CN111431715A - 一种支持隐私保护的策略控制签名方法 - Google Patents

一种支持隐私保护的策略控制签名方法 Download PDF

Info

Publication number
CN111431715A
CN111431715A CN202010235878.9A CN202010235878A CN111431715A CN 111431715 A CN111431715 A CN 111431715A CN 202010235878 A CN202010235878 A CN 202010235878A CN 111431715 A CN111431715 A CN 111431715A
Authority
CN
China
Prior art keywords
attribute
signer
party
public key
signature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010235878.9A
Other languages
English (en)
Other versions
CN111431715B (zh
Inventor
孟博
郑绪睿
王德军
朱容波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Lilosoft Co ltd
Original Assignee
South Central University for Nationalities
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South Central University for Nationalities filed Critical South Central University for Nationalities
Priority to CN202010235878.9A priority Critical patent/CN111431715B/zh
Publication of CN111431715A publication Critical patent/CN111431715A/zh
Application granted granted Critical
Publication of CN111431715B publication Critical patent/CN111431715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/083Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving central third party, e.g. key distribution center [KDC] or trusted third party [TTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/085Secret sharing or secret splitting, e.g. threshold schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • H04L9/3066Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving algebraic varieties, e.g. elliptic or hyper-elliptic curves
    • H04L9/3073Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving algebraic varieties, e.g. elliptic or hyper-elliptic curves involving pairings, e.g. identity based encryption [IBE], bilinear mappings or bilinear pairings, e.g. Weil or Tate pairing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • H04L9/3252Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures using DSA or related signature schemes, e.g. elliptic based signatures, ElGamal or Schnorr schemes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Storage Device Security (AREA)

Abstract

本发明公开了一种支持隐私保护的策略控制签名方法,本发明引入策略控制签名的思想,将访问策略嵌入签名中,允许发送方来指定属性的接收方才能验证消息的真实性,处理敏感数据时,增加发送人对消息的隐私性和更多应用场景,实现对验证者的细粒度权限控制。同时设置全局属性并增加噪音属性,采用线性秘密分享矩阵(LSSS)作为访问结构,表达能力强,使用3素数合数阶双线性群来实现对实际访问策略隐藏,公开处理后的全局属性,提高了验证效率和实际应用的可行性。

Description

一种支持隐私保护的策略控制签名方法
技术领域
本发明属于信息安全中数字签名技术领域,涉及一种支持隐私保护的策略控制签名方法,具体涉及一种在基于属性加密签名的体系中,结合策略控制签名,对将要发布的消息进行数字签名的同时,附加隐藏详细策略的访问控制签名方法。
背景技术
基于属性签名是由基于属性的公钥密码体制发展而来,shamir于1984年首次提出基于身份加密的概念。在基于身份加密的密码体制中,用户的身份信息可以直接作为公钥使用,因此避免了公钥证书的问题。Sahai和Waters于2005年首次提出了基于属性加密的概念,通过属性集合表示用户身份,其中属性集合由一个或多个属性构成,只有当用户的属性匹配密文所关联的属性,则用户的私钥可以解密密文,是属性基密码体制的雏形。P.Yang在2006年提出模糊身份签名概念,基于属性的数字签名是基于模糊身份签名的发展。用户的信息由一系列属性描述,签名者由一组访问策略限制,而验证者通过验证,只能确定该签名满足某个访问策略,但不知道签名者的详细属性,而且不能限制签名的验证人。
基于策略签名针对签名者只能对符合某些授权指定的策略的消息进行签名由Mihir和Geory于2014年首次提出。具有不可伪造性和隐私性,意味着签名不会泄露政策。并在两个方面提供了价值:(1)在实践方面,签名允许公司控制其员工可以在公司密钥下签署的信息。(2)在理论方面,签名统一了现有的工作,很容易地构建。他们的工作主要集中于基于策略签名的定义,证明这个原语对于任意策略是可实现的,特定策略是有效的构造,以及一些有代表性的应用。
策略控制签名可以说是是基于策略签名发展而来,由Thorncharoensri于在2014年首次提出。在这个原语中,签名者可以对消息进行签名并向其附加一些策略。只有满足所附加的策略的验证者才能验证消息的真实性。这种类型的签名方案有许多应用程序,特别是在处理敏感数据时,签名者不希望允许未经授权的任何人验证其真实性。策略控制的签名与指定验证者签名的概念类似,因为它也可以用于将签名指定给多个收件人。当验证者提供的策略中只涉及一个属性时,我们将实现一个指定的验证者签名(通过一些简单的修改)。因此,策略控制签名可以看作是指定验证者签名概念的泛化。
访问控制策略隐藏后来成为属性加密的热点问题,传统的加密方法虽然能够保护数据隐私,但增加了系统对用户细粒度访问控制的难度,而基于属性的加密体系都未对访问策略进行隐藏,当访问策略本身就是敏感信息,同样会泄露用户的隐私信息。因此,2008年Nishide等提出了一种可以隐藏部分访问策略的加密方案,用多值属性之间的与逻辑表示访问策略,实现了同时保护消息和访问结构私密性的功能。2011年,Lai等在合数阶双线性群的基础上提出了一种隐藏访问策略的CP-ABE方案,并证明其是完全安全的。2012年,王海斌等提出一种素数阶双线性群的策略隐藏CP-ABE方案,使私钥长度和解密算法中的双线性配对运算为固定值,方案中采用多值属性与门的访问结构。2013年,Sreenivasa等提出了一种匿名接收的CP-ABE方案,其采用与门的访问结构,并证明是完全安全的。2015年,宋衍等提出一种基于访问树的策略隐藏属性加密方案,并证明其是自适应安全的。
以上的隐藏策略的属性基加密方案大多采用与门或访问树的访问结构,在策略表达上有诸多限制,而LSSS矩阵在访问策略表达上更强,可表达任意访问策略,包括与门或门和门限,访问结构灵活。2011年,Waters提出了一种基于LSSS访问矩阵的CP-ABE方案,但方案中并没有对访问策略进行隐藏。2012年,Lai等提出了一种基于LSSS访问矩阵隐藏部分访问策略的CP-ABE方案。
发明内容
为了融合上述基于属性签名、基于策略签名和策略隐藏技术的优点,本发明首先在基于LSSS的隐藏策略属性基加密方案和策略控制签名基础上结合形成一个基于LSSS的策略控制签名,并引入隐藏访问策略的思想,最终提出了一种支持隐私保护的策略控制签名方法。
本发明所采用的技术方案是:一种支持隐私保护的策略控制签名方法,其特征在于,包括以下步骤:
步骤1:可信第三方产生系统参数param和全局属性集值;
步骤2:输入系统参数param,随机选择参数,输出可信第三方私钥SKTA和可信第三方公钥PKTA
步骤3:签名者用系统参数param和可信第三方公钥PKTA生成签名者私钥SKP和签名者公钥PKP,并制定签名的详细属性值访问策略POL,例(男AND学生);
步骤4:输入签名者公钥PKP和私钥SKP、第三方公钥PKTA、签名者制定的属性值访问策略POL、消息m、系统参数param,提取POL中属性值的属性名,用LSSS和shamir秘密分享方案将策略编码处理,将所有全局属性计算一个编码,和原始消息绑定输出签名δ,并附加属性名访问策略POL/,即隐藏属性值的访问结构(性别AND职位),隐藏详细属性值;
步骤5:输入验证者属性集S、系统参数param、可信第三方公钥PKTA,随机选择参数,输出验证者凭证Grev
步骤6:根据签名δ、验证者凭证Grev、可信第三方公钥PKTA,验证签名有效性和完整性。
本发明其满足三个要求:一是签名者制定访问策略附加在签名上,只有验证者属性满足访问策略才能验证签名的真伪;二是在生成系统参数时,生成N=pqr的3素数合数阶双线性群来构造方案以及用公开属性名策略,隐藏属性值策略方案来实现策略的隐藏;三是采用线性秘密共享矩阵(LSSS)作为访问结构,策略表达能力强,解码效率高。
本发明不仅能够限制签名的验证者,还有效的解决了消息发布者和消息的隐私保护问题。
附图说明
图1是本发明实施例的签名操作流程图;
图2是本发明实施例的验证签名操作流程图;
图3是本发明实施例的签名函数图;
图4是本发明实施例的验证函数图。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
为了融合上述基于属性签名、基于策略签名和策略隐藏技术的优点,本发明首先在陈伟丹基于LSSS的隐藏策略属性基加密方案和策略控制签名基础上结合形成一个基于LSSS的策略控制签名,并引入隐藏访问策略的思想,最终提出了一种支持隐私保护的策略控制签名方法,其满足三个要求:一是签名者制定访问策略附加在签名上,只有验证者属性满足访问策略才能验证签名的真伪;二是通过3素数合数阶双线性群来构造方案以及用公开属性名策略,隐藏属性值策略方案来实现策略的隐藏;三是采用线性秘密共享矩阵(LSSS)作为访问结构,策略表达能力强,解码效率高。
本发明采用的技术方案是:首先第三方产生系统参数,设定所有范围的全局属性,然后签名者用系统参数和第三方公钥生成签名私钥和公钥,并制定属性值访问策略,针对消息产生签名并附加属性名访问策略,隐藏详细属性值。验证者利用系统参数和自己的属性值生成验证私钥。验证者收到签名后,先验证是否是第三方和正确的签名人,再验证签名的真伪。当验证者属性满足访问策略时,执行验证等式,等式成立,则说明签名有效。
本发明中涉及到的实体包括可信第三方(属性授权中心)、签名执行者、验证者(用户)。其中,可信第三方:等于授权中心,用于制定全局属性并监管每个用户的属性,并生成用户私钥和第三方公钥和私钥,但可信第三方不需要知道签名者制定的访问策略,每个签名者的私钥都是由第三方公钥衍生生成,这样为了全局签名的真实性。签名执行者:制定访问策略,并由其生成签名,公开属性名策略,隐藏详细属性值。验证者(用户):用户首先将属性提交给可信第三方,得到属性私钥。收到消息后,当用户属性满足签名的访问策略时,才能成功验证签名真伪。
请见图1-图4,本发明提供的一种支持隐私保护的策略控制签名方法,包括以下步骤:
步骤1:可信第三方产生系统参数param和全局属性集的hash值;
本实施例中,可信第三方利用双线性参数生成器生成系统参数param和全局属性集的hash值;
其中,双线性参数生成器
Figure BDA0002430951330000041
p,q,r是3个不同的素数,G和GT是阶为N的乘法循环群,Gp、Gq和Gr是群G的阶为p、q和r的子群,gp为Gp的生成元,gq为Gq的生成元,gr为Gr的生成元,双线性映射
Figure BDA0002430951330000042
满足双线性、非退化性、可计算性和子群正交性。随机选择h1,h2,...hn∈Gp;假设全局属性名有n个,第i个属性名的属性值有mi个,所以为每个属性值在整数群ZN中随机取
Figure BDA0002430951330000051
计算得到全局属性名集合
Figure BDA0002430951330000052
用于解码操作。
本实施例定义了三个函数散列函数:设置文件散列函数H1:m→GP,用于将文件m映射为循环群GP上元素的散列运算;设置身份散列函数
Figure BDA0002430951330000053
其中
Figure BDA0002430951330000054
为将任意长度的{0,1}字符串映射为有限域
Figure BDA0002430951330000055
上元素的散列运算,假设Pi为一个属性值,使bi=H2(pi)为属性值的计算值,bi为全局属性的单项函数隐藏计算值,{bi}作为全局属性的公开参数对应全局属性名集{Ai},用于签名者和验证者针对自己拥有的属性值来加解码,防止公开全局属性带来隐私问题;设置
Figure BDA0002430951330000056
是一个抗碰撞hash函数;取随机数a∈ZN,计算出
Figure BDA0002430951330000057
最后得到系统参数
Figure BDA0002430951330000058
步骤2:输入系统参数param,随机选择参数,输出可信第三方私钥SKTA和可信第三方公钥PKTA
本实施例中,输入系统参数param,随机选择α,r∈ZN/0,让
Figure BDA0002430951330000059
输出可信第三方私钥和公钥SKTA=(α,r),PKTA=(U,W)。
步骤3:签名者用系统参数param和可信第三方公钥PKTA生成签名者私钥SKP和签名者公钥PKP,并制定签名的详细属性值访问策略POL,例(男AND学生)。针对消息m产生签名并附加属性名访问策略POL/,即隐藏属性值的访问结构(性别AND职位),隐藏详细属性值;
本实施例中,输入系统参数param和可信第三方公钥PKTA,随机选择k,s∈Zp,使
Figure BDA00024309513300000510
输出签名者SKP=(k,s),PKP=(X,X/)。
步骤4:输入签名者公钥PKP和私钥SKP、第三方公钥PKTA、签名者制定的属性值访问策略POL、消息m、系统参数param,提取POL中属性值的属性名,用LSSS和shamir秘密分享方案将策略编码处理,将所有全局属性计算一个编码,和原始消息绑定输出签名δ;
本实施例中,制定一个(M,p)LSSS秘密分享矩阵,M一个n×l的LSSS秘密分享矩阵,通过函数p将矩阵M中每一行与访问策略POL中的属性名对应,选择一个随机向量
Figure BDA00024309513300000511
其中s签名者私钥同时是待分享的秘密指数,yi为随机数;对于i=1,2,…,n,计算λi=v×Mi,随机选择
Figure BDA0002430951330000061
根据POL中的属性值对全局属性计算一个密文分量,如果POL在该属性名中出现的属性名则取全局属性集合
Figure BDA0002430951330000062
计算
Figure BDA0002430951330000063
否则随机选择βi∈ZN/0且λi≠βi计算
Figure BDA0002430951330000064
假如Ci表示第i的属性名的每个属性值对应的密文集合,即有:
Figure BDA0002430951330000065
于是有
Figure BDA0002430951330000066
随机选择v,f←ZP,获得部分签名
Figure BDA0002430951330000067
δ2=Xv3=X/v,计算Ω=δ1||δ2||δ3||f||PKP||PKTA||m,将Ω映射后连接秘密异或计算得
Figure BDA0002430951330000068
M=δ1||δ2||δ3||f||PKP||PKTA||R||{{Cm},Dm},δ4=H1(M)x;最后输出:签名δ={h(Ω),δ1234,{{Cm},Dm},m,R,POL/}。
步骤5:输入验证者属性集S、系统参数param、可信第三方公钥PKTA,随机选择参数,输出验证者凭证Grev
本实施例中,输入验证者属性集S、系统参数param、可信第三方公钥PKTA,随机选择t∈ZP/0,计算
Figure BDA0002430951330000069
输出验证者凭证Grev={K,L,SKx};
步骤6:根据签名δ、验证者凭证Grev、可信第三方公钥PKTA,验证签名有效性和完整性;
本实施例中,步骤6的具体实现包括以下子步骤:
步骤6.1:验证是否是第三方和正确的签名人;
输入签名者公钥PKP=(X,X/)、可信第三方公钥PKTA=(U,W)和参数gp,计算公式e(δ2,gp)=e(δ1,X)和e(δ3,gp)=e(δ2,W)是否相等,若相等则证明是正确的第三方和签名者,否则失败;
步骤6.2:验证签名的完整性;
若用户S是一个授权集,则满足(M,p)且l={i:p(i)∈S},那么在多项式时间内能找到一组常熟集{ωi∈ZN}i∈I,使得
Figure BDA0002430951330000071
其中λi是秘密S的有效分享;
Figure BDA0002430951330000072
步骤6.3:利用解密的信息计算:
Figure BDA0002430951330000073
M/=δ1||δ2||δ3||f/||PKP||PKTA||R||{{Cm},Dm}||m
h(M)=h(M/)
若e(δ4,gp)=e(H1(M/),X)等式相等,则验证成功。
应当理解的是,本说明书未详细阐述的部分均属于现有技术,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。

Claims (7)

1.一种支持隐私保护的策略控制签名方法,其特征在于,包括以下步骤:
步骤1:可信第三方产生系统参数param和全局属性值;
步骤2:输入系统参数param,随机选择参数,输出可信第三方私钥和公钥SKTA、PKTA
步骤3:签名者用系统参数param和可信第三方公钥PKTA生成签名者私钥SKP和签名者公钥PKP,并制定签名的详细属性值访问策略POL;
步骤4:输入签名者公钥PKP和私钥SKP、第三方公钥PKTA、签名者制定的属性值访问策略POL、消息m、系统参数param,提取POL中属性值的属性名,用LSSS秘密分享方案将策略编码处理,将所有全局属性计算一个编码,然后将原始消息绑定输出签名δ,并附加属性名访问策略POL/,即隐藏属性值后的结构;
步骤5:输入验证者属性集S、系统参数param、可信第三方公钥PKTA,随机选择参数,输出验证者凭证Grev
步骤6:根据签名δ、验证者凭证Grev、签名者公钥PKP、可信第三方公钥PKTA,验证签名有效性和完整性。
2.根据权利要求1所述的支持隐私保护的策略控制签名方法,其特征在于:步骤1中,可信第三方利用双线性参数生成器生成系统参数param和全局属性集的散列值;
其中,双线性参数生成器
Figure FDA0002430951320000011
p,q,r是3个不同的素数,G和GT是阶为N的乘法循环群,Gp、Gq和Gr是群G的阶为p、q和r的子群,gp为Gp的生成元,gq为Gq的生成元,gr为Gr的生成元,双线性映射
Figure FDA0002430951320000012
G×G→GT满足双线性、非退化性、可计算性和子群正交性;随机选择a,h1,h2,...hn∈Gp,假设全局属性名有n个,第i个属性名的属性值有mi个,所以为每个属性值在整数群ZN中随机取
Figure FDA0002430951320000013
计算得到全局属性名集合
Figure FDA0002430951320000014
用于解码操作;设置文件散列函数H1:m→GP,用于将消息m映射为循环群GP上元素的散列运算;设置身份散列函数H2
Figure FDA0002430951320000015
其中
Figure FDA0002430951320000016
为将任意长度的{0,1}字符串映射为有限域
Figure FDA0002430951320000021
上元素的散列运算,假设Pi为一个属性值,使bi=H2(pi)为属性值的计算值,bi为全局属性的单项函数隐藏计算值,{bi}作为全局属性的公开参数对应全局属性名集{Ai},用于签名者和验证者针对自己拥有的属性值来加解码,防止公开全局属性带来隐私问题;设置h:
Figure FDA0002430951320000022
是一个抗碰撞hash()函数;取随机数a∈ZN,计算出
Figure FDA0002430951320000023
最后得到系统参数
Figure FDA0002430951320000024
3.根据权利要求2所述的支持隐私保护的策略控制签名方法,其特征在于:步骤2中,输入系统参数param,随机选择α,r∈ZN/0,让
Figure FDA0002430951320000025
输出可信第三方私钥和公钥SKTA=(α,r),PKTA=(U,W)。
4.根据权利要求3所述的支持隐私保护的策略控制签名方法,其特征在于:步骤3中,输入系统参数param和可信第三方公钥PKTA,随机选择k,s∈Zp,使
Figure FDA0002430951320000026
X/=Wks;输出签名者SKP=(k,s),PKP=(X,X/)。
5.根据权利要求4所述的支持隐私保护的策略控制签名方法,其特征在于:步骤4中,制定一个(M,p)LSSS秘密分享矩阵,M是一个n×l的矩阵,通过函数p将矩阵M中每一行与访问策略POL中的属性名映射,选择一个随机向量
Figure FDA0002430951320000027
其中s是签名者私钥同时是待分享的秘密指数,yi为随机数;对于i=1,2,…,n,计算λi=v×Mi,随机选择r1,r2,…,rn∈ZN,{Yi,Yi /∈Gq}i∈{1,2,…l},根据POL中的属性值对所有全局属性计算一个密文分量,如果POL在该属性名中出现的属性名则取全局属性集合
Figure FDA0002430951320000028
计算
Figure FDA0002430951320000029
否则随机选择βi∈ZN/0且λi≠βi计算
Figure FDA00024309513200000210
假如Ci表示第i的属性名的每个属性值对应的密文集合,即有:
Figure FDA00024309513200000211
于是有
Figure FDA00024309513200000212
随机选择v,f∈ZP,获得部分签名
Figure FDA00024309513200000213
δ2=Xv3=X/v,计算Ω=δ1||δ2||δ3||f||PKP||PKTA||m,将Ω映射后连接秘密异或计算得
Figure FDA00024309513200000214
M=δ1||δ2||δ3||f||PKP||PKTA||R||{{Cm},Dm},δ4=H1(M)x;最后输出:签名δ={H1(Ω),δ1234,{{Cm},Dm},m,R,POL/}。
6.根据权利要求5所述的支持隐私保护的策略控制签名方法,其特征在于:步骤5中,输入验证者属性集S、系统参数param、可信第三方公钥PKTA,随机选择t∈ZP/0,计算
Figure FDA0002430951320000031
x∈S;输出验证者凭证Grev={K,L,SKx}。
7.根据权利要求6所述的支持隐私保护的策略控制签名方法,其特征在于,步骤6的具体实现包括以下子步骤:
步骤6.1:验证是否是第三方和正确的签名人;
输入签名者公钥PKP=(X,X/)、可信第三方公钥PKTA=(U,W)、和参数gp,计算公式e(δ2,gp)=e(δ1,X)和e(δ3,gp)=e(δ2,W)是否相等,若相等则证明是正确的第三方和签名者,否则失败;
步骤6.2:验证签名的完整性;
若用户S是一个授权集,则满足(M,p)且l={i:p(i)∈S},那么在多项式时间内能找到一组常熟集{ωi∈ZN}i∈I,使得
Figure FDA0002430951320000032
其中λi是秘密S的有效分享;
Figure FDA0002430951320000033
步骤6.3:利用解密的信息计算:
Figure FDA0002430951320000034
M/=δ1||δ2||δ3||f/||PKP||PKTA||R||{{Cm},Dm}||m
h(M)=h(M/)
若e(δ4,gp)=e(H1(M/),X)等式相等,则验证成功。
CN202010235878.9A 2020-03-30 2020-03-30 一种支持隐私保护的策略控制签名方法 Active CN111431715B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010235878.9A CN111431715B (zh) 2020-03-30 2020-03-30 一种支持隐私保护的策略控制签名方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010235878.9A CN111431715B (zh) 2020-03-30 2020-03-30 一种支持隐私保护的策略控制签名方法

Publications (2)

Publication Number Publication Date
CN111431715A true CN111431715A (zh) 2020-07-17
CN111431715B CN111431715B (zh) 2020-12-18

Family

ID=71549146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010235878.9A Active CN111431715B (zh) 2020-03-30 2020-03-30 一种支持隐私保护的策略控制签名方法

Country Status (1)

Country Link
CN (1) CN111431715B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055168A (zh) * 2021-03-29 2021-06-29 陕西师范大学 支持策略隐藏和属性更新的密文策略属性加密方法
CN113743477A (zh) * 2021-08-17 2021-12-03 中南民族大学 一种基于差分隐私的直方图数据发布方法
CN114189340A (zh) * 2021-12-09 2022-03-15 电子科技大学 一种基于素数阶群的基于属性签名方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120300936A1 (en) * 2011-05-24 2012-11-29 Zeutro, Llc Outsourcing the Decryption of Functional Encryption Ciphertexts
CN105007270A (zh) * 2015-07-13 2015-10-28 西安理工大学 格上多权威的密钥策略基于属性的加密方法
CN105100083A (zh) * 2015-07-06 2015-11-25 河海大学 一种隐私保护且支持用户撤销的基于属性加密方法和系统
US20160241399A1 (en) * 2013-03-15 2016-08-18 Arizona Board Of Regents On Behalf Of Arizona State University Efficient Privacy-Preserving Ciphertext-Policy Attribute Based Encryption and Broadcast Encryption
CN107181590A (zh) * 2017-04-14 2017-09-19 南京邮电大学 策略隐藏和外包解密下的抗泄露cp‑abe方法
CN107508667A (zh) * 2017-07-10 2017-12-22 中国人民解放军信息工程大学 可公开定责无密钥托管的密文策略属性基加密方法及其装置
CN110390203A (zh) * 2019-07-25 2019-10-29 西南交通大学 一种可验证解密权限的策略隐藏属性基加密方法
CN110674521A (zh) * 2019-09-27 2020-01-10 合肥工业大学 一种隐私保护的证据管理系统及方法
CN110717191A (zh) * 2019-10-24 2020-01-21 兰州理工大学 基于可搜索属性加密的区块链数据隐私保护访问控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120300936A1 (en) * 2011-05-24 2012-11-29 Zeutro, Llc Outsourcing the Decryption of Functional Encryption Ciphertexts
US20160241399A1 (en) * 2013-03-15 2016-08-18 Arizona Board Of Regents On Behalf Of Arizona State University Efficient Privacy-Preserving Ciphertext-Policy Attribute Based Encryption and Broadcast Encryption
CN105100083A (zh) * 2015-07-06 2015-11-25 河海大学 一种隐私保护且支持用户撤销的基于属性加密方法和系统
CN105007270A (zh) * 2015-07-13 2015-10-28 西安理工大学 格上多权威的密钥策略基于属性的加密方法
CN107181590A (zh) * 2017-04-14 2017-09-19 南京邮电大学 策略隐藏和外包解密下的抗泄露cp‑abe方法
CN107508667A (zh) * 2017-07-10 2017-12-22 中国人民解放军信息工程大学 可公开定责无密钥托管的密文策略属性基加密方法及其装置
CN110390203A (zh) * 2019-07-25 2019-10-29 西南交通大学 一种可验证解密权限的策略隐藏属性基加密方法
CN110674521A (zh) * 2019-09-27 2020-01-10 合肥工业大学 一种隐私保护的证据管理系统及方法
CN110717191A (zh) * 2019-10-24 2020-01-21 兰州理工大学 基于可搜索属性加密的区块链数据隐私保护访问控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FAWAD KHAN: "An Expressive Hidden Access Policy CP-ABE", 《IEEE》 *
TRAN VIET XUAN PHUONG: "Hidden Ciphertext Policy Attribute-Based Encryption Under Standard Assumptions", 《IEEE》 *
应作斌: "支持动态策略更新的半策略隐藏属性加密方案", 《通信学报》 *
徐潜: "基于密文策略属性加密体制的匿名云存储隐私保护方案", 《计算机应用》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055168A (zh) * 2021-03-29 2021-06-29 陕西师范大学 支持策略隐藏和属性更新的密文策略属性加密方法
CN113055168B (zh) * 2021-03-29 2022-06-24 陕西师范大学 支持策略隐藏和属性更新的密文策略属性加密方法
CN113743477A (zh) * 2021-08-17 2021-12-03 中南民族大学 一种基于差分隐私的直方图数据发布方法
CN114189340A (zh) * 2021-12-09 2022-03-15 电子科技大学 一种基于素数阶群的基于属性签名方法

Also Published As

Publication number Publication date
CN111431715B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
US7653817B2 (en) Signature schemes using bilinear mappings
Wang et al. Knox: privacy-preserving auditing for shared data with large groups in the cloud
CN107707358B (zh) 一种ec-kcdsa数字签名生成方法及系统
Zhou et al. ExpSOS: Secure and verifiable outsourcing of exponentiation operations for mobile cloud computing
Tian et al. Policy-based chameleon hash for blockchain rewriting with black-box accountability
CN111431715B (zh) 一种支持隐私保护的策略控制签名方法
Wang et al. A regulation scheme based on the ciphertext-policy hierarchical attribute-based encryption in bitcoin system
CN114095181B (zh) 一种基于国密算法的门限环签名方法及系统
Alimohammadi et al. A secure key-aggregate authentication cryptosystem for data sharing in dynamic cloud storage
Ki et al. Constructing Strong Identity‐Based Designated Verifier Signatures with Self‐Unverifiability
Feng et al. White-box implementation of Shamir’s identity-based signature scheme
Shankar et al. Improved Multisignature Scheme for Authenticity of Digital Document in Digital Forensics Using Edward‐Curve Digital Signature Algorithm
Zhang et al. Tolerating sensitive-leakage with larger plaintext-space and higher leakage-rate in privacy-aware Internet-of-Things
Stallings Digital signature algorithms
Yang et al. Certificateless universal designated verifier signature schemes
CN115378613A (zh) 基于区块链的匿名信息监管方法及系统
Backes et al. Fully secure inner-product proxy re-encryption with constant size ciphertext
EP1921790A1 (en) Signature schemes using bilinear mappings
Liu et al. Public auditing scheme for shared data in the cloud storage
Bakshi et al. Privacy enhanced attribute based eSign
Verma et al. ID-based multiuser signature schemes and their applications
El Aimani Toward a generic construction of convertible undeniable signatures from pairing-based signatures
Thorncharoensri et al. Multi-level controlled signature
CN117521158A (zh) 联盟链隐私保护方法及系统
CN116074016A (zh) 一种基于门限机制的保护密钥的签密方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230105

Address after: Room 302, Floor 3, Huofenghuang Cloud Computing Base, No. 6, Jiangwang Road, Jianghan Economic Development Zone, Jianghan District, Wuhan, Hubei 430021

Patentee after: WUHAN LILOSOFT CO.,LTD.

Address before: 430074 No. 182, National Road, Hongshan District, Wuhan, Hubei

Patentee before: SOUTH CENTRAL University FOR NATIONALITIES