CN111434611A - NaY molecular sieve synthesis method for improving single-kettle yield - Google Patents
NaY molecular sieve synthesis method for improving single-kettle yield Download PDFInfo
- Publication number
- CN111434611A CN111434611A CN201910025461.7A CN201910025461A CN111434611A CN 111434611 A CN111434611 A CN 111434611A CN 201910025461 A CN201910025461 A CN 201910025461A CN 111434611 A CN111434611 A CN 111434611A
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- sio
- nay molecular
- gel mixture
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 85
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 238000001308 synthesis method Methods 0.000 title abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 39
- 238000003756 stirring Methods 0.000 claims abstract description 35
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 28
- 239000002243 precursor Substances 0.000 claims abstract description 23
- 235000019353 potassium silicate Nutrition 0.000 claims abstract description 21
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- 239000002253 acid Substances 0.000 claims abstract description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 3
- 239000011707 mineral Substances 0.000 claims abstract description 3
- 239000011734 sodium Substances 0.000 claims description 60
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 229910001868 water Inorganic materials 0.000 claims description 16
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 15
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 15
- 239000003513 alkali Substances 0.000 claims description 15
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 229910052708 sodium Inorganic materials 0.000 claims description 15
- 238000010189 synthetic method Methods 0.000 claims description 9
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052681 coesite Inorganic materials 0.000 claims description 8
- 229910052906 cristobalite Inorganic materials 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 229910052682 stishovite Inorganic materials 0.000 claims description 8
- 229910052905 tridymite Inorganic materials 0.000 claims description 8
- 229910052593 corundum Inorganic materials 0.000 claims description 7
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 7
- 150000007522 mineralic acids Chemical class 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 150000004645 aluminates Chemical class 0.000 claims description 5
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 4
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000005216 hydrothermal crystallization Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 2
- 230000032683 aging Effects 0.000 claims description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 abstract description 71
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 66
- 230000002194 synthesizing effect Effects 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000003054 catalyst Substances 0.000 description 38
- 239000000243 solution Substances 0.000 description 23
- 229910001220 stainless steel Inorganic materials 0.000 description 11
- 239000010935 stainless steel Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 229910002796 Si–Al Inorganic materials 0.000 description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005120 petroleum cracking Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/20—Faujasite type, e.g. type X or Y
- C01B39/24—Type Y
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
一种提高NaY分子筛单釜产率的合成方法,其特征在于该方法包括:将NaY分子筛的前身物中的Na2O/SiO2摩尔比提高5%~60%得到凝胶混合物A,常温下搅拌至少0.1小时得到凝胶混合物B,加入无机酸得到凝胶混合物C,凝胶混合物C经水热晶化并回收产物,其中,所述的NaY分子筛的前身物由导向剂与水玻璃、铝酸盐、铝盐和水混合得到,所述NaY分子筛的前身物中,以摩尔计,Na2O:SiO2=0.2~0.45、SiO2:Al2O3=5~18、H2O:Al2O3=100~200。该方法可使合成NaY分子筛的单釜产率比常规工业方法提高40%~60%。
A synthesis method for improving the single-pot yield of NaY molecular sieve, characterized in that the method comprises: increasing the Na 2 O/SiO 2 molar ratio in the precursor of NaY molecular sieve by 5% to 60% to obtain a gel mixture A, and at room temperature Stir for at least 0.1 hour to obtain gel mixture B, add mineral acid to obtain gel mixture C, gel mixture C is hydrothermally crystallized and the product is recovered, wherein the precursor of the NaY molecular sieve is composed of a directing agent, water glass, aluminum In the precursor of NaY molecular sieve, in terms of moles, Na 2 O: SiO 2 =0.2-0.45, SiO 2 : Al 2 O 3 =5-18, H 2 O: Al 2 O 3 =100-200. The method can increase the single-pot yield of synthesizing NaY molecular sieve by 40% to 60% compared with the conventional industrial method.
Description
技术领域technical field
本发明涉及一种NaY分子筛的合成方法。更具体地说本发明涉及一种提高单釜产率的NaY分子筛合成方法。The invention relates to a synthesis method of NaY molecular sieve. More specifically the present invention relates to a kind of NaY molecular sieve synthesis method that improves single-pot yield.
背景技术Background technique
Y型分子筛作为催化剂活性组元或催化剂载体,广泛应用于催化裂化、加氢裂化以及异构化等炼油化工过程中,是目前用量最大的沸石材料。作为石油裂化催化剂原料的NaY分子筛,为保持使用过程中具有足够的水热稳定性,一般要求其硅铝比大于5.0。目前工业上生产NaY沸石的方法基本上都是采用美国GRACE公司所提出的导向剂法(US3639099,US3671191),即在添加导向剂的条件下先制备碱性硅铝凝胶,然后通过水热晶化的方法制备NaY分子筛。USP3639099提出的制备方法,由于投料碱度较大,制备出的NaY分子筛的硅铝比一般为4.0~4.5;而当采用较低碱度以提高硅铝比时,则由于水量较低、胶体较粘稠而搅拌困难。因此GRACE公司在US3671191中对此方法进行了改进,即提高投料硅铝比,增加投料水量,以获得硅铝比大于5.0的NaY产品,目前工业上大多此方法。但是,为了避免硅铝源胶凝时粘稠难搅的问题,体系的水含量仍然较高,使得产品单釜产率较低,一般只有10%左右。As a catalyst active component or catalyst carrier, Y-type molecular sieve is widely used in refining and chemical processes such as catalytic cracking, hydrocracking and isomerization, and is currently the most used zeolite material. The NaY molecular sieve used as the raw material of the petroleum cracking catalyst is generally required to have a silicon-alumina ratio greater than 5.0 in order to maintain sufficient hydrothermal stability during use. At present, the industrial production of NaY zeolite basically adopts the directing agent method (US3639099, US3671191) proposed by GRACE Company in the United States, that is, under the condition of adding a directing agent, an alkaline silica-alumina gel is first prepared, and then the hydrothermal crystallizing NaY molecular sieve was prepared by chemical method. In the preparation method proposed by USP3639099, due to the high alkalinity of the feed, the silicon-alumina ratio of the prepared NaY molecular sieve is generally 4.0 to 4.5; and when a lower alkalinity is used to improve the silicon-alumina ratio, the water content is low and the colloid is relatively high. Viscous and difficult to stir. Therefore, GRACE Company improved this method in US3671191, namely increasing the feeding silicon-aluminum ratio and increasing the feeding water amount to obtain NaY products with a silicon-aluminum ratio greater than 5.0. Currently, this method is mostly used in industry. However, in order to avoid the problem of being sticky and difficult to stir when the silica-alumina source is gelled, the water content of the system is still relatively high, so that the single-pot yield of the product is low, generally only about 10%.
因此,如何降低合成体系的投料水量,以提高NaY分子筛合成的单釜产率、降低合成过程中的能源消耗,成为了人们的努力方向。Therefore, how to reduce the input water of the synthesis system to improve the single-pot yield of NaY molecular sieve synthesis and reduce the energy consumption in the synthesis process has become the direction of people's efforts.
CN1185996A公开了一种提高NaY分子筛合成效率的方法。该方法提高原料水玻璃的温度,使凝胶制备过程中胶体的粘稠度得以降低,可以减少投水量,使得单釜产率得以提高。但该方法制备工艺较为复杂,增加了操作难度和制备成本。CN1185996A discloses a method for improving the synthesis efficiency of NaY molecular sieve. The method increases the temperature of the raw water glass, reduces the viscosity of the colloid during the gel preparation process, reduces the amount of water input, and improves the single-pot yield. However, the preparation process of this method is relatively complicated, and the operation difficulty and preparation cost are increased.
发明内容SUMMARY OF THE INVENTION
本发明人发现,硅铝凝胶体系在较高的碱度下成胶,粘度较低,无需加水减粘也可顺畅成胶,如此可提高单釜产率。基于此,形成本发明。The inventors found that the silica-alumina gel system forms gel at a relatively high alkalinity and has a low viscosity, and it can smoothly gel without adding water to reduce the viscosity, which can improve the single-pot yield. Based on this, the present invention is formed.
本发明的目的是针对现有技术的不足,提供一种不同于现有技术的较为简单提高单釜产率的NaY分子筛合成方法。The purpose of the present invention is to aim at the deficiencies of the prior art, and to provide a NaY molecular sieve synthesis method that is different from the prior art and improves the yield of the single-pot relatively simply.
因此,本发明提供的提高单釜产率的NaY分子筛合成方法,其特征在于该方法包括:将NaY分子筛的前身物中的Na2O/SiO2摩尔比提高5%~60%得到的凝胶混合物A常温下搅拌至少0.1小时得到凝胶混合物B,加入无机酸得到凝胶混合物C,凝胶混合物C经水热晶化并回收产物,其中,所述的NaY分子筛的前身物由导向剂与水玻璃、铝酸盐、铝盐和水混合得到,所述NaY分子筛的前身物中,以摩尔计,Na2O:SiO2=0.2~0.45、SiO2:Al2O3=5~18、H2O:Al2O3=100~200。Therefore, the present invention provides a method for synthesizing NaY molecular sieves with improved single-pot yield, characterized in that the method comprises: a gel obtained by increasing the Na 2 O/SiO 2 molar ratio in the precursor of NaY molecular sieves by 5% to 60% Mixture A is stirred at room temperature for at least 0.1 hour to obtain gel mixture B, adding inorganic acid to obtain gel mixture C, and gel mixture C is hydrothermally crystallized and the product is recovered, wherein the precursor of the NaY molecular sieve is composed of a directing agent and a directing agent. It is obtained by mixing water glass, aluminate, aluminum salt and water. In the precursor of the NaY molecular sieve, in terms of moles, Na 2 O: SiO 2 =0.2-0.45, SiO 2 : Al 2 O 3 =5-18, H2O : Al2O3=100~200.
本发明的方法,取消了通常制备硅铝凝胶时须添加的减粘水,提高合成凝胶固含量(凝胶的固含量达到20%~30%),可使合成NaY分子筛的单釜产率比常规工业方法提高40%~60%。即该方法在优化的投料SiO2/Al2O3比和Na2O/SiO2比条件下,通过调节硫酸铝和偏铝酸钠的相对含量,使得NaY分子筛的前身物在高于通常控制的Na2O/SiO2比碱度下成胶,然后再用无机酸将过量的碱中和,使体系恢复到需要的Na2O/SiO2比碱度,然后将合成凝胶直接按常规方法升温晶化即可得到NaY分子筛。The method of the invention eliminates the viscosity-reducing water that needs to be added when preparing the silica-alumina gel, increases the solid content of the synthetic gel (the solid content of the gel reaches 20% to 30%), and can make the single-pot yield of the synthetic NaY molecular sieve. The rate is 40% to 60% higher than that of conventional industrial methods. That is, under the conditions of optimized SiO 2 /Al 2 O 3 ratio and Na 2 O/SiO 2 ratio, the method can adjust the relative content of aluminum sulfate and sodium metaaluminate, so that the precursor of NaY molecular sieve is higher than the usual control. The Na 2 O/SiO 2 specific alkalinity will form a gel, and then the excess alkali will be neutralized with an inorganic acid to restore the system to the required Na 2 O/SiO 2 specific alkalinity, and then the synthetic gel will be directly Methods NaY molecular sieve can be obtained by heating and crystallization.
本发明方法,在不改变现有工业设备的前提下,通过改进现有合成工艺,使用常规的工业原料制备NaY分子筛,单釜产率提高。同时,该方法可节省升温晶化时的能耗。The method of the invention, on the premise of not changing the existing industrial equipment, improves the existing synthesis process and uses the conventional industrial raw materials to prepare the NaY molecular sieve, and the single-pot yield is improved. At the same time, the method can save the energy consumption during the crystallization at elevated temperature.
附图说明Description of drawings
图1是本发明合成的NaY分子筛的XRD谱图。Fig. 1 is the XRD spectrum of NaY molecular sieve synthesized by the present invention.
图2是本发明合成的NaY分子筛的扫描(SEM)电镜照片。Fig. 2 is the scanning (SEM) electron microscope photograph of NaY molecular sieve synthesized by the present invention.
具体实施方式Detailed ways
一种提高单釜产率的NaY分子筛合成方法,其特征在于该方法包括:将NaY分子筛的前身物中的Na2O/SiO2摩尔比提高5%~60%得到的凝胶混合物A常温下搅拌至少0.1小时得到凝胶混合物B,加入无机酸得到凝胶混合物C,凝胶混合物C经水热晶化并回收产物,其中,所述的NaY分子筛的前身物由导向剂与水玻璃、铝酸盐、铝盐和水混合得到,所述NaY分子筛的前身物中,以摩尔计,Na2O:SiO2=0.2~0.45、SiO2:Al2O3=5~18、H2O:Al2O3=100~200。A method for synthesizing NaY molecular sieves with improved single-pot yield, characterized in that the method comprises: increasing the Na2O/ SiO2 molar ratio in the precursor of NaY molecular sieves by 5 % to 60% at room temperature of a gel mixture A obtained by Stir for at least 0.1 hour to obtain gel mixture B, add mineral acid to obtain gel mixture C, gel mixture C is hydrothermally crystallized and the product is recovered, wherein the precursor of the NaY molecular sieve is composed of a directing agent, water glass, aluminum In the precursor of NaY molecular sieve, in terms of moles, Na 2 O: SiO 2 =0.2-0.45, SiO 2 : Al 2 O 3 =5-18, H 2 O: Al 2 O 3 =100-200.
本发明中,所述的NaY分子筛的前身物是将晶化导向剂与水玻璃、铝酸盐、铝盐混合均匀得到。所述的晶化导向剂,按照现有技术(US3639099和US3671191)制备。可以是将硅源、铝源、碱液以及去离子水,按照(15~18)Na2O:Al2O3:(15~17)SiO2:(280~380)H2O的摩尔比混合,搅拌均匀后,在室温至70℃下静置老化0.5~48h得到。在所述的NaY分子筛的前身物中,导向剂中Al2O3的含量占NaY分子筛的前身物中Al2O3总量的3%~10%,优选4%~9%;制备导向剂所用的硅源是水玻璃,铝源是偏铝酸钠,碱液为氢氧化钠溶液。In the present invention, the precursor of the NaY molecular sieve is obtained by uniformly mixing the crystallization directing agent with water glass, aluminate and aluminum salt. The crystallization directing agent is prepared according to the prior art (US3639099 and US3671191). It can be silicon source, aluminum source, lye solution and deionized water according to the molar ratio of (15-18) Na 2 O : Al 2 O 3 : (15-17) SiO 2 : (280-380) H 2 O After mixing and stirring evenly, it is obtained by standing and aging at room temperature to 70°C for 0.5 to 48 hours. In the precursor of NaY molecular sieve, the content of Al 2 O 3 in the directing agent accounts for 3% to 10% of the total amount of Al 2 O 3 in the precursor of NaY molecular sieve, preferably 4% to 9%; preparing the directing agent The silicon source used is water glass, the aluminum source is sodium metaaluminate, and the lye solution is sodium hydroxide solution.
所述的NaY分子筛的前身物中,以摩尔计,Na2O:SiO2=0.2~0.45、SiO2:Al2O3=5~18、H2O:Al2O3=100~200,优选条件下,Na2O:SiO2=0.25~0.35、SiO2:Al2O3=6~10、H2O:Al2O3=120~180。所述的NaY分子筛的前身物中,铝源可以是来自硫酸铝、氯化铝、硝酸铝或磷酸铝中的一种或几种混合物。In the precursor of the NaY molecular sieve, in terms of moles, Na 2 O: SiO 2 =0.2-0.45, SiO 2 : Al 2 O 3 =5-18, H 2 O: Al 2 O 3 =100-200, Under the preferred conditions, Na 2 O: SiO 2 =0.25-0.35, SiO 2 : Al 2 O 3 =6-10, H 2 O:Al 2 O 3 =120-180. In the precursor of the NaY molecular sieve, the aluminum source can be one or several mixtures of aluminum sulfate, aluminum chloride, aluminum nitrate or aluminum phosphate.
本发明中,所述的凝胶混合物A根据配比要求,可通过调节酸性铝盐和碱性铝酸盐的用量来调节凝胶混合物A的体系碱度,使体系在较高碱度下成胶。为了实现本发明所述的将NaY分子筛的前身物中的Na2O/SiO2摩尔比提高5%~60%的目标,通常可以采用的技术手段是通过调节铝酸盐与铝盐的相对含量,得到所述的凝胶混合物A。In the present invention, the gel mixture A can adjust the system basicity of the gel mixture A by adjusting the dosage of the acidic aluminum salt and the basic aluminum salt according to the proportioning requirements, so that the system can be formed at a higher basicity. glue. In order to achieve the goal of increasing the molar ratio of Na 2 O/SiO 2 in the precursor of NaY molecular sieve by 5% to 60% according to the present invention, the technical means that can usually be adopted is to adjust the relative content of aluminate and aluminum salt. , to obtain the gel mixture A.
本发明中,所述的在凝胶混合物B加入无机酸,是用来中和体系中过量碱,使凝胶混合物C的碱度达到要求控制的Na2O/SiO2比,如NaY分子筛前身物相同的Na2O/SiO2比。无机酸可以是浓硫酸、浓盐酸、浓硝酸、浓磷酸或它们各自的水溶液,其中优选浓硫酸。In the present invention, the inorganic acid added to the gel mixture B is used to neutralize the excess alkali in the system, so that the basicity of the gel mixture C can reach the required controlled Na 2 O/SiO 2 ratio, such as the precursor of NaY molecular sieve. the same Na 2 O/SiO 2 ratio. The inorganic acid can be concentrated sulfuric acid, concentrated hydrochloric acid, concentrated nitric acid, concentrated phosphoric acid or their respective aqueous solutions, among which concentrated sulfuric acid is preferred.
本发明中,将凝胶混合物C在70℃~120℃、优选在90℃~105℃下晶化,晶化时间为10h~50h。所述的回收产物的过程为本领域技术人员所熟知,在此不再繁述。通常包括在水热晶化完成后经过滤、洗涤、干燥,得到所述的NaY分子筛的过程。例如,干燥过程可以在烘箱中80℃~150℃进行8~24h,也可采用闪蒸干燥的方式进行。In the present invention, the gel mixture C is crystallized at 70°C to 120°C, preferably at 90°C to 105°C, and the crystallization time is 10h to 50h. The process of recovering the product is well known to those skilled in the art and will not be repeated here. It usually includes the process of obtaining the NaY molecular sieve through filtration, washing and drying after the hydrothermal crystallization is completed. For example, the drying process can be carried out in an oven at 80° C. to 150° C. for 8 to 24 hours, or by flash drying.
本发明提供方法合成得到的NaY分子筛,结晶度在85%以上,骨架硅铝比在5.0以上,晶粒大小集中在500nm~800nm。The NaY molecular sieve synthesized by the method provided by the invention has a crystallinity of more than 85%, a framework silicon-aluminum ratio of more than 5.0, and a grain size of 500nm-800nm.
下面的实施例将对本发明作进一步的说明,但并不因此而限制本发明的内容。The following examples will further illustrate the present invention, but do not limit the content of the present invention.
实施例中,合成得到的NaY分子筛的结晶度采用RIPP 146-90标准方法测定。In the examples, the crystallinity of the synthesized NaY molecular sieves was measured by the RIPP 146-90 standard method.
骨架硅铝比采用下列公式测定:The skeleton silicon-alumina ratio was determined using the following formula:
SiO2/Al2O3=2×(25.8575-a0)/(a0-24.191),其中,a0是分子筛的晶胞参数,采用RIPP 145-90标准方法测定。此处所提及的RIPP标准方法具体可参见《石油化工分析方法》,杨翠定等编,1990年版。SiO 2 /Al 2 O 3 =2×(25.8575-a 0 )/(a 0 -24.191), wherein a 0 is the unit cell parameter of the molecular sieve, which is determined by the RIPP 145-90 standard method. The RIPP standard method mentioned here can be found in "Petrochemical Analysis Methods", edited by Yang Cuiding et al., 1990 edition.
NaY分子筛的扫描(SEM)电镜分析在美国ISI公司ISI-60A电镜上进行。试验条件:加速电压20kV,样品倾角30°。The scanning (SEM) electron microscope analysis of NaY molecular sieve was carried out on the ISI-60A electron microscope of ISI company in the United States. Test conditions: acceleration voltage 20kV,
在实施例和对比例中所采用的导向剂,通过下述过程制备:将629水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)放入烧杯中,激烈搅拌状态下加入469g高碱偏铝酸钠(齐鲁催化剂公司提供,Al2O341g/L,Na2O 297g/L,密度1353g/L)并在30℃下静置老化18小时,得到了导向剂。导向剂的摩尔配比为16.4Na2O:Al2O3:15SiO2:326H2O。The directing agent used in Examples and Comparative Examples was prepared by the following process: put 629 water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L) into a beaker, Add 469g of high alkali sodium metaaluminate (provided by Qilu Catalyst Company, Al 2 O 3 41g/L, Na 2 O 297g/L, density 1353g/L) under vigorous stirring, and stand at 30°C for aging for 18 hours to obtain guide agent. The molar ratio of the directing agent is 16.4Na 2 O :Al 2 O 3 :15SiO 2 :326H 2 O.
实施例1Example 1
本实施例说明本发明提供的合成方法。This example illustrates the synthetic method provided by the present invention.
搅拌状态下向350g水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)中依次加入59g导向剂、50g硫酸铝溶液(齐鲁催化剂公司提供,Al2O3 89.7g/L,H2SO4 259g/L,密度1277g/L)、82g低碱偏铝酸钠溶液(齐鲁催化剂公司提供,Al2O3 190.7g/L,Na2O 283.3g/L,密度1416g/L)混合均匀,得到投料配比SiO2/Al2O3=8.5、Na2O/SiO2=0.494的凝胶混合物A,搅拌0.5h后得到凝胶混合物B。向凝胶化合物B中加入23g浓硫酸,继续搅拌0.5h,得到投料配比SiO2/Al2O3=8.5、Na2O/SiO2=0.310、H2O/Al2O3=137的凝胶混合物C。将所得的凝胶混合物C直接装入不锈钢反应釜中于100℃下晶化26h,晶化产物经过滤、洗涤,烘箱中120℃干燥过夜,得到NaY分子筛。Add 59g of directing agent and 50g of aluminum sulfate solution (provided by Qilu Catalyst Company, Al 2 O 3 to 350g of water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L) under stirring 89.7g/L, H 2 SO 4 259g/L, density 1277g/L), 82g low alkali sodium metaaluminate solution (provided by Qilu Catalyst Company, Al 2 O 3 190.7g/L, Na 2 O 283.3g/L, The density of 1416g/L) was mixed uniformly to obtain the gel mixture A with the feed ratio SiO 2 /Al 2 O 3 =8.5 and Na 2 O/SiO 2 =0.494, and the gel mixture B was obtained after stirring for 0.5h. 23 g of concentrated sulfuric acid was added to the gel compound B, and the stirring was continued for 0.5 h to obtain a mixture with a charging ratio of SiO 2 /Al 2 O 3 =8.5, Na 2 O/SiO 2 =0.310, and H 2 O/Al 2 O 3 =137 Gel mix C. The obtained gel mixture C was directly put into a stainless steel reactor and crystallized at 100 °C for 26 h. The crystallized product was filtered, washed, and dried in an oven at 120 °C overnight to obtain NaY molecular sieves.
单釜产率为15.7%。分子筛XRD谱图见图1,说明为NaY分子筛,结晶度为95.7%,骨架硅铝比为5.6。扫描(SEM)电镜照片见图2,可见分子筛晶粒大小集中在500nm~800nm。The single-pot yield was 15.7%. The XRD spectrum of the molecular sieve is shown in Figure 1, indicating that it is a NaY molecular sieve, the crystallinity is 95.7%, and the framework silicon-aluminum ratio is 5.6. The scanning (SEM) electron microscope photo is shown in Figure 2, and it can be seen that the molecular sieve grain size is concentrated in 500nm-800nm.
实施例2Example 2
本实施例说明本发明提供的合成方法。This example illustrates the synthetic method provided by the present invention.
搅拌状态下向320g水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)中依次加入54g导向剂、55g硫酸铝溶液(齐鲁催化剂公司提供,Al2O3 89.7g/L,H2SO4 259g/L,密度1277g/L)、70g低碱偏铝酸钠溶液(齐鲁催化剂公司提供,Al2O3 190.7g/L,Na2O 283.3g/L,密度1416g/L)混合均匀,得到投料配比SiO2/Al2O3=8.5、Na2O/SiO2=0.464的凝胶混合物A。搅拌0.5h后得到凝胶混合物B。向凝胶化合物B中加入17.6g浓硫酸,继续搅拌0.5h,得到投料配比SiO2/Al2O3=8.5、Na2O/SiO2=0.310、H2O/Al2O3=147的凝胶混合物C。将所得的凝胶混合物C直接装入不锈钢反应釜中于98℃下晶化29h,晶化产物经过滤、洗涤,烘箱中120℃干燥过夜,得到NaY分子筛。54g of directing agent and 55g of aluminum sulfate solution (provided by Qilu Catalyst Company, Al 2 O 3 ) were added to 320 g of water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L) under stirring. 89.7g/L, H 2 SO 4 259g/L, density 1277g/L), 70g low alkali sodium metaaluminate solution (provided by Qilu Catalyst Company, Al 2 O 3 190.7g/L, Na 2 O 283.3g/L, The density of 1416g/L) was mixed uniformly to obtain a gel mixture A with a charging ratio of SiO 2 /Al 2 O 3 =8.5 and Na 2 O/SiO 2 =0.464. Gel mixture B was obtained after stirring for 0.5 h. 17.6 g of concentrated sulfuric acid was added to the gel compound B, and the stirring was continued for 0.5 h to obtain the charging ratio of SiO 2 /Al 2 O 3 =8.5, Na 2 O/SiO 2 =0.310, and H 2 O/Al 2 O 3 =147 The gel mixture C. The obtained gel mixture C was directly put into a stainless steel reactor and crystallized at 98°C for 29h. The crystallized product was filtered, washed, and dried in an oven at 120°C overnight to obtain NaY molecular sieves.
单釜产率为15.5%。分子筛XRD谱图和扫描(SEM)电镜照片分别具有图1、图2的特征。NaY分子筛的结晶度为94.4%,骨架硅铝比为5.6,晶粒大小集中在500nm~800nm。The single-pot yield was 15.5%. The molecular sieve XRD pattern and scanning (SEM) electron microscope photograph have the characteristics of Figure 1 and Figure 2, respectively. The crystallinity of NaY molecular sieve is 94.4%, the skeleton Si-Al ratio is 5.6, and the grain size is concentrated in 500nm-800nm.
实施例3Example 3
本实施例说明本发明提供的合成方法。This example illustrates the synthetic method provided by the present invention.
搅拌状态下向304g水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)中依次加入51.4g导向剂、61g硫酸铝溶液(齐鲁催化剂公司提供,Al2O3 89.7g/L,H2SO4 259g/L,密度1277g/L)、62g低碱偏铝酸钠溶液(齐鲁催化剂公司提供,Al2O3 190.7g/L,Na2O 283.3g/L,密度1416g/L)混合均匀,得到投料配比SiO2/Al2O3=8.5、Na2O/SiO2=0.434的凝胶混合物A。搅拌0.5h后得到凝胶混合物B。向凝胶化合物B中加入13.5g浓硫酸,继续搅拌0.5h,得到投料配比SiO2/Al2O3=8.5、Na2O/SiO2=0.310、H2O/Al2O3=149的凝胶混合物C。将所得的凝胶混合物C直接装入不锈钢反应釜中于90℃下晶化35h,晶化产物经过滤、洗涤,烘箱中120℃干燥过夜,得到NaY分子筛。To 304g of water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L) under stirring state, 51.4g of directing agent and 61g of aluminum sulfate solution (provided by Qilu Catalyst Company, Al 2 O 3 89.7g/L, H 2 SO 4 259g/L, density 1277g/L), 62g low alkali sodium metaaluminate solution (provided by Qilu Catalyst Company, Al 2 O 3 190.7g/L, Na 2 O 283.3g/L , the density is 1416g/L), and the mixture is uniformly mixed to obtain a gel mixture A with a feed ratio of SiO 2 /Al 2 O 3 =8.5 and Na 2 O/SiO 2 =0.434. Gel mixture B was obtained after stirring for 0.5 h. 13.5 g of concentrated sulfuric acid was added to the gel compound B, and the stirring was continued for 0.5 h to obtain the charging ratio of SiO 2 /Al 2 O 3 =8.5, Na 2 O/SiO 2 =0.310, and H 2 O/Al 2 O 3 =149 The gel mixture C. The obtained gel mixture C was directly put into a stainless steel reactor and crystallized at 90°C for 35 hours. The crystallized product was filtered, washed, and dried in an oven at 120°C overnight to obtain NaY molecular sieves.
单釜产率为15.3%。分子筛XRD谱图和扫描(SEM)电镜照片分别具有图1、图2的特征。NaY分子筛的结晶度为93.8%,骨架硅铝比为5.6,晶粒大小集中在500nm~800nm。The single-pot yield was 15.3%. The molecular sieve XRD pattern and scanning (SEM) electron microscope photograph have the characteristics of Figure 1 and Figure 2, respectively. The crystallinity of NaY molecular sieve is 93.8%, the skeleton silicon-alumina ratio is 5.6, and the grain size is concentrated in 500nm-800nm.
实施例4Example 4
本实施例说明本发明提供的合成方法。This example illustrates the synthetic method provided by the present invention.
搅拌状态下向336g水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)中依次加入47.5g导向剂、36g硫酸铝溶液(齐鲁催化剂公司提供,Al2O3 89.7g/L,H2SO4 259g/L,密度1277g/L)、68g低碱偏铝酸钠溶液(齐鲁催化剂公司提供,Al2O3 190.7g/L,Na2O 283.3g/L,密度1416g/L)混合均匀,得到投料配比SiO2/Al2O3=10.0、Na2O/SiO2=0.477的凝胶混合物A。搅拌0.5h后得到凝胶混合物B。向凝胶化合物B中加入17.5g浓硫酸,继续搅拌0.5h,得到投料配比SiO2/Al2O3=10.0、Na2O/SiO2=0.330、H2O/Al2O3=156的凝胶混合物C。将所得的凝胶混合物C直接装入不锈钢反应釜中于98℃下晶化29h,晶化产物经过滤、洗涤,烘箱中120℃干燥过夜,得到NaY分子筛。To 336g of water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L) under stirring state, 47.5g of directing agent and 36g of aluminum sulfate solution (provided by Qilu Catalyst Company, Al 2 O 3 89.7g/L, H 2 SO 4 259g/L, density 1277g/L), 68g low-alkali sodium metaaluminate solution (provided by Qilu Catalyst Company, Al 2 O 3 190.7g/L, Na 2 O 283.3g/L , the density is 1416g/L), and the mixture is uniformly mixed to obtain a gel mixture A with a feed ratio of SiO 2 /Al 2 O 3 =10.0 and Na 2 O/SiO 2 =0.477. Gel mixture B was obtained after stirring for 0.5 h. 17.5 g of concentrated sulfuric acid was added to the gel compound B, and the stirring was continued for 0.5 h to obtain the feeding ratios of SiO 2 /Al 2 O 3 =10.0, Na 2 O/SiO 2 =0.330, and H 2 O/Al 2 O 3 =156 The gel mixture C. The obtained gel mixture C was directly put into a stainless steel reactor and crystallized at 98°C for 29h. The crystallized product was filtered, washed, and dried in an oven at 120°C overnight to obtain NaY molecular sieves.
单釜产率为14.5%。分子筛XRD谱图和扫描(SEM)电镜照片分别具有图1、图2的特征。NaY分子筛的结晶度为92.2%,骨架硅铝比为5.7,晶粒大小集中在500nm~800nm。The single-pot yield was 14.5%. The molecular sieve XRD pattern and scanning (SEM) electron microscope photograph have the characteristics of Figure 1 and Figure 2, respectively. The crystallinity of NaY molecular sieve is 92.2%, the skeleton Si-Al ratio is 5.7, and the grain size is concentrated in 500nm-800nm.
实施例5Example 5
本实施例说明本发明提供的合成方法。This example illustrates the synthetic method provided by the present invention.
搅拌状态下向268g水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)中依次加入38g导向剂、37g硫酸铝溶液(齐鲁催化剂公司提供,Al2O3 89.7g/L,H2SO4 259g/L,密度1277g/L)、50g低碱偏铝酸钠溶液(齐鲁催化剂公司提供,Al2O3 190.7g/L,Na2O 283.3g/L,密度1416g/L)混合均匀,得到投料配比SiO2/Al2O3=10.0、Na2O/SiO2=0.445的凝胶混合物A。搅拌0.5h后得到凝胶混合物B。向凝胶化合物B中加入10.9g浓硫酸,继续搅拌0.5h,得到投料配比SiO2/Al2O3=10.0、Na2O/SiO2=0.330、H2O/Al2O3=159的凝胶混合物C。将所得的凝胶混合物C直接装入不锈钢反应釜中于95℃下晶化33h,晶化产物经过滤、洗涤,烘箱中120℃干燥过夜,得到NaY分子筛。To 268g of water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L) under stirring state, 38g of directing agent and 37g of aluminum sulfate solution (provided by Qilu Catalyst Company, Al 2 O 3 ) were added in turn. 89.7g/L, H 2 SO 4 259g/L, density 1277g/L), 50g low alkali sodium metaaluminate solution (provided by Qilu Catalyst Company, Al 2 O 3 190.7g/L, Na 2 O 283.3g/L, The density of 1416g/L) was uniformly mixed to obtain a gel mixture A with a feed ratio of SiO 2 /Al 2 O 3 =10.0 and Na 2 O/SiO 2 =0.445. Gel mixture B was obtained after stirring for 0.5 h. 10.9 g of concentrated sulfuric acid was added to the gel compound B, and the stirring was continued for 0.5 h to obtain the charging ratio of SiO 2 /Al 2 O 3 =10.0, Na 2 O/SiO 2 =0.330, and H 2 O/Al 2 O 3 =159 The gel mixture C. The obtained gel mixture C was directly put into a stainless steel reactor and crystallized at 95°C for 33 hours. The crystallized product was filtered, washed, and dried in an oven at 120°C overnight to obtain NaY molecular sieves.
单釜产率为14.7%。分子筛XRD谱图和扫描(SEM)电镜照片分别具有图1、图2的特征。NaY分子筛的结晶度为91.3%,骨架硅铝比为5.7,晶粒大小集中在500nm~800nm。The single-pot yield was 14.7%. The molecular sieve XRD pattern and scanning (SEM) electron microscope photograph have the characteristics of Figure 1 and Figure 2, respectively. The crystallinity of NaY molecular sieve is 91.3%, the skeleton Si-Al ratio is 5.7, and the grain size is concentrated in 500nm-800nm.
实施例6Example 6
本实施例说明本发明提供的合成方法。This example illustrates the synthetic method provided by the present invention.
搅拌状态下向248g水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)中依次加入52g导向剂、105g硫酸铝溶液(齐鲁催化剂公司提供,Al2O3 89.7g/L,H2SO4 259g/L,密度1277g/L)、40g低碱偏铝酸钠溶液(齐鲁催化剂公司提供,Al2O3 190.7g/L,Na2O 283.3g/L,密度1416g/L)混合均匀,得到投料配比SiO2/Al2O3=7.0、Na2O/SiO2=0.287的凝胶混合物A。搅拌0.5h后得到凝胶混合物B。向凝胶化合物B中加入7g浓度30%的稀硫酸,继续搅拌0.5h,得到投料配比SiO2/Al2O3=7.0、Na2O/SiO2=0.264、H2O/Al2O3=136的凝胶混合物C。将所得的凝胶混合物C直接装入不锈钢反应釜中于98℃下晶化29h,晶化产物经过滤、洗涤,烘箱中120℃干燥过夜,得到NaY分子筛。To 248g of water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L), 52g of directing agent and 105g of aluminum sulfate solution (provided by Qilu Catalyst Company, Al 2 O 3 ) were sequentially added under stirring. 89.7g/L, H 2 SO 4 259g/L, density 1277g/L), 40g low-alkali sodium metaaluminate solution (provided by Qilu Catalyst Company, Al 2 O 3 190.7g/L, Na 2 O 283.3g/L, The density of 1416g/L) was uniformly mixed to obtain a gel mixture A with a charging ratio of SiO 2 /Al 2 O 3 =7.0 and Na 2 O/SiO 2 =0.287. Gel mixture B was obtained after stirring for 0.5 h. 7g of dilute sulfuric acid with a concentration of 30% was added to the gel compound B, and the stirring was continued for 0.5h to obtain the feeding ratio of SiO 2 /Al 2 O 3 =7.0, Na 2 O/SiO 2 =0.264, H 2 O/Al 2 O 3 = 136 gel mixture C. The obtained gel mixture C was directly put into a stainless steel reactor and crystallized at 98°C for 29h. The crystallized product was filtered, washed, and dried in an oven at 120°C overnight to obtain NaY molecular sieves.
单釜产率为15.4%。分子筛XRD谱图和扫描(SEM)电镜照片分别具有图1、图2的特征。NaY分子筛的结晶度为98.0%,骨架硅铝比为5.2,晶粒大小集中在500nm~800nm。The single-pot yield was 15.4%. The molecular sieve XRD pattern and scanning (SEM) electron microscope photograph have the characteristics of Figure 1 and Figure 2, respectively. The crystallinity of NaY molecular sieve is 98.0%, the skeleton silicon-alumina ratio is 5.2, and the grain size is concentrated in 500nm-800nm.
实施例7Example 7
本实施例说明本发明提供的合成方法。This example illustrates the synthetic method provided by the present invention.
搅拌状态下向284g水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)中依次加入59.3g导向剂、112g硫酸铝溶液(齐鲁催化剂公司提供,Al2O3 89.7g/L,H2SO4 259g/L,密度1277g/L)、50g低碱偏铝酸钠溶液(齐鲁催化剂公司提供,Al2O3 190.7g/L,Na2O 283.3g/L,密度1416g/L)混合均匀,得到投料配比SiO2/Al2O3=7.0、Na2O/SiO2=0.316的凝胶混合物A。搅拌0.5h后得到凝胶混合物B。向凝胶化合物B中加入18g浓度30%的稀硫酸,继续搅拌0.5h,得到投料配比SiO2/Al2O3=7.0、Na2O/SiO2=0.264、H2O/Al2O3=134的凝胶混合物C。将所得的凝胶混合物C直接装入不锈钢反应釜中于98℃下晶化29h,晶化产物经过滤、洗涤,烘箱中120℃干燥过夜,得到NaY分子筛。To 284g of water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L) under stirring, 59.3g of directing agent and 112g of aluminum sulfate solution (provided by Qilu Catalyst Company, Al 2 O 3 89.7g/L, H 2 SO 4 259g/L, density 1277g/L), 50g low alkali sodium metaaluminate solution (provided by Qilu Catalyst Company, Al 2 O 3 190.7g/L, Na 2 O 283.3g/L , the density is 1416g/L), and the mixture is uniformly mixed to obtain a gel mixture A with a feed ratio of SiO 2 /Al 2 O 3 =7.0 and Na 2 O/SiO 2 =0.316. Gel mixture B was obtained after stirring for 0.5 h. 18g of dilute sulfuric acid with a concentration of 30% was added to the gel compound B, and the stirring was continued for 0.5h to obtain the feeding ratio of SiO 2 /Al 2 O3=7.0, Na 2 O/SiO 2 =0.264, H 2 O/Al 2 O 3 Gel Mix C of =134. The obtained gel mixture C was directly put into a stainless steel reactor and crystallized at 98°C for 29h. The crystallized product was filtered, washed, and dried in an oven at 120°C overnight to obtain NaY molecular sieves.
单釜产率为15.5%。分子筛XRD谱图和扫描(SEM)电镜照片分别具有图1、图2的特征。NaY分子筛的结晶度为96.6%,骨架硅铝比为5.2,晶粒大小集中在500nm~800nm。The single-pot yield was 15.5%. The molecular sieve XRD pattern and scanning (SEM) electron microscope photograph have the characteristics of Figure 1 and Figure 2, respectively. The crystallinity of NaY molecular sieve is 96.6%, the skeleton Si-Al ratio is 5.2, and the grain size is concentrated in 500nm~800nm.
实施例8Example 8
本实施例说明本发明提供的合成方法。This example illustrates the synthetic method provided by the present invention.
搅拌状态下向270g水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)中依次加入56.5g导向剂、100g硫酸铝溶液(齐鲁催化剂公司提供,Al2O3 89.7g/L,H2SO4 259g/L,密度1277g/L)、51g低碱偏铝酸钠溶液(齐鲁催化剂公司提供,Al2O3 190.7g/L,Na2O 283.3g/L,密度1416g/L)混合均匀,得到投料配比SiO2/Al2O3=7.0、Na2O/SiO2=0.341的凝胶混合物A。搅拌0.5h后得到凝胶混合物B。向凝胶化合物B中加入25.3g浓度30%的稀硫酸,继续搅拌0.5h,得到投料配比SiO2/Al2O3=7.0、Na2O/SiO2=0.264、H2O/Al2O3=132的凝胶混合物C。将所得的凝胶混合物C直接装入不锈钢反应釜中于98℃下晶化29h,晶化产物经过滤、洗涤,烘箱中120℃干燥过夜,得到NaY分子筛。56.5g of directing agent and 100g of aluminum sulfate solution (provided by Qilu Catalyst Company, Al 2 O) were added to 270g of water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L) under stirring. 3 89.7g/L, H 2 SO 4 259g/L, density 1277g/L), 51g low-alkali sodium metaaluminate solution (provided by Qilu Catalyst Company, Al 2 O 3 190.7g/L, Na 2 O 283.3g/L , the density is 1416g/L), and the mixture is evenly mixed to obtain a gel mixture A with a feed ratio of SiO 2 /Al 2 O 3 =7.0 and Na 2 O/SiO 2 =0.341. Gel mixture B was obtained after stirring for 0.5 h. 25.3 g of dilute sulfuric acid with a concentration of 30% was added to the gel compound B, and the stirring was continued for 0.5 h to obtain the feeding ratio of SiO 2 /Al 2 O 3 =7.0, Na 2 O/SiO 2 =0.264, and H2O/Al 2 O 3 Gel Mix C of =132. The obtained gel mixture C was directly put into a stainless steel reactor and crystallized at 98°C for 29h. The crystallized product was filtered, washed, and dried in an oven at 120°C overnight to obtain NaY molecular sieves.
单釜产率为15.7%。分子筛XRD谱图和扫描(SEM)电镜照片分别具有图1、图2的特征。NaY分子筛的结晶度为97.3%,骨架硅铝比为5.2,晶粒大小集中在500nm~800nm。The single-pot yield was 15.7%. The molecular sieve XRD pattern and scanning (SEM) electron microscope photograph have the characteristics of Figure 1 and Figure 2, respectively. The crystallinity of NaY molecular sieve is 97.3%, the skeleton Si-Al ratio is 5.2, and the grain size is concentrated in 500nm~800nm.
对比例1Comparative Example 1
本对比例说明常规工业凝胶法(参照US3671191)合成NaY分子筛的效果。This comparative example illustrates the effect of synthesizing NaY molecular sieve by conventional industrial gel method (refer to US3671191).
搅拌状态下向182g水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)中依次加入31g导向剂、59g硫酸铝溶液(齐鲁催化剂公司提供,Al2O3 89.7g/L,H2SO4 259g/L,密度1277g/L)、26g低碱偏铝酸钠溶液(齐鲁催化剂公司提供,Al2O3 190.7g/L,Na2O 283.3g/L,密度1416g/L)和95g水混合均匀,得到投料配比SiO2/Al2O3=8.5、Na2O/SiO2=0.310,H2O/Al2O3=222的凝胶混合物。将所得的凝胶混合物装入不锈钢反应釜中于100℃下晶化29h,晶化产物经过滤、洗涤,烘箱中120℃干燥过夜,得到NaY分子筛。To 182g of water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L), 31g of directing agent and 59g of aluminum sulfate solution (provided by Qilu Catalyst Company, Al 2 O 3 ) were sequentially added under stirring. 89.7g/L, H 2 SO 4 259g/L, density 1277g/L), 26g low alkali sodium metaaluminate solution (provided by Qilu Catalyst Company, Al 2 O 3 190.7g/L, Na 2 O 283.3g/L, The density of 1416g/L) and 95g of water were mixed uniformly to obtain a gel mixture with a feed ratio of SiO 2 /Al 2 O 3 =8.5, Na 2 O/SiO 2 =0.310, and H 2 O/Al 2 O 3 =222. The obtained gel mixture was put into a stainless steel reaction kettle and crystallized at 100 °C for 29 h. The crystallized product was filtered, washed, and dried in an oven at 120 °C overnight to obtain NaY molecular sieves.
单釜产率为10.0%。NaY分子筛的结晶度为90.5%,骨架硅铝比为5.3。The single-pot yield was 10.0%. The crystallinity of NaY molecular sieve is 90.5%, and the framework silicon-alumina ratio is 5.3.
从对比例1可以看出,常规工业凝胶法制备NaY分子筛的单釜产率较低。It can be seen from Comparative Example 1 that the single-pot yield of NaY molecular sieve prepared by conventional industrial gel method is low.
对比例2Comparative Example 2
本对比例说明常规工业凝胶法(参照US3671191)合成NaY分子筛的效果。This comparative example illustrates the effect of synthesizing NaY molecular sieve by conventional industrial gel method (refer to US3671191).
搅拌状态下向318g水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)中依次加入45g导向剂、79g硫酸铝溶液(齐鲁催化剂公司提供,Al2O3 89.7g/L,H2SO4 259g/L,密度1277g/L)、41g低碱偏铝酸钠溶液(齐鲁催化剂公司提供,Al2O3 190.7g/L,Na2O 283.3g/L,密度1416g/L)和90g水混合均匀,得到投料配比SiO2/Al2O3=10.0、Na2O/SiO2=0.330、H2O/Al2O3=216的凝胶混合物。将所得的凝胶混合物装入不锈钢反应釜中于100℃下晶化29h,晶化产物经过滤、洗涤,烘箱中120℃干燥过夜,得到NaY分子筛。To 318g of water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L), 45g of directing agent and 79g of aluminum sulfate solution (provided by Qilu Catalyst Company, Al 2 O 3 ) were sequentially added under stirring. 89.7g/L, H 2 SO 4 259g/L, density 1277g/L), 41g low alkali sodium metaaluminate solution (provided by Qilu Catalyst Company, Al 2 O 3 190.7g/L, Na2O 283.3g/L, density 1416g /L) and 90 g of water were mixed uniformly to obtain a gel mixture with a feed ratio of SiO 2 /Al 2 O 3 =10.0, Na 2 O/SiO 2 =0.330, and H 2 O/Al 2 O 3 =216. The obtained gel mixture was put into a stainless steel reaction kettle and crystallized at 100 °C for 29 h. The crystallized product was filtered, washed, and dried in an oven at 120 °C overnight to obtain NaY molecular sieves.
单釜产率为9.6%。NaY分子筛的结晶度为90.5%,骨架硅铝比为5.7。The single-pot yield was 9.6%. The crystallinity of NaY molecular sieve is 90.5%, and the framework silicon-alumina ratio is 5.7.
从对比例2也可以看出,常规工业凝胶法制备NaY分子筛的单釜产率较低。It can also be seen from Comparative Example 2 that the single-pot yield of NaY molecular sieve prepared by conventional industrial gel method is low.
对比例3Comparative Example 3
本对比例说明参照CN1185996A合成NaY分子筛的效果。This comparative example illustrates the effect of synthesizing NaY molecular sieve with reference to CN1185996A.
将197g水玻璃(齐鲁催化剂公司提供,SiO2 250.6g/L,模数3.36,密度1258g/L)加热到65℃,然后搅拌状态下向其中依次加入41g导向剂、91g硫酸铝溶液(齐鲁催化剂公司提供,Al2O3 89.7g/L,H2SO4 259g/L,密度1277g/L)、28g低碱偏铝酸钠溶液(齐鲁催化剂公司提供,Al2O3 190.7g/L,Na2O 283.3g/L,密度1416g/L)和90g水混合均匀,得到投料配比SiO2/Al2O3=7.0、Na2O/SiO2=0.249,H2O/Al2O3=186的凝胶混合物。将所得的凝胶混合物装入不锈钢反应釜中于100℃下晶化29h,晶化产物经过滤、洗涤,烘箱中120℃干燥过夜,得到NaY分子筛。197g of water glass (provided by Qilu Catalyst Company, SiO 2 250.6g/L, modulus 3.36, density 1258g/L) was heated to 65°C, and then 41g of directing agent and 91g of aluminum sulfate solution (Qilu catalyst) were added to it in turn under stirring. Provided by the company, Al 2 O 3 89.7g/L, H 2 SO 4 259g/L, density 1277g/L), 28g low-alkali sodium metaaluminate solution (provided by Qilu Catalyst Company, Al 2 O 3 190.7g/L, Na 2 O 283.3g/L, density 1416g/L) and 90g of water were mixed uniformly to obtain the ratio of SiO 2 /Al 2 O 3 =7.0, Na 2 O/SiO 2 =0.249, H 2 O/Al 2 O 3 = 186 gel mix. The obtained gel mixture was put into a stainless steel reaction kettle and crystallized at 100 °C for 29 h. The crystallized product was filtered, washed, and dried in an oven at 120 °C overnight to obtain NaY molecular sieves.
单釜产率为12.6%。NaY分子筛的结晶度为89.5%,骨架硅铝比为5.0。The single-pot yield was 12.6%. The crystallinity of NaY molecular sieve is 89.5%, and the framework silicon-alumina ratio is 5.0.
从对比例3可以看出,该方法虽比常规工业凝胶法制备NaY分子筛的单釜产率有所提高,但NaY产品的硅铝比较低,且原料水玻璃成胶前需加热到一定温度,增加了生产成本和操作难度。As can be seen from Comparative Example 3, although the single-pot yield of NaY molecular sieve prepared by this method is improved compared with the conventional industrial gel method, the silica-alumina of NaY product is relatively low, and the raw material water glass needs to be heated to a certain temperature before gelling , increasing the production cost and operation difficulty.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910025461.7A CN111434611B (en) | 2019-01-11 | 2019-01-11 | NaY molecular sieve synthesis method for improving single-kettle yield |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910025461.7A CN111434611B (en) | 2019-01-11 | 2019-01-11 | NaY molecular sieve synthesis method for improving single-kettle yield |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111434611A true CN111434611A (en) | 2020-07-21 |
CN111434611B CN111434611B (en) | 2022-06-28 |
Family
ID=71580259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910025461.7A Active CN111434611B (en) | 2019-01-11 | 2019-01-11 | NaY molecular sieve synthesis method for improving single-kettle yield |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111434611B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6027708A (en) * | 1998-09-08 | 2000-02-22 | Council Of Scientific & Industrial Research | Process for the synthesis of flyash based zeolite-Y |
CN101537368A (en) * | 2008-03-19 | 2009-09-23 | 中国石油天然气股份有限公司 | Preparation method of in-situ crystallization type catalytic cracking catalyst |
CN104118884A (en) * | 2013-04-23 | 2014-10-29 | 中国石油大学(北京) | Preparation method for NaY molecular sieve |
CN104118885A (en) * | 2013-04-23 | 2014-10-29 | 中国石油天然气股份有限公司 | Method for synthesizing NaY zeolite with high silicon-aluminum ratio |
CN107399743A (en) * | 2016-05-20 | 2017-11-28 | 中国石油化工股份有限公司 | A kind of preparation method of NaY molecular sieve |
-
2019
- 2019-01-11 CN CN201910025461.7A patent/CN111434611B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6027708A (en) * | 1998-09-08 | 2000-02-22 | Council Of Scientific & Industrial Research | Process for the synthesis of flyash based zeolite-Y |
CN101537368A (en) * | 2008-03-19 | 2009-09-23 | 中国石油天然气股份有限公司 | Preparation method of in-situ crystallization type catalytic cracking catalyst |
CN104118884A (en) * | 2013-04-23 | 2014-10-29 | 中国石油大学(北京) | Preparation method for NaY molecular sieve |
CN104118885A (en) * | 2013-04-23 | 2014-10-29 | 中国石油天然气股份有限公司 | Method for synthesizing NaY zeolite with high silicon-aluminum ratio |
CN107399743A (en) * | 2016-05-20 | 2017-11-28 | 中国石油化工股份有限公司 | A kind of preparation method of NaY molecular sieve |
Non-Patent Citations (1)
Title |
---|
顾建峰 等: ""高硅铝比NaY分子筛的合成"", 《工业催化》 * |
Also Published As
Publication number | Publication date |
---|---|
CN111434611B (en) | 2022-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100404418C (en) | A kind of preparation method of high silicon aluminum ratio small grain NaY molecular sieve | |
CN106348312B (en) | A kind of synthesis methods for inorganic compounds of regulation and control ZSM-5 molecular sieve pattern | |
CN104692412A (en) | A method of synthesizing a NaY molecular sieve and the synthesized NaY molecular sieve | |
CN110078084B (en) | A kind of NaY molecular sieve with high silicon-aluminum ratio and small grain size and preparation method thereof | |
CN107662927A (en) | A kind of method that NaY molecular sieve is prepared using Si-Al molecular sieve crystallization mother liquor | |
CN105080589B (en) | A kind of catalyst containing Y type molecular sieve and preparation method | |
CN102616807B (en) | Method for synthesizing Y type molecular sieve | |
CN1785807A (en) | High-silica-alumina-ratio small-crystal-grain NaY molecular sieve | |
CN1267345C (en) | Preparation method of NaY molecular sieve | |
CN105084388B (en) | Method for preparing and modifying Y-type molecular sieve | |
CN106946268B (en) | A kind of MOR/ZSM-35 composite molecular screen and its synthetic method | |
CN111434611B (en) | NaY molecular sieve synthesis method for improving single-kettle yield | |
CN106927484A (en) | Y molecular sieve and preparation method thereof | |
CN107399743B (en) | A kind of preparation method of NaY molecular sieve | |
CN104649294B (en) | Method for improving relative crystallinity of synthetic NaY zeolite | |
CN1124980C (en) | Si-Zn molecular sieve and its synthesizing process | |
CN111086997B (en) | A method for preparing Y-type molecular sieves containing mesopores and high crystallinity by template method | |
CN105523567B (en) | A kind of preparation method of the NaY molecular sieve of controlled dimensions | |
CN112744846B (en) | Method for producing aluminum sol and aluminum sol | |
CN115594192B (en) | NaY zeolite with high silicon-aluminum ratio and preparation method and application thereof | |
CN1162371C (en) | Process for preparing composite SiO2-Al2O2 oxide with high specific surface area | |
CN105084386B (en) | A kind of surface Silicon-rich small crystal grain Y-shaped molecular sieve and preparation method thereof | |
CN110078093B (en) | NaY molecular sieve and preparation method and application thereof | |
CN105084387B (en) | Synthetic method of small-crystal grain NaY molecular sieve | |
CN113511658A (en) | NaY molecular sieve synthesis method for improving single-kettle yield |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |