种用于操控柴油发动机的尾气后处理系统的方法,其中,所述尾气后处理系统至少包括氮氧化物存储式催化转化器,所述方法至少包括以下步骤:判断预测的熄火信息是否满足预定条件;以及在预测的熄火信息满足预定条件的情况下,以确保至少使所述氮氧化物存储式催化转化器在熄火时的氮氧化物负载低于预定水平的方式对所述氮氧化物存储式催化转化器进行操控。
根据本发明的第二方面,提供了一种尾气后处理系统,其中,所述尾气后处理系统包括控制器,所述控制器被配置成用于执行所述方法。
根据本发明的第三方面,提供了一种计算机可读程序载体,所述计算机可读程序载体存储有程序指令,所述程序指令在被处理器运行时执行所述方法。
根据本发明,可以确保氮氧化物存储式催化转化器在熄火时的氮氧化物负载低于预定水平,从而氮氧化物存储式催化转化器可以在车辆再次启动、特别是冷启动时具有高效的吸附能力,这样就可降低此时废气中的氮氧化物含量。
附图说明
下面,通过参看附图更详细地描述本发明,可以更好地理解本发明的原理、特点和优点。附图包括:
图1示出了根据本发明的一个示例性实施例的用于柴油发动机的尾气后处理系统的组成示意图。
图2示意性地示出了根据本发明的一个示例性实施例的氮氧化物存储式催化转化器吸附氮氧化物时的状态。
图3示意性地示出了根据本发明的一个示例性实施例的氮氧化物存储式催化转化器再生时的状态。
图4示意性地示出了根据本发明的一个示例性实施例的氮氧化物存储式催化转化器和柴油颗粒物过滤器的工作过程和相应的工作参数变化。
图5示意性地示出了根据本发明的一个示例性实施例的选择性催化还原转化器与氮氧化物存储式催化转化器的工作温度范围和相应的工作效率变化。
图6示出了根据本发明的一个示例性实施例的发动机在各种工况下所需的点火控制曲线图(MAP图)。
具体实施方式
为了使本发明所要解决的技术问题、技术方案以及有益的技术效果更加清楚明白,以下将结合附图以及多个示例性实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,而不是用于限定本发明的保护范围。
图1示出了根据本发明的一个示例性实施例的用于柴油发动机的尾气后处理系统的组成示意图。
如图1所示,尾气后处理系统1通常包括:氮氧化物存储式催化转化器2、柴油颗粒物过滤器3以及选择性催化还原转化器4,其中,氮氧化物存储式催化转化器2主要用于通过先吸附氮氧化物、然后再适时进行再生处理而系统性地将氮氧化物转换成无害气体、例如氮气,柴油颗粒物过滤器3主要用于捕获尾气中的颗粒物(例如碳烟)、然后再适时烧除进行再生处理,选择性催化还原转化器4主要用于通过尾气处理剂、例如尿素水溶液选择性催化还原氮氧化物,以转化成无害气体、例如氮气。
需要指出的是,氮氧化物存储式催化转化器2的再生过程主要用于释放先前所吸附的氮氧化物,但并不是再以有害的氮氧化物排放,而是转化成无害气体(更普遍意义上讲,是法规上目前还没有禁止的气体)。“释放氮氧化物”实际上是指使氮氧化物存储式催化转化器2恢复继续吸附氮氧化物的能力,这对于本领域的技术人员来说是完全可以理解的,特别是在参看以下描述的情况下。
图1中的箭头5表示尾气的流动方向。尾气优选依次流过氮氧化物存储式催化转化器2、柴油颗粒物过滤器3以及选择性催化还原转化器4,最后排放到大气中。
图2示意性地示出了根据本发明的一个示例性实施例的氮氧化物存储式催化转化器2吸附氮氧化物的状态,此时状态也可以称为吸附状态,过量空气系数λ通常大于1。
如图2所示,在氮氧化物存储式催化转化器2中,尾气中的有害气体一氧化氮(NO)在活性氧化催化剂、例如铂的催化作用下与氧气(O2)发生反应,生成二氧化氮(NO2),这可由图2中的示意性的两个化学反应式中的上化学反应式表示。然后,NO2与氧化钡(BaO)反应而形成硝酸钡(Ba(NO3)2),这可由图2中的示意性的下化学反应式表示。在这种状态下,工作温度范围优选为250-450℃。这种工作温度通常在车辆的发动机启动不久就能达到。
这种变化过程由图2中的箭头6所示,附图标记7表示吸附前的氮氧化物存储式催化转化器2的状态,附图标记8表示吸附后的氮氧化物存储式催化转化器2的状态。
从图2中还可以看出,氮氧化物存储式催化转化器2也可以吸附一部分硫氧化物,例如二氧化硫(SO2),但氮氧化物存储式催化转化器2主要还是针对氮氧化物。
随着氮氧化物存储式催化转化器2吸附的氮氧化物的增多,其负载越来越大,吸附能力就越来越弱,最终会由于满载而基本无法再吸附氮氧化物。因此,需要使氮氧化物存储式催化转化器2及时地再生而重新恢复吸附能力。
图3示意性地示出了根据本发明的一个示例性实施例的氮氧化物存储式催化转化器2再生时的状态,此时状态也可以称为再生状态,过量空气系数λ通常小于1。
如图3所示,在氮氧化物存储式催化转化器2中,过量空气系数λ<1会使得尾气中含有浓度相对较高的一氧化碳(CO),浓度相对较高的CO此时充当还原剂而将暂时以硝酸钡(Ba(NO3)2)的形式存储的氮氧化物还原生成为对大气无害的氮气和二氧化碳。这可通过图3中的箭头9中的示意性化学反应式表示。附图标记10表示再生前的氮氧化物存储式催化转化器2的状态,附图标记11表示再生后的氮氧化物存储式催化转化器2的状态。再生时,之前吸附的硫氧化物也会再次释放。
氮氧化物存储式催化转化器2经过再生后,恢复了吸附氮氧化物的能力。根据本发明的一个示例性实施例,再生时长通常为5-10秒,两次再生之间的间隔时长通常为5-10分钟,具体视情况而定。
为了更好地说明尾气后处理系统1的工作过程,图4示意性地示出了氮氧化物存储式催化转化器2和柴油颗粒物过滤器3的工作过程和相应的工作参数变化。
如图4所示,横轴12表示时间t[s](或汽车的行驶里程),第一纵轴13表示相应的温度T[℃],第二纵轴14表示氮氧化物存储式催化转化器2的氮氧化物负载NL[g],第三纵轴15表示氮氧化物存储式催化转化器2的硫氧化物负载SL[g],第一横线16表示氮氧化物存储式催化转化器2处于吸附状态时的温度T1,第二横线17表示使氮氧化物存储式催化转化器2释放氮氧化物时的温度T2,第三横线18表示使氮氧化物存储式催化转化器2释放硫氧化物时的温度T3,第四横线19表示使柴油颗粒物过滤器3再生时的温度T4,第一曲线20表示尾气后处理系统1的相应温度变化,第二曲线21表示氮氧化物负载NL的相应变化,第三曲线22表示硫氧化物负载SL的相应变化。
从图4中可以看出,随着氮氧化物存储式催化转化器2工作时间的增加,氮氧化物负载NL和硫氧化物负载SL都逐渐增加,但氮氧化物负载NL增加相对较快,从而需要更频繁地使氮氧化物存储式催化转化器2释放吸附的氮氧化物,例如在第一时刻t1使氮氧化物存储式催化转化器2内的温度升高到温度T1,并一直持续到第二时刻t2,在时长t2-t1内,氮氧化物存储式催化转化器2内所吸附的氮氧化物可以基本上完全释放掉,这可以从第二曲线21在相应时段内的变化看出。然而,在温度T1时,由于没有达到硫氧化物的释放温度,因此,氮氧化物存储式催化转化器2所吸附的硫氧化物继续增加,这可以从第三曲线22看出。
在第二时刻t2之后,氮氧化物存储式催化转化器2内所吸附的氮氧化物再次逐渐增加,然后根据需要再次使氮氧化物存储式催化转化器2内的温度升高到T1释放吸附的氮氧化物,这从图4中可以清楚地看出。
如上所述,由于氮氧化物存储式催化转化器2吸附的硫氧化物始终增加而还没得到释放,在第三时刻t3时,使氮氧化物存储式催化转化器2内的温度升高到T2、例如580℃以上,并持续到第四时刻t4,以使氮氧化物存储式催化转化器2内吸附的硫氧化物释放掉至少一部分。本领域的技术人员可以理解,由于温度T2高于温度T1,因此,在此期间,氮氧化物存储式催化转化器2内吸附的氮氧化物也可得到释放。
当检测到柴油颗粒物过滤器3捕获的颗粒物累积到预定量时,则在第五时刻t5时起使柴油颗粒物过滤器3内的温度升高到T3,从而,可以烧除柴油颗粒物过滤器3内所捕获的颗粒物而使得柴油颗粒物过滤器3得到再生。
如上所述,为了使氮氧化物存储式催化转化器2释放所捕获的氮氧化物和/或硫氧化物,除了需要使氮氧化物存储式催化转化器2内的温度升高到预定温度以外,还需要使氮氧化物存储式催化转化器2内具有预定的反应氛围,例如具有浓度相对较高的CO。为此,例如可以控制柴油发动机的工作特性,以使流入氮氧化物存储式催化转化器2内的废气含有相对较高浓度、例如2%-3%的CO。例如,可以通过控制发动机的喷油特性来实现这一点。根据本发明的一个示例性实施例,可以使用多次、例如两次预喷和/或多次、例如两次后喷,以使过量空气系数小于1,从而会使得燃油燃烧不充分而含有浓度相对较高的CO。当然,本发明对此并不进行限制。
如上所述,降低氮氧化物的排放主要依靠氮氧化物存储式催化转化器2和选择性催化还原转化器4。目前,越来越多的柴油发动机如图1所示地同时配备氮氧化物存储式催化转化器2、柴油颗粒物过滤器3以及选择性催化还原转化器4。然而,如图5所示,选择性催化还原转化器4与氮氧化物存储式催化转化器2相比通常具有更高的工作温度范围,其中,第一变化曲线23表示的是氮氧化物存储式催化转化器2吸附氮氧化物的工作效率e随其温度的变化,第二变化曲线24表示的是选择性催化还原转化器4去除氮氧化物的工作效率e随其温度的变化。
从图5中可以看出,当在较低的第一温度范围TR1时,基本上主要是依靠氮氧化物存储式催化转化器2工作来吸附氮氧化物。当在较高的第二温度范围TR2时,基本上主要是依靠选择性催化还原转化器4工作来去除氮氧化物。当在介于第一温度范围与第二温度范围之间的第三温度范围TR3内时,选择性催化还原转化器4与氮氧化物存储式催化转化器2共同工作来去除氮氧化物。显然,使选择性催化还原转化器4与氮氧化物存储式催化转化器2协同工作可实现更好的氮氧化物去除效率。
如果氮氧化物存储式催化转化器2的氮氧化物负载已经较大而使得氮氧化物存储式催化转化器2基本不能再吸附氮氧化物且氮氧化物存储式催化转化器2内的温度低于预定温度而使得它不能再生来释放吸附的氮氧化物,例如当车辆在氮氧化物存储式催化转化器2满载情况下冷启动时,发动机启动后产生的氮氧化物就不能被氮氧化物存储式催化转化器2很好地吸附,此时选择性催化还原转化器4极有可能也处于较低温度而使得选择性催化还原转化器4也不能去除氮氧化物,从而排向大气中的废气所含的氮氧化物极有可能超标,而这至少从法规上讲是不允许的。
例如,在车辆前一天熄火时,氮氧化物存储式催化转化器2可能刚好处于负载较大的状态、特别是满载状态而使得吸附能力较弱,经过一夜第二天早上再启动车辆时,此时氮氧化物存储式催化转化器2由于温度较低还不能立即执行再生过程,因此可能无法有效地吸附氮氧化物。即使随后会执行再生过程,但实际驾驶排放也面临巨大挑战。
为此,根据本发明,需要使氮氧化物存储式催化转化器2在发动机启动、特别是冷启动时处于可吸附氮氧化物、特别是能高效吸附氮氧化物的状态。例如,预测车辆何时熄火,在熄火之前不管是否达到了需要再生的条件均要触发氮氧化物存储式催化转化器2的再生,这样,在下次启动时就能及时地、有效地吸附氮氧化物。
根据本发明的一个示例性实施例,通过车联网预测有关正运行的车辆将要熄火的熄火信息。
根据本发明的一个示例性实施例,所述熄火信息可以包括目前到熄火所要经历的时长或车辆将要熄火的时间点和/或目前车辆位置到车辆熄火时所要停放的位置的距离。预测熄火信息的目的是确保能在熄火之前的合适时刻触发氮氧化物存储式催化转化器2的再生,以使氮氧化物存储式催化转化器2在随后的车辆再启动时能够吸附废气中的氮氧化物。对于本领域的技术人员来说,在这一技术目的的情况下,熄火信息并不局限于在此所列举的信息,也不局限于具体如何获得,例如,甚至可以通过驾驶员手动输入他/她所估计的熄火信息。
根据本发明的一个示例性实施例,当预测的熄火信息满足预定条件时再适时触发氮氧化物存储式催化转化器2的再生。例如,在车辆熄火前的最后预定行驶距离内、例如最后一公里或一英里内适时触发氮氧化物存储式催化转化器2的再生。
对尾气后处理系统1的控制可以通过控制器、优选车辆的电子控制单元(ECU)实施。对于车联网来说,电子控制单元通常通过各种测量装置获得车辆的行驶数据、例如车辆位置、车辆速度和路线等,然后通过车辆的互联控制单元(CCU)将这些行驶数据通过无线通信技术、例如4G网络传递到中央处理器、例如云处理器,中央处理器可对这些行驶数据进行分析处理。例如,根据车辆以前的行驶数据分析用户的驾驶习惯,然后基于当前的行驶数据预测车辆的未来驾驶习惯、特别是车辆的熄火信息。
例如,用户可能在周一至周五主要驾驶车辆来往于家与公司之间,并且每天的行驶特性,例如时间、路线、车速等可能较为类似,因此,可以相对较为可靠地预测车辆的熄火信息。作为一个示例,每当车辆从某个路口左拐之后大概再需要5分钟就能到家,此时就可以基于该信息预测熄火时间是5分钟后。
这种分析和预测是在后台自动完成的,利用的是车联网的大数据分析能力。然而,这种情况并没有实时考虑当前行驶特性,例如如果是新的目的地,这种基于后台的分析就可能不再准确。为此,在采用导航系统进行实时导航的情况下,可以基于导航数据预测熄火信息。实时导航系统能够根据实时路况、车速、距离等信息动态地预测到达目的地的时间,也可自动地确定车辆是否行驶在目的地前的最后预定距离内。
如上所述,在预测的熄火信息满足预定条件的情况下,还要选择合适的时刻来触发氮氧化物存储式催化转化器2的再生,这是因为氮氧化物存储式催化转化器2的再生是一种化学反应过程,还需要一定的尾气浓度条件才能实现。例如,废气中需要一定浓度的还原剂,如CO等。
根据本发明的一个示例性实施例,仅当柴油发动机满足预定工况才允许触发氮氧化物存储式催化转化器2的再生。例如,仅当柴油发动机在中等负载的情况下中低速运行时,才通过例如控制柴油发动机的喷油特性来使废气中的CO浓度达到氮氧化物存储式催化转化器2能够再生的水平。
为了更明确地说明预定工况的含义,图6示出了根据本发明的一个示例性实施例的发动机MAP图,横轴为发动机速度n[rpm],纵轴为平均有效缸内压力BMEP[bar]。柴油发动机通常在外曲线25所围的区域内工作,但只有柴油发动机落入内曲线26所围的阴影区域内才允许触发氮氧化物存储式催化转化器2的再生。
如上所述,氮氧化物存储式催化转化器2的再生时长范围通常为5-10秒,相对较短,因此可以相对容易地适时触发氮氧化物存储式催化转化器2的再生。具体地讲,当预测的熄火信息满足预定条件时,就开始监测柴油发动机的工况,只要满足预定工况、例如处于图6所示的阴影区域内,就可触发氮氧化物存储式催化转化器2的再生。当不满足预定工况、例如处于图6所示的阴影区域外时,先暂缓触发氮氧化物存储式催化转化器2的再生,直到检测到满足预定工况才触发氮氧化物存储式催化转化器2的再生。
柴油发动机满足预定工况通常意味着车辆相对平稳行驶,因此大的加速、高的发动机转速、长时间的带档滑行都可能使得柴油发动机不能满足预定工况。为此,根据本发明的一个示例性实施例,可以通过车联网的大数据分析预测用户在预测的熄火信息满足预定条件直到最终熄火的期间内的驾驶习惯。例如,当通过大数据分析预测出车辆在该期间内的某一子段内通常会满足预定工况时,可以直接等到进入该子段内才检测是否适合触发氮氧化物存储式催化转化器2的再生。如果在该子段内适合触发,则就触发氮氧化物存储式催化转化器2的再生,否则就持续监测柴油发动机的工况以便找到适合触发氮氧化物存储式催化转化器2的再生的时段。
根据本发明的一个示例性实施例,如果预测出车辆在该期间内的多个子段内通常都会满足预定工况,可以选择在适合触发的第一个子段内在满足预定工况时就触发氮氧化物存储式催化转化器2的再生,也可跳过第一个子段直接在后续任何子段内再判断是否触发氮氧化物存储式催化转化器2的再生。在可靠预测的情况下,越晚触发越好,这是因为越晚触发使得氮氧化物存储式催化转化器2在熄火之前所吸附的氮氧化物相对较少,从而在车辆再启动时具有相对较高的吸附能力。在预测相对不太可靠的情况下,可以在相对较早的子段内在满足预定工况时就触发氮氧化物存储式催化转化器2的再生,否则后续各个子段有可能都不能满足预定工况而使得无法触发氮氧化物存储式催化转化器2的再生。
在预测的熄火信息满足预定条件的情况下,选择何时触发氮氧化物存储式催化转化器2的再生可以基于多方面的因素进行分析,例如可通过车联网的大数据分析综合判断。对于本领域的技术人员来说,本发明对此并不进行限制。
当使用导航系统的实时导航数据时,可以考虑在路况相对较好期间触发氮氧化物存储式催化转化器2的再生,这是因为路况相对较好时车辆通常可平稳行驶,因此,柴油发动机最有可能满足预定工况。相反,当车辆正在等候红灯和/或行驶在拥堵路段时,不允许触发氮氧化物存储式催化转化器2的再生。在这种情况下,当预测出在熄火之前的最后时段有很大可能存在适合触发氮氧化物存储式催化转化器2的再生的机会,例如当发现目的地之前都是畅通的,可以在即将到达目的地时,例如最后200m期间触发氮氧化物存储式催化转化器2的再生。
除了以上列举的决定何时触发氮氧化物存储式催化转化器2的再生的考虑因素之外,还可引入其它考虑因素。例如,也可考虑车联网提供的有关前方红绿灯状态变化的信息,以判断熄火之前的剩余时段是否有机会触发氮氧化物存储式催化转化器2的再生。
根据本发明的一个示例性实施例,在预测的熄火信息满足预定条件之后可以根据情况发出相应的提醒信号,以提醒用户平稳驾驶,从而可以确保在熄火之前有机会触发氮氧化物存储式催化转化器2的再生。
以上描述的控制措施的目的是确保在车辆即将熄火之前触发氮氧化物存储式催化转化器2的再生,以恢复氮氧化物存储式催化转化器2的吸附能力。然而,实际中,车辆的电子控制单元也在根据相关信息例如基于模型估计氮氧化物存储式催化转化器2的负载状况。如果发现在预测的熄火信息满足预定条件之时或之前不久刚进行了再生,也可选择在熄火之前不再触发氮氧化物存储式催化转化器2的再生。
根据本发明的另一个示例性实施例,在预测的熄火信息满足预定条件之后继续监测氮氧化物存储式催化转化器2的负载状况,如果负载始终低于预定值、例如满载的20%,则即使柴油发动机达到了预定工况,也不触发氮氧化物存储式催化转化器2的再生。换言之,在这种情况下,即使预测的熄火信息满足了预定条件,也不暂停氮氧化物存储式催化转化器2的负载状况的实时预测,只有预测到在熄火之前如果不激发氮氧化物存储式催化转化器2的再生就会使得氮氧化物存储式催化转化器2的负载超过预定值时才决定附加地触发氮氧化物存储式催化转化器2的再生。通过这种方式,可以最大可能地降低再生次数,降低燃油消耗。
根据本发明的另一个示例性实施例,在预测的熄火信息满足预定条件的情况下,不管氮氧化物存储式催化转化器2的实际负载如何变化,均在熄火之前至少触发一次氮氧化物存储式催化转化器2的再生。换言之,这相当于忽略氮氧化物存储式催化转化器2之前的再生触发逻辑,而直接由本发明的控制思想接管。通过这种方式,总能确保氮氧化物存储式催化转化器2在熄火之前具有低的负载水平。
从以上描述可知,不管是否在最后阶段触发氮氧化物存储式催化转化器2的再生,都要确保氮氧化物存储式催化转化器2在熄火之前具有至少低于预定值的负载,以确保再次启动时氮氧化物存储式催化转化器2具有良好的吸附能力。
尽管这里详细描述了本发明的特定实施方式,但它们仅仅是为了解释的目的而给出的,而不应认为它们对本发明的范围构成限制。在不脱离本发明精神和范围的前提下,各种替换、变更和改造可被构想出来。
附图标记列表
1 尾气后处理系统
2 氮氧化物存储式催化转化器
3 柴油颗粒物过滤器
4 选择性催化还原转化器
5 箭头
6 箭头
7 吸附前的氮氧化物存储式催化转化器的状态
8 吸附后的氮氧化物存储式催化转化器的状态
9 箭头
10 再生前的氮氧化物存储式催化转化器的状态
11 再生后的氮氧化物存储式催化转化器的状态
12 横轴
13 第一纵轴
14 第二纵轴
15 第三纵轴
16 第一横线
17 第二横线
18 第三横线
19 第四横线
20 第一曲线
21 第二曲线
22 第三曲线
23 第一变化曲线
24 第二变化曲线
25 外曲线
26 内曲线

Claims (15)

1.一种用于操控柴油发动机的尾气后处理系统(1)的方法,其中,所述尾气后处理系统(1)至少包括氮氧化物存储式催化转化器(2),所述方法至少包括以下步骤:
判断预测的熄火信息是否满足预定条件;以及
在预测的熄火信息满足预定条件的情况下,以确保至少使所述氮氧化物存储式催化转化器(2)在熄火时的氮氧化物负载低于预定水平的方式对所述氮氧化物存储式催化转化器(2)进行操控。
2.根据权利要求1所述的方法,其特征在于,
以附加性地强制触发所述氮氧化物存储式催化转化器(2)的再生的方式确保所述氮氧化物存储式催化转化器(2)在熄火时的氮氧化物负载低于预定水平;或
对所述氮氧化物存储式催化转化器(2)在熄火时的氮氧化物负载进行预测,并且基于预测结果确定是否触发所述氮氧化物存储式催化转化器(2)的再生。
3.根据权利要求1或2所述的方法,其特征在于,
所述熄火信息包括以下中的至少一种:
到车辆熄火所要经历的时长;以及
目前车辆位置到车辆熄火时所要停放的位置的距离。
4.根据权利要求1-3中任一所述的方法,其特征在于,
所述熄火信息基于车联网的预测分析。
5.根据权利要求4所述的方法,其特征在于,
所述熄火信息基于以下中的至少一种:
车联网对驾驶习惯的大数据分析;以及
实时导航系统对导航数据的分析。
6.根据权利要求3所述的方法,其特征在于,
所述预定条件为所述距离小于1英里或1公里。
7.根据权利要求1-6中任一所述的方法,其特征在于,
所述氮氧化物存储式催化转化器(2)的再生在柴油发动机满足预定工况的情况下进行。
8.根据权利要求7所述的方法,其特征在于,
所述预定工况为柴油发动机在发动机MAP图的预定区域内运行。
9.根据权利要求7或8所述的方法,其特征在于,
至少还基于车辆网的预测分析选择所述氮氧化物存储式催化转化器(2)的再生时刻。
10.根据权利要求7-9中任一所述的方法,其特征在于,
选择在车辆行驶于畅通路段期间触发所述氮氧化物存储式催化转化器(2)的再生。
11.根据权利要求7-10中任一所述的方法,其特征在于,
选择邻近于熄火时刻触发所述氮氧化物存储式催化转化器(2)的再生。
12.根据权利要求1-11中任一所述的方法,其特征在于,
在预测的熄火信息满足预定条件的情况下,如果需要触发所述氮氧化物存储式催化转化器(2)的再生,则发出提醒信号。
13.一种尾气后处理系统(1),其中,所述尾气后处理系统(1)包括控制器,所述控制器被配置成用于执行根据权利要求1-12中任一所述的方法。
14.根据权利要求13所述的尾气后处理系统(1),其特征在于,
所述尾气后处理系统(1)还包括位于氮氧化物存储式催化转化器(2)下游的柴油颗粒物过滤器(3)和位于所述柴油颗粒物过滤器(3)下游的选择性催化还原转化器(4)。
15.一种计算机可读程序载体,所述计算机可读程序载体存储有程序指令,所述程序指令在被处理器运行时执行根据权利要求1-12中任一所述的方法。
CN201910027170.1A 2019-01-11 2019-01-11 尾气后处理系统的操控方法及尾气后处理系统和程序载体 Pending CN111434898A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910027170.1A CN111434898A (zh) 2019-01-11 2019-01-11 尾气后处理系统的操控方法及尾气后处理系统和程序载体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910027170.1A CN111434898A (zh) 2019-01-11 2019-01-11 尾气后处理系统的操控方法及尾气后处理系统和程序载体

Publications (1)

Publication Number Publication Date
CN111434898A true CN111434898A (zh) 2020-07-21

Family

ID=71580463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910027170.1A Pending CN111434898A (zh) 2019-01-11 2019-01-11 尾气后处理系统的操控方法及尾气后处理系统和程序载体

Country Status (1)

Country Link
CN (1) CN111434898A (zh)

Similar Documents

Publication Publication Date Title
RU2682688C2 (ru) Способ для прогрева выпускной системы
CN110985222B (zh) 一种触发dpf被动再生的方法及系统
EP2460999B1 (en) Method for predicting SOx stored at DeNOx catalyst and exhaust system using the same
KR101734713B1 (ko) 연료소모저감을 위한 삼원촉매 제어방법과 삼원촉매제어시스템 및 차량
US8528321B2 (en) Exhaust purification system for internal combustion engine and desulfurization method for the same
JP5035263B2 (ja) 内燃機関の排気浄化装置
US11015504B2 (en) Method for operating an internal combustion engine of a motor vehicle, in particular a motor car
KR101637758B1 (ko) Scr 시스템의 고장진단방법 및 고장진단장치
CN105074151A (zh) 废气后处理装置中的NOx吸藏还原型催化剂的劣化判定方法
EP3284921B1 (en) Method for timing of a regeneration process
US8763373B2 (en) System for purifying exhaust gas and method for controlling the same
KR100980875B1 (ko) 디젤 차량의 후처리 장치 및 재생방법
CN109306890B (zh) 用于对机动车中的废气后处理机构进行控制和/或调节的方法和控制装置
KR102019867B1 (ko) Isg가 장착된 디젤차량의 매연여과장치 재생 전략 판단방법 및 매연여과장치의 재생 제어에 따른 매연물질 연소량 계산방법
US20230326264A1 (en) Systems and methods for management exhaust aftertreatment system using predictive analytics
CN111434898A (zh) 尾气后处理系统的操控方法及尾气后处理系统和程序载体
JP6390952B2 (ja) 車両の制御装置
CN112127978B (zh) 一种颗粒过滤器的再生方法、系统和发动机
EP2980377B1 (en) Exhaust gas purification apparatus for internal combustion engine
CN110872975B (zh) 用于控制和/或调节布置在机动车中的内燃机的scr催化器的方法
KR100907067B1 (ko) 디젤차량의 후처리계 시스템 및 그것의 진단방법
KR101534699B1 (ko) 질소산화물 저감 촉매의 탈황 장치 및 탈황 방법
WO2017130408A1 (ja) 排気浄化装置
US20200123957A1 (en) Exhaust gas purification system for vehicle,
WO2021025875A1 (en) Systems and methods for adaptive control of aftertreatment systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination