CN111433313A - 使钻井泥浆转化为固体凝胶类堵漏材料的方法和材料 - Google Patents

使钻井泥浆转化为固体凝胶类堵漏材料的方法和材料 Download PDF

Info

Publication number
CN111433313A
CN111433313A CN201880076762.6A CN201880076762A CN111433313A CN 111433313 A CN111433313 A CN 111433313A CN 201880076762 A CN201880076762 A CN 201880076762A CN 111433313 A CN111433313 A CN 111433313A
Authority
CN
China
Prior art keywords
composition
drilling fluid
lost circulation
nanosilica
chemical activator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880076762.6A
Other languages
English (en)
Inventor
维克兰特·瓦格勒
阿卜杜拉·阿勒-亚米
拉金德拉·阿鲁库马尔·卡尔冈卡尔
扎伊纳布·阿尔赛哈蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Publication of CN111433313A publication Critical patent/CN111433313A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/12Clay-free compositions containing synthetic organic macromolecular compounds or their precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/5045Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/5086Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1057Centralising devices with rollers or with a relatively rotating sleeve
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/003Means for stopping loss of drilling fluid
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B31/00Fishing for or freeing objects in boreholes or wells
    • E21B31/005Fishing for or freeing objects in boreholes or wells using vibrating or oscillating means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Colloid Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种可转化的组合物,其包含纳米二氧化硅钻井液和化学活化剂,纳米二氧化硅钻井液包含水基钻井泥浆和碱性纳米二氧化硅分散体,其中水基钻井泥浆包含水,其中碱性纳米二氧化硅分散体包含纳米二氧化硅,化学活化剂能够在水的存在下水解以产生酸,其中碱性纳米二氧化硅分散体与化学活化剂的重量比在1:0.001和1:0.25之间。

Description

使钻井泥浆转化为固体凝胶类堵漏材料的方法和材料
技术领域
本申请公开了用于地下地层中的漏失控制的组合物和方法。具体而言,公开了用于原位产生堵漏材料的组合物和方法。
背景技术
当在井眼中循环时,用于钻探井眼的流体可能漏失到地下地层中。钻井液可能经由枯竭区域、压力相对较低的区域、具有自然产生的裂缝的井漏区域、钻井液的静水压力超过其破裂梯度的薄弱区域以及井眼与地下地层之间的其他开口进入地下地层。进入地下地层的漏失量的程度范围可以从轻微(例如小于10桶/小时(bbl/hr))至严重(例如大于100bbl/hr)。因此,由此类流体提供的钻井服务更难以实现或实现的代价更高。
当前的防止漏失的方法要求钻井停止,以便可以用堵漏段塞代替钻井液。钻井中断会导致非生产时间和收入损失。
发明内容
本申请公开了用于地下地层中的漏失控制的组合物和方法。具体而言,公开了用于原位产生堵漏材料的组合物和方法。
在第一方面中,提供了一种可转化的组合物。可转化的组合物包含纳米二氧化硅钻井液,该纳米二氧化硅钻井液包含含有水的水基钻井泥浆和含有纳米二氧化硅的碱性纳米二氧化硅分散体。可转化的组合物还包含能够水解以产生酸的化学活化剂,其中碱性纳米二氧化硅分散体与化学活化剂的重量比在1:0.001和1:0.25之间。
在其他方面中,化学活化剂为水不溶性可水解聚酯。在其他方面中,水不溶性可水解聚酯选自包含聚丙交酯、聚羟基链烷酸酯、聚乙交酯、聚乙丙交酯、聚己内酯和它们的组合的组。在其他方面中,可转化的组合物的pH在8和11之间。在其他方面中,纳米二氧化硅钻井液包含钻井液添加剂。
在第二方面中,提供了一种用于产生固体凝胶堵漏材料的方法。该方法包括以下步骤:遇到井眼中的井漏区域,其中当引入井眼中的纳米二氧化硅钻井液的流率小于从井眼返回的纳米二氧化硅钻井液的流率时,会出现井漏区域,其中纳米二氧化硅钻井液包含水和碱性纳米二氧化硅分散体。该方法进一步包括以下步骤:将一定量的化学活化剂混合到纳米二氧化硅钻井液中,以产生可转化的组合物,其中可转化的组合物的pH在8和11之间;将可转化的组合物引入井眼中;使可转化的组合物能够循环到井漏区域;当可转化的组合物循环到井漏区域时,使化学活化剂水解以产生酸;当可转化的组合物循环到井漏区域时,酸能够降低可转化的组合物的pH;当可转化的组合物的pH小于凝胶pH时,使固体凝胶堵漏材料形成;以及使固体凝胶充填井漏区域。
在其他方面中,化学活化剂的量能够使碱性纳米二氧化硅分散体与化学活化剂之间的重量比保持在1:0.001和1:0.25之间。在其他方面中,酸能够使可转化的组合物的pH降低至小于7。在其他方面中,凝胶pH小于7。在其他方面中,在水解时间后达到凝胶pH。
附图说明
根据以下说明、权利要求和附图,将更好地理解本发明的范围的这些和其他特征、方面和优点。然而,应当指出,附图仅示出了若干实施方案,因此不应认为是对本发明的范围的限制,因为其可以允许其他等效的实施方案。
图1为固体凝胶堵漏材料的图片。
具体实施方式
尽管将通过若干实施方案描述装置和方法的范围,但是应当理解,相关领域的普通技术人员将领会,这里描述的装置和方法的许多示例、变型和改变都在实施方案的范围和精神内。
相应地,在不损失一般性且不对实施方案施加限制的情况下阐述所描述的实施方案。本领域技术人员可理解,范围包括说明书中描述的特定特征的所有可能的组合和用途。
本发明的实施方案涉及用于原位产生堵漏材料的组合物和方法。本发明的实施方案涉及可转化的组合物。本发明的实施方案涉及由可转化的组合物产生固体凝胶类堵漏材料的方法。本发明的实施方案涉及包含纳米二氧化硅钻井泥浆和化学活化剂的可转化的组合物。
有利地,化学活化剂是化学中性的,并且直到与水基钻井液中的水接触才发生水解。可以在钻井现场对化学中性的化学活化剂进行处理。有利地,可以在高温(例如在井眼和地下地层中经受的高温)下使用可转化的组合物,而不会降解。有利地,化学活化剂和纳米二氧化硅不会从可转化的组合物中沉淀出来,从而使得能够将可转化的组合物作为单一段塞引入井眼中。
如贯穿全文使用的,“井漏区域”是指在钻井作业期间遇到的这样的区域,其中返回地表的钻井液的体积小于引入井眼中的钻井液的体积。井漏区域可能是由于井眼和地下地层之间的任意类型的开口造成的。能够由这里所述的可转化的组合物所得的固体凝胶类堵漏材料处理的井漏区域的范围可以从渗流漏失至完全漏失。
如贯穿全文使用的,“水解作用”或“水解”是指水与另一种化合物反应以产生酸的化学反应。
如贯穿全文使用的,“水解时间”或“水解速率”是指使可转化的组合物的pH从将可转化的组合物引入井眼中的起始pH降低至凝胶pH所需的时间量。
如贯穿全文使用的,“凝胶pH”是指形成固体凝胶的pH。凝胶pH小于7、或者小于6、或者小于5。
如贯穿全文使用的,“胶凝时间”或“胶凝形成速率”是指测得的由可转化的组合物形成固体胶凝所需的时间,即从达到凝胶pH至固体胶凝形成为止的时间段。凝胶时间可以在1小时和24小时之间。
如本文所用,“稳定”是指纳米二氧化硅颗粒分散在整个碱性纳米二氧化硅分散体中并且不聚集的状态。
如贯穿全文使用的,“不存在”是指不包含、不包括、不涉及和类似短语。
可转化的组合物包含纳米二氧化硅钻井液和化学活化剂。纳米二氧化硅钻井液可以包含水基钻井泥浆和碱性纳米二氧化硅分散体。
水基钻井泥浆可以是能够用于钻井作业的任意含水流体。水基钻井泥浆可以包含通常用于钻井液中的钻井液添加剂。钻井液添加剂可以包括增粘剂、pH控制剂、增重剂以及它们的组合。
碱性纳米二氧化硅分散体可以是pH在9和11之间的纳米二氧化硅颗粒组合物。纳米二氧化硅颗粒的粒度可以在5纳米(nm)和100nm之间、或者5nm和50nm之间、或者为5nm和20nm之间、或者20nm和40nm之间、或者40nm和60nm之间、或者60nm和80nm之间、或者80nm和100nm之间。纳米二氧化硅颗粒的表面积可以大于二氧化硅颗粒的表面积;二氧化硅颗粒的粒度在5微米(5000nm)和100微米(100,000)之间的范围内。纳米二氧化硅颗粒的表面积在100平方米/克(m2/g)和500m2/g之间、或者100m2/g和200m2/g之间、或者200m2/g和300m2/g之间、或者300m2/g和400m2/g之间,或者400m2/g和500m2/g之间。不受特定理论的束缚,纳米二氧化硅颗粒的较大的表面积会影响凝胶化速率和所形成的凝胶的性质。更具体而言,碱性纳米二氧化硅分散体中的纳米二氧化硅颗粒的较小的粒度促使凝胶快于二氧化硅颗粒。碱性纳米二氧化硅分散体不存在硅酸钠。碱性分散体中的纳米二氧化硅颗粒的浓度在5重量%(wt%)和50wt%之间。碱性纳米二氧化硅分散体中的纳米二氧化硅的浓度会影响凝胶形成的速率,碱性纳米二氧化硅分散体中的纳米二氧化硅的浓度越高,凝胶形成的速率越快。添加到水基钻井泥浆中的碱性纳米二氧化硅分散体的量可以取决于水基钻井泥浆的泥浆重量。纳米二氧化硅钻井液中的碱性纳米二氧化硅分散体的浓度可以在5wt%和50wt%之间。在至少一个实施方案中,碱性纳米二氧化硅分散体是可商购的并且pH在9.5和10.5之间。
化学活化剂可以是任意水不溶性可水解聚酯,该聚酯要经受水解。水不溶性可水解聚酯的实例包括聚丙交酯、聚羟基链烷酸酯、聚乙交酯、聚乙丙交酯、聚己内酯和它们的组合。聚羟基链烷酸酯的实例可以包括聚(3-羟基辛酸酯)、聚(3-羟基丁酸酯)和它们的组合。在至少一个实施方案中,水不溶性可水解聚酯为饱和聚酯。化学活化剂可以呈粉末、珠粒、水性悬浮液、纤维和它们的组合的形式。
聚丙交酯在水性介质中水解以形成乳酸。聚(3-羟基辛酸酯)在水性介质中水解以形成聚(3-羟基辛酸)。聚(3-羟基丁酸酯)在水性介质中水解以形成聚(3-羟基丁酸)。聚乙交酯在水性介质中水解以形成乙醇酸。聚乙丙交酯在水性介质中水解以形成乳酸和乙醇酸。聚己内酯在水性介质中水解以形成6-羟基己酸。
酸可以破坏碱性纳米二氧化硅分散体以产生固体凝胶。固体凝胶由网状结构形成。在约8至约12之间的pH下,碱性纳米二氧化硅分散体可以是稳定的。碱性纳米二氧化硅分散体的稳定性是由于碱性溶液中的表面电离而产生的二氧化硅颗粒排斥作用。电荷相同的颗粒之间的电排斥作用使分散体稳定。通过添加酸所致的pH降低来干扰电荷平衡会引起碱性纳米二氧化硅聚集,使碱性纳米二氧化硅分散体不稳定,从而引起固体凝胶的形成。
可转化的组合物中的碱性纳米二氧化硅分散体与化学活化剂之间的重量比可以在1:0.001和1:0.25之间。所添加的化学活化剂的量可以基于纳米二氧化硅钻井液中所需的pH的变化。
当引入井眼中时,可转化的组合物的起始pH可以在8和11之间。可转化的组合物的起始pH可以影响水解时间。当起始pH为酸性环境(pH小于7)时,胶凝时间可以小于1小时。将可转化的组合物的起始pH维持在8和11之间,以能够控制水解时间。通过控制水解时间,能够在达到凝胶pH之前使可转化的组合物置于井漏区域中。通过改变化学活化剂的浓度可以实现控制pH。随着化学活化剂水解并产生酸,该酸将可转化的组合物的pH从起始pH降低至凝胶pH。温度、化学活化剂与纳米二氧化硅钻井液中的水之间的暴露时间以及化学活化剂的分子量都会影响水解时间。
固体凝胶堵漏材料是不可逆的固体凝胶。固体凝胶在温度、压力或pH条件下不会降解。破胶剂不会破坏固体凝胶。
在产生固体凝胶堵漏材料的方法的至少一个实施方案中,纳米二氧化硅钻井液可以用于在地下地层中钻井。当遇到井漏区域时,可以将化学活化剂与纳米二氧化硅钻井液混合以产生可转化的组合物。可以在不中断纳米二氧化硅钻井液的流动的情况下,将化学活化剂计量给入纳米二氧化硅钻井液中。化学活化剂的量可以基于所需的水解时间。然后可以将可转化的组合物引入井眼中。可转化的组合物可以通过井眼循环至井漏区域。当可转化的组合物循环通过井眼时,化学活化剂水解以产生酸。当可转化的组合物循环至井漏区域时,酸降低了可转化的组合物的pH。当可转化的组合物的pH小于凝胶pH时,在井漏区域中形成固体凝胶堵漏材料。固体凝胶堵漏材料充填了井漏区域。
可以基于涉及纳米二氧化硅钻井液的体积、泵送速率以及井漏区域与地表之间的距离的计算结果来确定固体凝胶堵漏材料发生转化的位置。
在产生固体凝胶堵漏材料的方法的至少一个实施方案中,当遇到井漏区域时,通过将纳米二氧化硅钻井液和化学活化剂混合来产生可转化的组合物段塞。纳米二氧化硅钻井液的引入可以暂停。可以将可转化的组合物段塞引入井眼中。可以使可转化的组合物段塞迁移至井漏区域。可转化的组合物段塞之后可以是纳米二氧化硅钻井液的堵头(slug)或段塞。可以基于井漏区域的尺寸,如基于漏失的钻井液的体积来估计可转化的组合物段塞的体积。化学活化剂的量可以基于所需的水解时间。当可转化的组合物段塞迁移至井漏区域时,化学活化剂水解以产生酸。当可转化的组合物段塞迁移至井漏区域时,酸降低了可转化的组合物段塞的pH。当可转化的组合物段塞的pH小于凝胶pH时,在井漏区域中形成固体凝胶堵漏材料。固体凝胶堵漏材料充填了井漏区域。
可转化的组合物不存在植酸、甲基甘氨酸二乙酸和聚环氧琥珀酸。可转化的组合物不存在催化剂。
可转化的组合物包含少于5重量%的盐、或者小于4重量%的盐、或者小于3重量%的盐、或者小于2重量%的盐、或者小于1重量%的盐、或者小于0.1重量%的盐。在至少一个实施方案中,可转化的组合物包含小于0.1重量%的盐。可转化的组合物中的盐会导致可转化的组合物不合时宜地转化为固体凝胶堵漏材料。
实施例
纳米二氧化硅钻井液组合物
制备74.8磅/立方英尺(pcf)的纳米二氧化硅钻井液。在142.8ppb水中将4磅/桶(ppb)的膨润土预水合16小时,然后混合20分钟(min)。然后根据表1中列出的顺序和配方将添加剂添加到水/膨润土混合物中。
表1.实施例1中的钻井液的配方
组分 混合时间(min) 量(ppb)
XC聚合物(生物聚合物增粘剂) 5 2
淀粉(过滤控制添加剂) 5 4
Pac R(过滤控制添加剂) 5 0.5
苛性钠(pH控制剂) 5 0.25
碱性纳米二氧化硅分散体 5 265.81
重晶石(增重剂) 5 0
碱性纳米二氧化硅分散体以商品名
Figure BDA0002511349990000071
SI 4545购自赢创工业集团(EvonikIndustries)(德国埃森市);表2中列出了一些性质。
表2.碱性纳米二氧化硅分散体的性质
Figure BDA0002511349990000072
Figure BDA0002511349990000081
然后,将74.8pcf纳米二氧化硅钻井液在老化单元中以200华氏度(℉)热轧16小时。在热轧16小时后,使纳米二氧化硅钻井液在老化池中冷却,然后从老化池转移至泥杯中。然后将纳米二氧化硅钻井液在泥杯中混合约5分钟,此后测定流变性质和过滤性质。使用Fann 35流变仪测定流变性质。表3示出了热轧前和热轧后的流变测量值。
表3.实施例1的74.8pcf纳米二氧化硅钻井液的流变性质和过滤性质。
120℉时的流变学 热轧前 热轧后
600转/分钟(rpm) 95 62
300rpm 74 42
200rpm 63 32
100rpm 49 21
6rpm 22 4
3rpm 18 2
塑性粘度,cP 21 20
屈服点,磅/平方英尺(lb/ft<sup>2</sup>) 53 22
10秒凝胶强度,lb/100ft<sup>2</sup> 21 5
10分钟凝胶强度,lb/100ft<sup>2</sup> 26 12
pH 9.35 9.04
API漏失量,ml,30min - 5
热轧后的纳米二氧化硅钻井液是稳定的,其屈服点值为22lb/ft2,并且API漏失量为5ml。
可转化的组合物
在实例的第二步骤中,使用74.8pcf纳米二氧化硅钻井液制造可转化的组合物。使用的化学活化剂为聚丙交酯。通过在泥杯中将3克聚丙交酯添加到350ml的74.8pcf纳米二氧化硅钻井液中,制成可转化的组合物。使用多功能混合器将可转化的组合物混合5分钟。然后将可转化的组合物在垂直位置、在200℉静态老化16小时。16小时后,可转化的组合物转化为固体凝胶,如图1所示。
虽然已经详细描述了实施方案,但是应当理解,在不脱离本发明的原理和范围的情况下,可以在此基础上做出各种改变、替换和更改。因此,实施方案的范围应由所附权利要求及其适当的合法等同方式来确定。
除非另有说明,否则所描述的各种元件可以与这里描述的所有其他元件结合使用。
除非上下文另有明确说明,否则单数形式“一”、“一个”和“该”包括复数指示物。
可选的或可选地是指随后描述的事件或情况可能发生或可能不发生。该描述包括事件或情况发生的实例以及事件或情况没有发生的实例。
除非另有说明,否则这里的范围可以表达为从大约一个特定值到大约另一特定值,并且包括其之间的范围。当表达这样的范围时,应当理解,另一实施方案是从一个特定值到另一特定值,以及在所述范围内的所有组合。
如本文和所附权利要求中所使用的,词语“包含”、“具有”和“包括”以及它们的所有语法变体各自旨在具有开放的、非限制性的含义,其不排除另外的要素或步骤。

Claims (12)

1.一种可转化的组合物,所述可转化的组合物包含:
纳米二氧化硅钻井液,所述纳米二氧化硅钻井液包含:
水基钻井泥浆,其中所述水基钻井泥浆包含水,和
碱性纳米二氧化硅分散体,其中所述碱性纳米二氧化硅分散体包含纳米二氧化硅;和
化学活化剂,所述化学活化剂能够水解以产生酸,
其中所述碱性纳米二氧化硅分散体与所述化学活化剂的重量比在1:0.001和1:0.25之间。
2.根据权利要求1所述的可转化的组合物,其中所述化学活化剂为水不溶性可水解聚酯。
3.根据权利要求2所述的可转化的组合物,其中所述水不溶性可水解聚酯选自包含聚丙交酯、聚羟基链烷酸酯、聚乙交酯、聚乙丙交酯、聚己内酯和它们的组合的组。
4.根据权利要求1至3中任一项所述的可转化的组合物,其中所述可转化的组合物的pH在8和11之间。
5.根据权利要求1至4中任一项所述的可转化的组合物,其中所述纳米二氧化硅钻井液包含钻井液添加剂。
6.一种用于产生固体凝胶堵漏材料的方法,所述方法包括以下步骤:
遇到井眼中的井漏区域,
其中当引入所述井眼中的纳米二氧化硅钻井液的流率小于从所述井眼返回的所述纳米二氧化硅钻井液的流率时,会出现井漏区域,
其中所述纳米二氧化硅钻井液包含水和碱性纳米二氧化硅分散体;
将一定量的化学活化剂混合到所述纳米二氧化硅钻井液中,以产生可转化的组合物,其中所述可转化的组合物的pH在8和11之间;
将所述可转化的组合物引入所述井眼中;
使所述可转化的组合物循环到所述井漏区域;
当所述可转化的组合物循环到所述井漏区域时,使所述化学活化剂水解以产生酸;
当所述可转化的组合物循环到所述井漏区域时,所述酸能够降低所述可转化的组合物的pH;
当所述可转化的组合物的pH小于凝胶pH时,使所述固体凝胶堵漏材料形成;以及
使所述固体凝胶充填所述井漏区域。
7.根据权利要求6所述的方法,其中所述化学活化剂为水不溶性可水解聚酯。
8.根据权利要求7所述的方法,其中所述水不溶性可水解聚酯选自包含聚丙交酯、聚羟基链烷酸酯、聚乙交酯、聚乙丙交酯、聚己内酯和它们的组合的组。
9.根据权利要求6至8中任一项所述的方法,其中所述化学活化剂的量能够使所述碱性纳米二氧化硅分散体与所述化学活化剂之间的重量比保持在1:0.001和1:0.25之间。
10.根据权利要求6至9中任一项所述的方法,其中所述酸能够使所述可转化的组合物的pH降低至小于7。
11.根据权利要求6至10中任一项所述的方法,其中所述凝胶pH小于7。
12.根据权利要求6至11中任一项所述的方法,其中在水解时间后达到所述凝胶pH,其中所述水解时间在1小时和24小时之间。
CN201880076762.6A 2017-11-27 2018-11-27 使钻井泥浆转化为固体凝胶类堵漏材料的方法和材料 Pending CN111433313A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/822,514 US20190161668A1 (en) 2017-11-27 2017-11-27 Method and materials to convert a drilling mud into a solid gel based lost circulation material
US15/822,514 2017-11-27
PCT/US2018/062560 WO2019104301A1 (en) 2017-11-27 2018-11-27 Method and materials to convert a drilling mud into a solid gel based lost circulation material

Publications (1)

Publication Number Publication Date
CN111433313A true CN111433313A (zh) 2020-07-17

Family

ID=64902399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880076762.6A Pending CN111433313A (zh) 2017-11-27 2018-11-27 使钻井泥浆转化为固体凝胶类堵漏材料的方法和材料

Country Status (5)

Country Link
US (2) US20190161668A1 (zh)
EP (1) EP3717590A1 (zh)
CN (1) CN111433313A (zh)
CA (1) CA3082440A1 (zh)
WO (1) WO2019104301A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11203710B2 (en) 2019-02-21 2021-12-21 Saudi Arabian Oil Company Method and materials to convert a drilling mud into a solid gel based lost circulation material
US11124691B2 (en) 2019-02-21 2021-09-21 Saudi Arabian Oil Company Method and materials to convert a drilling mud into a solid gel based lost circulation material
US10655050B1 (en) * 2019-02-21 2020-05-19 Saudi Arabian Oil Company Method and materials to convert a drilling mud into a solid gel based lost circulation material
US10655049B1 (en) 2019-02-21 2020-05-19 Saudi Arabian Oil Company Method and materials to convert a drilling mud into a solid gel based lost circulation material
US11299662B2 (en) 2020-07-07 2022-04-12 Saudi Arabian Oil Company Method to use lost circulation material composition comprising alkaline nanoparticle based dispersion and sodium bicarbonate in downhole conditions
US11753574B2 (en) 2021-07-30 2023-09-12 Saudi Arabian Oil Company Packer fluid with nanosilica dispersion and sodium bicarbonate for thermal insulation
US11718776B2 (en) 2021-12-16 2023-08-08 Saudi Arabian Oil Company Method to use loss circulation material composition comprising acidic nanoparticle based dispersion and sodium bicarbonate in downhole conditions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732213A (en) * 1986-09-15 1988-03-22 Conoco Inc. Colloidal silica-based fluid diversion
US20050252659A1 (en) * 2002-08-26 2005-11-17 Sullivan Philip F Degradable additive for viscoelastic surfactant based fluid systems
CN103013469A (zh) * 2012-12-07 2013-04-03 中国地质大学(武汉) 使用纳米二氧化硅改善不同温度下水基钻井液性能的方法
US20130292120A1 (en) * 2012-05-01 2013-11-07 Halliburton Energy Services, Inc. Biodegradable activators to gel silica sol for blocking permeability
US20140158354A1 (en) * 2012-12-12 2014-06-12 Halliburton Energy Services, Inc. Viscous settable fluid for lost circulation in subterranean formations
US20150344772A1 (en) * 2014-05-30 2015-12-03 Schlumberger Technology Corporation Well treatment

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371712A (en) 1966-04-19 1968-03-05 Nalco Chemical Co Composition and method of agglomerating and stabilizing particulate matter by chemical treatment
US5320171A (en) 1992-10-09 1994-06-14 Halliburton Company Method of preventing gas coning and fingering in a high temperature hydrocarbon bearing formation
US7013973B2 (en) 2003-11-11 2006-03-21 Schlumberger Technology Corporation Method of completing poorly consolidated formations
GB0508732D0 (en) 2005-04-29 2005-06-08 Cleansorb Ltd Method for controlled gelation of silicates
US7458424B2 (en) 2006-05-16 2008-12-02 Schlumberger Technology Corporation Tight formation water shut off method with silica gel
US7413013B2 (en) 2006-09-29 2008-08-19 Halliburton Energy Services, Inc. Surfactant-based fluid loss control agents for surfactant gels and associated fluids and methods
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
US9206344B2 (en) * 2007-05-10 2015-12-08 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
EP2190942B1 (en) 2007-09-13 2017-06-14 Halliburton Energy Services, Inc. Methods of using colloidal silica based gels
US9708523B2 (en) 2009-10-27 2017-07-18 Halliburton Energy Services, Inc. Swellable spacer fluids and associated methods
US9909052B2 (en) * 2012-12-20 2018-03-06 Lawrence Livermore National Security, Llc Using colloidal silica as isolator, diverter and blocking agent for subsurface geological applications
CA2912876C (en) * 2013-06-03 2018-09-25 Amanullah, Md. Method of conversion of a drilling mud to a gel-based lost circulation material to combat lost circulation during continuous drilling
US9388335B2 (en) 2013-07-25 2016-07-12 Schlumberger Technology Corporation Pickering emulsion treatment fluid
AU2013398334B2 (en) 2013-08-22 2017-06-29 Halliburton Energy Services, Inc. Compositions including a particulate bridging agent and fibers and methods of treating a subterranean formation with the same
WO2015034488A1 (en) 2013-09-04 2015-03-12 Halliburton Energy Services, Inc. Hydrolyzable compounds for treatment of a subterranean formation and methods of using the same
GB2533715A (en) 2013-09-23 2016-06-29 Halliburton Energy Services Inc A solidified, thermally insulating composition
AU2013405891B2 (en) 2013-11-25 2016-10-27 Halliburton Energy Services, Inc. A fiber suspending agent for lost-circulation materials
WO2015094006A1 (en) 2013-12-18 2015-06-25 Schlumberger Canada Limited Shear thickening fluid method and system to deliver materials downhole
GB2537526A (en) * 2014-01-29 2016-10-19 Halliburton Energy Services Inc Colloidal high aspect ratio nanosilica additives in sealants and methods relating thereto
AU2014394114B2 (en) 2014-05-13 2017-02-16 Halliburton Energy Services, Inc. Degradable fluid sealing compositions incorporating non-degradable microparticulates and methods for use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732213A (en) * 1986-09-15 1988-03-22 Conoco Inc. Colloidal silica-based fluid diversion
US20050252659A1 (en) * 2002-08-26 2005-11-17 Sullivan Philip F Degradable additive for viscoelastic surfactant based fluid systems
US20130292120A1 (en) * 2012-05-01 2013-11-07 Halliburton Energy Services, Inc. Biodegradable activators to gel silica sol for blocking permeability
CN103013469A (zh) * 2012-12-07 2013-04-03 中国地质大学(武汉) 使用纳米二氧化硅改善不同温度下水基钻井液性能的方法
US20140158354A1 (en) * 2012-12-12 2014-06-12 Halliburton Energy Services, Inc. Viscous settable fluid for lost circulation in subterranean formations
US20150344772A1 (en) * 2014-05-30 2015-12-03 Schlumberger Technology Corporation Well treatment

Also Published As

Publication number Publication date
US10851279B2 (en) 2020-12-01
WO2019104301A1 (en) 2019-05-31
EP3717590A1 (en) 2020-10-07
CA3082440A1 (en) 2019-05-31
US20190161668A1 (en) 2019-05-30
US20200208037A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
CN111433313A (zh) 使钻井泥浆转化为固体凝胶类堵漏材料的方法和材料
US10961430B2 (en) Loss circulation material composition having alkaline nanoparticle based dispersion and water insoluble hydrolysable polyester
US20200377782A1 (en) Loss Circulation Material Composition Having Alkaline Nanoparticle Based Dispersion and Water Soluble Hydrolysable Ester
US11149181B2 (en) Method and materials to convert a drilling mud into a solid gel based lost circulation material
US11015102B2 (en) Loss circulation material composition having alkaline nanoparticle based dispersion, water insoluble hydrolysable polyester, and formaldehyde resin
CA2912539A1 (en) Silica gel as a viscosifier for subterranean fluid system
US10954427B2 (en) Method and composition for sealing a subsurface formation
WO2018144663A1 (en) Nanosilica dispersion well treatment fluid
US11053428B2 (en) Method and composition for sealing a subsurface formation
US11124691B2 (en) Method and materials to convert a drilling mud into a solid gel based lost circulation material
US10655050B1 (en) Method and materials to convert a drilling mud into a solid gel based lost circulation material
US11718776B2 (en) Method to use loss circulation material composition comprising acidic nanoparticle based dispersion and sodium bicarbonate in downhole conditions
US11203710B2 (en) Method and materials to convert a drilling mud into a solid gel based lost circulation material
AU2012201448B2 (en) Modification of solid polysaccharide with transesterification agent
EP3927786A1 (en) Method and materials to convert a drilling mud into a solid gel based lost circulation material
US20120245062A1 (en) Use of high ratio aqueous alkali silicates for profile modification, water control and stabilization
WO2021225681A1 (en) Method and materials to convert a drilling mud into a solid gel based lost circulation material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200717