CN111433918A - 在短波红外线内针对cmos成像器的绝缘体上的锗 - Google Patents

在短波红外线内针对cmos成像器的绝缘体上的锗 Download PDF

Info

Publication number
CN111433918A
CN111433918A CN201980006112.9A CN201980006112A CN111433918A CN 111433918 A CN111433918 A CN 111433918A CN 201980006112 A CN201980006112 A CN 201980006112A CN 111433918 A CN111433918 A CN 111433918A
Authority
CN
China
Prior art keywords
germanium
layer
photodiode
light detecting
detecting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980006112.9A
Other languages
English (en)
Other versions
CN111433918B (zh
Inventor
乌利尔·利维
俄梅尔·卡帕奇
乌拉罕·巴卡尔
阿萨夫·拉萨夫
爱德华·普莱斯勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaota Semiconductor Co ltd
Trieye Ltd
Original Assignee
Trieye Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trieye Ltd filed Critical Trieye Ltd
Publication of CN111433918A publication Critical patent/CN111433918A/zh
Application granted granted Critical
Publication of CN111433918B publication Critical patent/CN111433918B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/1465Infrared imagers of the hybrid type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02165Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors using interference filters, e.g. multilayer dielectric filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1808Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only Ge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明公开一种光检测结构,包含在一绝缘体上锗(GeOI)芯片的一器件层内形成的锗(Ge)光电二极管、基于所述锗光电二极管(PD)的多个焦平面阵列;以及公开一种制备所述锗光电二极管及焦平面阵列(FPA)的方法。一FPA包含结合至一ROIC的一位于GeOI上方的锗光电二极管阵列,其中所述GeOI层的操作层已被移除。可设计所述GeOI的绝缘体的特性及厚度,以改善耦入所述光电二极管的光耦合。

Description

在短波红外线内针对CMOS成像器的绝缘体上的锗
相关申请交叉引用
本申请要求于2018年2月12日提交美国临时专利申请案第62/629,245的美国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本文公开的实施例整体上涉及焦平面阵列(FPA)器件,且尤其涉及基于锗(Ge)的FPA,所述FPA检测在短波红外线(SWIR)光谱模式下的光。
背景技术
在各种应用中,可在短波红外线(SWIR)下运行的摄像机变得越来越重要。众所周知,SWIR范围在0.9至1.7微米(μm)之间。例如,由于眼睛安全规范允许使用更高的光功率,因此任何依赖有源照明的应用皆可自于SWIR模式下运行中受益。通过作为量子检测器,SWIR摄像机中所使用的传感器的功能类似于基于硅的互补金属氧化物半导体(CMOS)传感器(亦称为“光电检测器”或“PD”)。光子将电子从一能级激发至另一能级,从而将光转换为一电流。由于硅的能带隙并不支持对于超过~1.1μm的波长进行光检测,因此SWIR传感器通常由诸如砷化铟镓(InGaAs)的材料所制成。虽然InGaAs传感器能够提供具有高量子效率及相对较低的暗电流的高质量焦平面阵列(FPA),然而彼等的使用成本高,实质地阻止彼等在许多消费市场应用中的实现。
因此,高度需要实现能够履行低成本的用于SWIR摄像机的CMOS兼容传感器及/或FPA。
基于锗(Ge)的传感器是已知的。锗位于元素周期表的第IV组中,与硅颇为兼容,且可直接在硅上生长。目前不同的铸造厂将锗工艺集成至其等的CMOS生产线中。在习知的技术中,可通过在所述基于硅的ROIC的顶部外延地生长一锗层(其中形成多個锗PD),以将基于锗的PD或FPA与基于硅的读出集成电路(ROIC)进行整合。此种方法具有两个主要缺点:a)在硅与锗之间存在4.2%的晶格失配,导致在锗层中残留位错,造成更高的PD漏电,且有时会降低工艺良率;以及b)ROIC的顶部的锗层的生长需要在低温下进行,从而进一步降低锗层的品质。
“绝缘体上锗”(GeOI)芯片亦是已知的且可商购的(例如,由IQE Silicon,PascalClose,加地夫,CF3 0LW,英国所提供)。图1示意地说明一GeOI芯片的一横截面,包括一处理层(例如,硅或锗基质)102、一各别的绝缘体(例如,氧化物)104及一单晶锗“器件”层106。所述锗器件的厚度范围可介于0.2与10微米(μm)之间。
已知GeOI芯片用于制造微电子器件。然而,目前并未将GeOI芯片使用于光学(照片)检测。
发明内容
在不同的实施例中,提供多个光检测结构,所述光检测结构包含形成于一GeOI芯片的一锗器件层中的至少一锗(Ge)光电二极管,其中,所述GeOI芯片包含一操作层及一绝缘层,所述绝缘层是位于所述操作层与锗器件层之间。
在一示例性实施例中,所述绝缘体包含氧化硅。
在一示例性实施例中,所述绝缘体包含氧化锗。
在一示例性实施例中,所述绝缘层是一个四分之一波长层。
在一示例性实施例中,所述绝缘层是由一抗反射涂层替代。
在一示例性实施例中,所述操作层是由硅所制成。
在一示例性实施例中,所述至少一锗光电二极管是一垂直型的PN光电二极管。在其他实施例中,一锗光电二极管可为一垂直型的PIN二极管或一水平型的PN或PIN二极管。
在一示例性实施例中,所述至少一锗光电二极管包含在所述锗器件层中所形成的多个锗光电二极管的一阵列。多个锗光电二极管的所述阵列中的各个锗光电二极管皆可检测位在短波红外线(SWIR)范围内的光。
在示例性实施例中,多个锗光电二极管的所述阵列中的相邻的多个锗光电二极管是彼此电性隔离的。
在示例性实施例中,提供包含所述锗器件层的多个FPA,所述锗器件层具有多个锗光电二极管的所述阵列,所述多个锗光电二极管的所述阵列机械地且电气地耦合至一ROIC。
在示例性实施例中,提供用于制备一光检测结构的方法,所述方法包含提供一GeOI芯片,所述GeOI芯片包含一操作层、一锗器件层及一绝缘层,所述绝缘层是位于所述操作层与所述锗器件层之间,以及在所述锗器件层中形成至少一锗光电二极管。
在一示例性实施例中,在所述锗器件层中形成至少一锗光电二极管包含形成多个锗光电二极管的一阵列。
在一示例性实施例中,一种方法进一步包含将多个锗光电二极管的所述阵列机械地且电气地耦合至一ROIC,以及移除所述操作层,以提供一FPA。
附图说明
下面参考在此段落之后列出的附图来描述本文公开的实施例的非限制性示例。出现在多个附图中的相同结构,元素或零件通常在所有出现的附图中均标有相同的数字。附图和说明意在阐明和阐明本文公开的实施例,并且不应被认为以任何方式进行限制。在图纸中:
图1示意性地说明一GeOI芯片的一横截面;
图2A示意性地显示本文中所公开的一单一像素结构的一横截面侧视图;
图2B示意性地显示图2A的所述单一像素结构在一A-A切面的俯视图;
图3显示如图2B中的一像素的阵列的俯视图;
图4A示意性地显示在侧面横截面中,结合至一ROIC芯片的一基于锗的PS芯片的截面;
图4B示意性地显示在侧截面中,移除图4A的所述结构中的所述操作层,以提供一FPA;
图4C示意性性地显示在侧截面中,在图4B的所述结构中新增多个微透镜;
图5在一流程图中说明用于制备在本文中所公开的一位于GeOI上方的锗的FPA的一芯片规模工艺的示例性实施例。
具体实施方式
现在回到附图,图2A示意性地显示本文中所公开编号为200的一单一像素位于GeOI上方的锗结构的一横截面侧视图。图2B示意性地显示所述单一像素结构200在一A-A切面的俯视图。像素结构200形成于单晶层106内,且包含具有一PN型的或PIN型的结构的一锗光电二极管202。如图所示,PD 202示例性地具有包含一P-掺杂区域204及N-掺杂区域206的一PN结构。在一些实施例中,可切换所数P区域及N区域。通常,所述PD可为以如图所示的一垂直型的PN结形式(即,所述P及N区域是沿着入射光的方向排列)、一水平型的PN结(未显示)、一PIN二极管(未显示)或任何其他类型的二极管。一(高于所述P掺杂的)P+掺杂区域208及一(高于所述N掺杂的)N+掺杂区域210分别作为多个奥姆接触并钝化至用于外部电接触的金属垫层212及214。沟槽隔离216将PD 202与相邻的多个PD分开。所述沟槽内填充一绝缘体,例如氧化硅,所述绝缘体亦覆盖所述像素的顶部(所述锗的顶部的PD区域具有多个通孔及多个电触点)。所述多个电触点是界定于所述绝缘体内,以将所述像素连接至额外的多个金属层(未显示),所述多个金属层将与一ROIC芯片连接。所述多个掺杂的、多个奥姆接触及多个金属垫层可与已知的多个锗光电二极管相似。一像素的所述面积实质上为所述PD面积新增相邻的多个PD之间的所述隔离面积的一半。
一PD 202可具有任何数量的形状。尤其,所述PD的形状是矩形,其尺寸D1及D2如图2B所示是相等的(即,正方形)或不相等。类似地,一像素可为具有任何形状,且尤其可为具有尺寸D3及D4的矩形。D3及D4可相等(正方形)或不相等。在一些具有多个正方形PD的实例中,D1=D2可在1至30μm的范围内。在一些具有多个正方形像素的实例中,D3=D4可在2至31μm的范围内,即,相邻的多个PD之间的间隔(及隔离)可最小为约2μm。所述矩形/正方形仅是示例性的,且如上所述,一PD/像素可具有其他的形状,例如一六边形。各种功能的最小尺寸(包括像素及PD尺寸)可能仅受限于制程公差。
可在一GeOI芯片上制备多个锗光电二极管(“芯片级处理”)以提供一光敏(PS)芯片。图3显示如图2B中所编号为300的多个像素的一阵列的俯视图。从顶视图看。多个PD(及多个像素)的一给定的阵列(自数个像素至数百万个像素及甚至更多)定义一个芯片。一PS芯片包括许多此等的多个芯片,通常大约数百个。当电气地耦合至一ROIC时,所述PD阵列可作为一焦平面阵列(FPA),参见图4A至4C。
图4A示意性地显示在侧面横截面中,结合至一ROIC芯片402的一基于锗的PS芯片310的截面,以形成一结合的结构400。虚线404显示介于两个芯片之间的物理连接。可利用许多已知的方式进行结合,例如使用ZiBondTM
Figure BDA0002515563390000051
技术。图4B示意性地显示在侧截面中,移除图4A的所述结构中的所述操作层102,以提供一FPA。为了清楚起见,如本文中所使用的术语“FPA”涉及结合至一位于GeOI上方的锗光电二极管阵列,其中所述GeOI层的所述处理层已被移除,以使所述绝缘层(或一替代的抗反射(AF)层,请参见下文)暴露于入射光下。此于图4C进行说明,图4C显示具有新增的多个微透镜406的侧截面结构400。
通常,基于锗光电二极管的一FPA机械地且电气地耦合至一ROIC可包括在一GeOI芯片的一器件层中形成多个锗光电二极管的所述阵列、将所述GeOI芯片与多个PD的所述阵列结合至一ROIC,以使各个PD电气地连接至所述ROIC,以及移除所述器件层,以使所述绝缘层及多个PD暴露于入射光。一可选的步骤是同时移除所述绝缘层并以AF涂层替代。另一可选的步骤可为在所述绝缘层或所述AF涂层上新增如上所述的微透镜。
图5在一流程图中说明用于制备一位于GeOI上方的锗的FPA的一示例性芯片规模工艺的详细步骤。结合图2至图4所示的结构以完成所述工艺的描述。
在步骤502中,通过诸如液相化学气相沉积(LPCVD)或液相等离子体增强化学气相沉积(PECVD)的众所周知的工艺,在锗层106的顶部沉积或生长一薄的(例如,10至20nm)“顶部”氧化物层。在步骤504中,通过光刻以定义所述像素的所述几何形状,之后蚀刻所述像素周围的所述锗的缘周,以在相邻的多个像素之间进行分离。所述蚀刻导致形成多个沟槽,一适当材料填充所述多个沟槽以作为多个沟槽隔离216。在步骤506中,例如多个PN型的或PIN型的锗光电二极管的一阵列是通过已知的方法所制备,即,离子注入及掺杂剂的激活。在步骤508中,移除所述第一顶部薄氧化物(例如,通过蚀刻)。在步骤510中,通过利用诸如一氧化物(“第二氧化物”)的填充物填充在步骤504中蚀刻的多个区域,以进行沟槽隔离。所述第二氧化物的厚度需要大于所述锗层厚度(例如,2至3μm),以支持接触的实现。在步骤512中,所述第二氧化物被平面化,例如,通过化学机械抛光(CMP),使得整个芯片上的所述氧化物的厚度是均匀的。在步骤514中,通过光刻及氧化物蚀刻以界定用于电接触的通孔。在步骤516中,所述通孔被金属填充以形成电接触。可根据需要执行一热处理,以减小接触电阻。在步骤518中,例如,通过CMP将芯片平面化,以完成一PS芯片的所述制备,并制备用于一结合工艺的所述PS芯片。最终,在步骤420中,将所述PS芯片上下翻转并结合至一ROIC芯片,所述ROIC芯片具有面向所述RPIC芯片的器件层。之后在步骤522中移除所述处理层。
在移除所述处理芯片之后,所述锗被原始的GeOI芯片的所述氧化物保护。理想地,使用此种氧化物作为抗反射(AF)涂层是有益的,以减少从自由的空间入射至所述锗FPA上的光的反射率。因此,在一实施例中,所述厚度绝缘层104可被设计为使其与一个四分之一波长层的条件相匹配,例如,波长为1.5微米。其可将反射率从30%以上戏剧性地降低至仅数个百分比。在一替代的实施例中,绝缘层104可在步骤522之后被去除,并以具有一折射率大约为2的另一层替代,其在锗及空气之间提供一良好的AF涂层。在另一替代的实施例中,可使用一个四分之一波长堆栈替代单个四分之一波长层。此方法,可在较大的接收角范围内实现宽带反射。如所述,在一些实施例中,可新增微透镜406,使得各个微透镜被分配至一像素,以改善向所述像素的所述光收集效率。最后,将结合的芯片切割为单个芯片,将所述芯片封装,以实现电气及光学的功能。
如上所述以及以下所要求保护的所述光检测结构以及制备此种结构的方法为SWIR模式提供高质量、低成本的CMOS兼容的多个FPA。使用GeOI芯片替代锗芯片提供至少一个显著的优点:可将所述绝缘体顶部的锗器件层制备成一所期望小的特定厚度(通常为数微米)。即,可将所述PD吸收层的所述厚度最优化为所述期望值。其与通常仅有几百微米厚度且无法以足够的精确度薄化至所需的厚度的一锗芯片相反。用于制备具有所期望小的特定厚度的锗层的另一种方法是在硅上外延地生长所述锗器件层。然而,由于锗及硅之间存在4.2%晶格失配,因此其产生具有显著的位错密度的一较低等级的锗层。如上述,使用GeOI替代锗芯片的另一优点在于所述绝缘体的角色及特性。
尽管已根据某些实施例以及一般相关的方法描述本公开,然而对于本领域技术人员而言,所述实施例及方法的变更及置换将是显而易见的。应当理解,本公开的内容并不受限于本文中所述的具体实施例,而仅受限于所附的权利要求书的范围。
除非另有说明,否则在选择的选项列表中的最后两个构件之间所使用的所述表达“及/或”表示自所述选项列表中选择一个或多个是适当的,且可被选择。
应理解的是,在所述权利要求书或说明书中提及“一或一个(a)”或“一个(an)”组件的情况下,此种引用不应被解释为仅存在所述组件中的一个。
在本说明书中所提及的所有的参考文献皆通过引用而以其整体并入本文中,其范围如同各个单独的参考文献被具体地且单独地指示为通过引用而并入本文中。此外,在本申请中对于任何参考文献的引用或标识皆不应被解释为承认所述参考文献可作为本发明的现有技术。

Claims (20)

1.一种光检测结构,其特征在于:所述光检测结构包含:至少一锗(Ge)光电二极管,所述至少一锗光电二极管形成于一绝缘体上锗(GeOI)晶片的一锗器件层中,所述绝缘体上锗晶片包含一操作层及一绝缘层,所述绝缘层是位于所述操作层与所述锗器件层之间。
2.如权利要求1所述的光检测结构,其特征在于:所述绝缘层包含氧化硅。
3.如权利要求1所述的光检测结构,其特征在于:所述绝缘层包含氧化锗。
4.如权利要求1所述的光检测结构,其特征在于:所述绝缘层是一个四分之一波長层。
5.如权利要求1所述的光检测结构,其特征在于:所述操作层是由硅所制成。
6.如权利要求1所述的光检测结构,其特征在于:所述至少一锗光电二极管是一垂直型的PN光电二极管。
7.如权利要求1所述的光检测结构,其特征在于:所述至少一锗光电二极管包含多个锗光电二极管的一阵列。
8.如权利要求7所述的光检测结构,其特征在于:所述多个锗光电二极管的所述阵列中相邻的多个锗光电二极管是彼此电性隔离的。
9.如权利要求7所述的光检测结构,其特征在于:所述多个锗光电二极管的所述阵列中的各个锗光电二极管是一PN光电二极管。
10.如权利要求7所述的光检测结构,其特征在于:所述多个锗光电二极管的所述阵列中的各个锗光电二极管包含多个电触点。
11.如权利要求7所述的光检测结构,其特征在于:所述多个锗光电二极管的所述阵列中相邻的多个锗光电二极管是彼此电性隔离的。
12.如权利要求1至11中任一项所述的光检测结构,其特征在于:所述多个锗光电二极管的所述阵列中的各个锗光电二极管可检测位在短波红外线(SWIR)範圍內的光。
13.如权利要求7至11中任一项所述的光检测结构,其特征在于:所述操作层已被移除,且所述锗器件层是机械地且电气地耦合至一唯读集成电路(ROIC),以提供一焦平面阵列(FPA)。
14.一种制备一光检测结构的方法,其特征在于:所述方法包含:
(a)提供一绝缘体上锗(GeOI)晶片,所述绝缘体上锗晶片包含一操作层、一锗器件层及一绝缘层,所述绝缘层是位于所述操作层与所述锗器件层之间;以及
(b)在所述锗器件层中形成至少一锗光电二极管。
15.如权利要求14所述的方法,其特征在于:在所述锗器件层内形成至少一锗光电二极管包含:形成多個锗光电二极管的一阵列。
16.如权利要求14所述的方法,其特征在于:所述方法进一步包含:
(c)将所述锗光电二极管机械地且电气地耦合至一唯读集成电路(ROIC)以及移除所述操作层,以提供一焦平面阵列(FPA)。
17.如权利要求14所述的方法,其特征在于:所述绝缘层是由氧化硅所制成。
18.如权利要求14所述的方法,其特征在于:所述绝缘层是一个四分之一波長层。
19.如权利要求14所述的方法,其特征在于:所述绝缘层包含氧化锗。
20.如权利要求14至19中任一项所述的方法,其特征在于:各个锗光电二极管可检测位在短波红外线(SWIR)範圍內的光。
CN201980006112.9A 2018-02-12 2019-02-11 在短波红外线内针对cmos成像器的绝缘体上的锗 Active CN111433918B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862629245P 2018-02-12 2018-02-12
US62/629,245 2018-02-12
PCT/IB2019/051086 WO2019155435A2 (en) 2018-02-12 2019-02-11 Germanium on insulator for cmos imagers in the short wave infrared

Publications (2)

Publication Number Publication Date
CN111433918A true CN111433918A (zh) 2020-07-17
CN111433918B CN111433918B (zh) 2024-01-23

Family

ID=67548837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980006112.9A Active CN111433918B (zh) 2018-02-12 2019-02-11 在短波红外线内针对cmos成像器的绝缘体上的锗

Country Status (4)

Country Link
US (1) US11271028B2 (zh)
EP (1) EP3707755B1 (zh)
CN (1) CN111433918B (zh)
WO (1) WO2019155435A2 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4243404A3 (en) * 2019-10-24 2023-11-29 Trieye Ltd. Photonics systems and methods
US10978600B1 (en) 2019-10-24 2021-04-13 Trieye Ltd. Systems and methods for active SWIR imaging using germanium receivers
CN115997292A (zh) 2020-08-31 2023-04-21 趣眼有限公司 短波红外光焦平面阵列及其使用和制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100285630A1 (en) * 2009-05-07 2010-11-11 Samsung Electronics Co., Ltd. Method of manufacturing an image sensor having improved anti-reflective layer
CN102782850A (zh) * 2010-03-02 2012-11-14 美光科技公司 绝缘体上半导体金属结构、形成此些结构的方法及包含此些结构的半导体装置
US20170025454A1 (en) * 2015-07-24 2017-01-26 Artilux Corporation Multi-wafer based light absorption apparatus and applications thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138201A1 (en) 2002-01-18 2003-07-24 Cabot Microelectronics Corp. Self-aligned lens formed on a single mode optical fiber using CMP and thin film deposition
US8809672B2 (en) * 2009-05-27 2014-08-19 The Regents Of The University Of California Nanoneedle plasmonic photodetectors and solar cells
US8956909B2 (en) * 2010-07-16 2015-02-17 Unimicron Technology Corporation Method of fabricating an electronic device comprising photodiode
US8377733B2 (en) * 2010-08-13 2013-02-19 Taiwan Semiconductor Manufacturing Company, Ltd. Antireflective layer for backside illuminated image sensor and method of manufacturing same
US9691809B2 (en) * 2013-03-14 2017-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Backside illuminated image sensor device having an oxide film and method of forming an oxide film of a backside illuminated image sensor device
SG11201802818VA (en) 2015-10-13 2018-05-30 Univ Nanyang Tech Method of manufacturing a germanium-on-insulator substrate
US9673239B1 (en) * 2016-01-15 2017-06-06 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensor device and method
US10153320B2 (en) * 2016-11-29 2018-12-11 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and method of forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100285630A1 (en) * 2009-05-07 2010-11-11 Samsung Electronics Co., Ltd. Method of manufacturing an image sensor having improved anti-reflective layer
CN102782850A (zh) * 2010-03-02 2012-11-14 美光科技公司 绝缘体上半导体金属结构、形成此些结构的方法及包含此些结构的半导体装置
US20170025454A1 (en) * 2015-07-24 2017-01-26 Artilux Corporation Multi-wafer based light absorption apparatus and applications thereof

Also Published As

Publication number Publication date
US20200365630A1 (en) 2020-11-19
EP3707755A4 (en) 2021-01-13
CN111433918B (zh) 2024-01-23
WO2019155435A3 (en) 2019-10-03
EP3707755B1 (en) 2024-04-03
WO2019155435A2 (en) 2019-08-15
EP3707755A2 (en) 2020-09-16
US11271028B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
US9263613B2 (en) Nanowire photo-detector grown on a back-side illuminated image sensor
US8889455B2 (en) Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US8664578B2 (en) Image sensor with reduced crosstalk having an isolation region with a second trench in the electrically conductive material of a first trench
EP2756523B1 (en) Frontside-illuminated barrier infrared photodetector device and methods of fabricating the same
CN111433918B (zh) 在短波红外线内针对cmos成像器的绝缘体上的锗
US9130072B1 (en) Backside illuminated image sensor and method of manufacturing the same
CN110800110A (zh) 谐振腔增强的图像传感器
US11705469B2 (en) Germanium based focal plane array for the short infrared spectral regime
US20230197758A1 (en) Photodetecting device with enhanced collection efficiency
US20220293647A1 (en) Dielectric structure overlying image sensor element to increase quantum efficiency
Martin et al. InGaAs/InP focal plane arrays for visible light imaging
CN111508980B (zh) 增强收集效率的光侦测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20231225

Address after: Tel Aviv

Applicant after: Trieye Ltd.

Applicant after: Gaota Semiconductor Co.,Ltd.

Address before: Tel Aviv

Applicant before: Trieye Ltd.

GR01 Patent grant
GR01 Patent grant