CN111428627B - A remote sensing extraction method and system for mountainous landforms - Google Patents
A remote sensing extraction method and system for mountainous landforms Download PDFInfo
- Publication number
- CN111428627B CN111428627B CN202010206562.7A CN202010206562A CN111428627B CN 111428627 B CN111428627 B CN 111428627B CN 202010206562 A CN202010206562 A CN 202010206562A CN 111428627 B CN111428627 B CN 111428627B
- Authority
- CN
- China
- Prior art keywords
- remote sensing
- data
- module
- mountain
- gaussian
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000605 extraction Methods 0.000 title claims abstract description 37
- 238000001514 detection method Methods 0.000 claims abstract description 37
- 230000011218 segmentation Effects 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000003709 image segmentation Methods 0.000 claims abstract description 22
- 238000012937 correction Methods 0.000 claims abstract description 13
- 230000006870 function Effects 0.000 claims description 50
- 238000003384 imaging method Methods 0.000 claims description 11
- 238000012549 training Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 3
- 230000008520 organization Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 238000012876 topography Methods 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/231—Hierarchical techniques, i.e. dividing or merging pattern sets so as to obtain a dendrogram
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
- G06F18/24155—Bayesian classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Astronomy & Astrophysics (AREA)
- Remote Sensing (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
本发明属于遥感技术领域,公开了一种山地地貌遥感提取方法及系统,山地地貌遥感提取系统包括电磁波探测模块、主控模块、遥感图像生成模块、校正模块、图像分割模块、特征提取模块、遥感数据分类模块、遥感图存储模块、显示模块。本发明通过图像分割模块有效解决了灰度级隶属的不确定性及分割决策的不确定性带来的分割问题,实现对高分辨率遥感数据复杂直方图分布特征的更加精确的拟合,并很好的克服了噪声,提高了山地地貌遥感图像分割精度;同时,通过感数据分类模块利用分类体系学习和时空数据自组织,可以动态的根据新数据不断调整和完善层级分类体系,实现山地遥感数据的动态组织和分类管理。
The invention belongs to the technical field of remote sensing and discloses a method and system for remote sensing extraction of mountain landforms. The remote sensing extraction system for mountain landforms includes an electromagnetic wave detection module, a main control module, a remote sensing image generation module, a correction module, an image segmentation module, a feature extraction module, a remote sensing Data classification module, remote sensing map storage module, display module. The invention effectively solves the segmentation problem caused by the uncertainty of the gray level membership and the uncertainty of the segmentation decision through the image segmentation module, realizes more accurate fitting of the complex histogram distribution characteristics of high-resolution remote sensing data, and It overcomes the noise very well and improves the segmentation accuracy of mountainous landform remote sensing images. At the same time, through the sensing data classification module, using classification system learning and spatio-temporal data self-organization, it can dynamically adjust and improve the hierarchical classification system according to new data, and realize mountainous remote sensing. Dynamic organization and classification management of data.
Description
技术领域technical field
本发明属于遥感技术领域,尤其涉及一种山地地貌遥感提取方法及系统。The invention belongs to the technical field of remote sensing, and in particular relates to a remote sensing extraction method and system for mountain topography.
背景技术Background technique
遥感(remote sensing)是指非接触的,远距离的探测技术。运用传感器/遥感器对物体的电磁波的辐射、反射特性的探测。是一种获取其反射、辐射或散射的电磁波信息(如电场、磁场、电磁波、地震波等信息),并进行提取、判定、加工处理、分析与应用的一门科学和技术。遥感,从字面上来看,可以简单理解为遥远的感知,泛指一切无接触的远距离的探测;遥感通过人造地球卫星、航空等平台上的遥测仪器把对地球表面实施感应遥测和资源管理的监视(如树木、草地、土壤、水、矿物、农家作物、鱼类和野生动物等的资源管理)结合起来的一种新技术。然而,现有山地地貌遥感图像分割精度差;同时,传统的遥感数据组织是简单地入库,根据应用需求来对数据库进行查找和信息获取,一方面查找效率和信息获取的能力受到限制,另一方面不能直观地查看数据库中的信息,极大地限制了数据的利用价值。Remote sensing refers to non-contact, long-distance detection technology. Use sensors/remote sensors to detect the radiation and reflection characteristics of electromagnetic waves of objects. It is a science and technology that obtains the reflected, radiated or scattered electromagnetic wave information (such as electric field, magnetic field, electromagnetic wave, seismic wave, etc.), and extracts, judges, processes, analyzes and applies it. Remote sensing, literally, can be simply understood as remote perception, which generally refers to all non-contact long-distance detection; A new technology that combines monitoring (such as resource management of trees, grasslands, soils, water, minerals, farm crops, fish, and wildlife). However, the segmentation accuracy of the existing mountainous landform remote sensing images is poor; at the same time, the traditional remote sensing data organization is simply stored in the database, and the database is searched and information obtained according to the application requirements. On the one hand, the search efficiency and the ability to obtain information are limited. On the one hand, the information in the database cannot be viewed intuitively, which greatly limits the utilization value of the data.
综上所述,现有技术存在的问题是:In summary, the problems in the prior art are:
现有山地地貌遥感图像分割精度差;同时,传统的遥感数据组织是简单地入库,根据应用需求来对数据库进行查找和信息获取,一方面查找效率和信息获取的能力受到限制,另一方面不能直观地查看数据库中的信息,极大地限制了数据的利用价值。The segmentation accuracy of the existing remote sensing images of mountainous landforms is poor; at the same time, the traditional remote sensing data organization is simply stored in the database, and the database is searched and information obtained according to the application requirements. On the one hand, the search efficiency and the ability to obtain information are limited. The information in the database cannot be viewed intuitively, which greatly limits the utilization value of the data.
现有技术中不能有效去除外界因素对电磁波的干扰,降低成像效果;现有技术中图像分割效果较差,不利与图像处理分析效果;现有技术中数据分类处理时,不能保证分类质量,且对遥感数据的分类速度较慢。现有技术中,提取山地遥感图像的地貌特征效果差,不能很好地运用在起伏较大的地形表面。In the prior art, the interference of external factors to electromagnetic waves cannot be effectively removed, and the imaging effect is reduced; the image segmentation effect in the prior art is poor, which is unfavorable to the image processing and analysis effect; in the prior art, the classification quality cannot be guaranteed during data classification processing, and Classification of remote sensing data is slow. In the prior art, the effect of extracting geomorphic features from mountain remote sensing images is poor, and cannot be well applied to terrain surfaces with large undulations.
发明内容Contents of the invention
针对现有技术存在的问题,本发明提供了一种山地地貌遥感提取方法。Aiming at the problems existing in the prior art, the invention provides a remote sensing extraction method of mountain topography.
本发明是这样实现的,一种山地地貌遥感提取方法,所述山地地貌遥感提取方法包括以下步骤:The present invention is achieved in this way, a method for remote sensing extraction of mountainous landforms, the method for remote sensing extraction of mountainous landforms comprises the following steps:
步骤一,通利用遥感器探测山地发射的电磁波;Step 1, by using a remote sensor to detect electromagnetic waves emitted by mountains;
步骤二,利用成像设备将探测的电磁波生成山地遥感图像;
步骤三,利用校正软件对生成的山地遥感图像进行校正;利用图像分割软件对山地遥感图像进行分割操作;
步骤四,利用图像处理软件提取山地遥感图像的地貌特征;将M个传感器节点随机部署在山地探测部位中,对每个节点的中心点进行Delaunay三角形剖分;做出每个Delaunay三角形的外接圆,比较节点半径和外接圆半径,如果R>r,那么肯定存在隐蔽部分,保存这个Delaunay三角形和外接圆,否则去掉外接圆,传感器节点半径为r,每个外接圆的半径为R;计算剩余两个相邻三角形的公共边长d,如果d>2r,或者公共边不与两个三角形外接圆的中心连线相交,那么对这些三角形进行聚类分组得到边界节点,每个聚类分组都会存在隐蔽部分;对每个聚类分组中的传感器节点中心点,用能够包含隐蔽部分的最小多边形的方法,表示出隐蔽部分边界;对边界节点进行假边界节点的判定,去掉假边界节点之后,再次用能够包含隐蔽部分的最小多边形方法,表示出改善后的隐蔽部分边界;传感器节点随机部署在山地探测部位的实际覆盖面积会变小,经过地形修正的传感器节点的二维覆盖区域为椭圆,利用坡度和坡向角算出实际探测半径,使用检测算法算出修正后的隐蔽部分边界,最终山地遥感图像的地貌特征;Step 4: Use image processing software to extract the geomorphological features of mountain remote sensing images; randomly deploy M sensor nodes in the mountain detection site, and perform Delaunay triangulation on the center point of each node; make circumscribed circles of each Delaunay triangle , compare the node radius and the circumcircle radius, if R>r, then there must be a hidden part, save the Delaunay triangle and circumcircle, otherwise remove the circumcircle, the radius of the sensor node is r, and the radius of each circumcircle is R; calculate the remaining The common side length d of two adjacent triangles, if d>2r, or the common side does not intersect with the center line of the circumcircle of the two triangles, then these triangles are clustered and grouped to obtain boundary nodes, and each cluster group will be There is a hidden part; for the center point of the sensor node in each clustering group, use the method of the smallest polygon that can contain the hidden part to show the boundary of the hidden part; determine the false border node for the border node, after removing the false border node, Using the minimum polygon method that can contain hidden parts again, the improved hidden part boundary is shown; the actual coverage area of sensor nodes randomly deployed in mountainous detection parts will become smaller, and the two-dimensional coverage area of sensor nodes after terrain correction is an ellipse. Use the slope and aspect angle to calculate the actual detection radius, use the detection algorithm to calculate the corrected boundary of the hidden part, and finally the topographic features of the remote sensing image of the mountain;
步骤五,利用数据处理软件对遥感数据进行分类处理操作;Step five, using data processing software to classify and process the remote sensing data;
步骤六,通过遥感图存储模块利用存储器存储山地遥感图像数据;并通过显示模块利用显示器显示山地遥感图像。In step six, the remote sensing image storage module uses the memory to store the mountain remote sensing image data; and the display module uses the display to display the mountain remote sensing image.
进一步,图像分割方法包括:Further, image segmentation methods include:
(1)读取待分割的高分辨率遥感影像;(1) Read the high-resolution remote sensing image to be segmented;
(2)利用待分割的高分辨率遥感影像中各地物类别的高斯二型模糊隶属函数模型,计算每个灰度级所对应的高斯二型模糊隶属度;(2) Using the Gaussian type II fuzzy membership function model of each object category in the high-resolution remote sensing image to be segmented, calculate the Gaussian type II fuzzy membership degree corresponding to each gray level;
(3)利用待分割的高分辨率遥感影像中各地物类别的分割决策模型,计算每个灰度级在各分割决策模型中的隶属度;(3) Using the segmentation decision-making model of each object category in the high-resolution remote sensing image to be segmented, calculate the membership degree of each gray level in each segmentation decision-making model;
(4)高分辨遥感影像中每个像素的灰度级在各分割决策模型中的最大隶属度值所对应的地物类别,即为分割结果;(4) The ground object category corresponding to the maximum membership value of the gray level of each pixel in each segmentation decision model in the high-resolution remote sensing image is the segmentation result;
(5)按照设定步长改变高斯二型模糊隶属函数模型并重复步骤(2)至步骤(4),对所有分割结果进行比较,取分割精度最高的分割结果作为最终的高分辨率遥感影像分割结果;(5) Change the Gaussian type II fuzzy membership function model according to the set step size and repeat steps (2) to (4), compare all the segmentation results, and take the segmentation result with the highest segmentation accuracy as the final high-resolution remote sensing image segmentation results;
进一步,所述步骤(2)包括:Further, the step (2) includes:
构建高斯主隶属函数模型并计算主隶属度:对待分割的高分辨率遥感影像中的每个地物类别进行监督采样提取训练样本,计算训练样本中各灰度级在对应的地物类别中出现的频率,对不同地物类别建立高斯主隶属函数模型并计算高斯主隶属度;Construct the Gaussian master membership function model and calculate the master degree of membership: perform supervised sampling for each feature category in the high-resolution remote sensing image to be segmented to extract training samples, and calculate the occurrence of each gray level in the training sample in the corresponding feature category The frequency of the Gaussian main membership function model is established for different types of ground objects and the Gaussian main membership degree is calculated;
确定高斯二型模糊隶属函数模型的不确定区域:将高斯主隶属函数模型中的标准差模糊化为标准差区间,该标准差区间所对应的高斯主隶属函数模型组成的区域即为高斯二型模糊隶属函数模型的不确定区域,此时每个灰度级所对应的高斯主隶属度为一个区间;Determine the uncertainty region of the Gaussian type II fuzzy membership function model: Fuzzify the standard deviation in the Gaussian main membership function model into a standard deviation interval, and the area composed of the Gaussian main membership function model corresponding to the standard deviation interval is Gaussian type II The uncertain region of the fuzzy membership function model, at this time, the Gaussian master membership degree corresponding to each gray level is an interval;
构建高斯次隶属函数模型:确定灰度范围内每个灰度级的高斯次隶属函数模型均值和方差建立高斯次隶属函数模型并计算高斯次隶属度;Construct the Gaussian sub-membership function model: determine the mean and variance of the Gaussian sub-membership function model for each gray level within the gray scale range, establish the Gaussian sub-membership function model and calculate the Gaussian sub-membership degree;
利用由高斯主隶属函数模型、高斯次隶属函数模型、不确定区域构成的高斯二型模糊隶属函数模型,计算高斯二型模糊隶属度:计算灰度范围内每个灰度级的高斯主隶属度集合元素与对应的高斯次隶属度集合元素的乘积,即该灰度级的高斯二型模糊隶属度,每个灰度级所对应的高斯二型模糊隶属度为一个集合;Using the Gaussian type II fuzzy membership function model composed of Gaussian main membership function model, Gaussian secondary membership function model and uncertain region, calculate the Gaussian type II fuzzy membership degree: calculate the Gaussian main membership degree of each gray level in the gray scale range The product of the set element and the corresponding Gaussian sub-membership set element is the Gaussian type II fuzzy membership degree of the gray level, and the Gaussian type II fuzzy membership degree corresponding to each gray level is a set;
进一步,遥感数据分类方法包括:Further, remote sensing data classification methods include:
1)根据海量遥感数据中各遥感数据的空间信息和时间信息,将海量遥感数据划分为至少一个数据集合,其中,每个数据集合包括至少一个遥感数据;1) According to the spatial information and time information of each remote sensing data in the massive remote sensing data, divide the massive remote sensing data into at least one data set, wherein each data set includes at least one remote sensing data;
2)提取每个数据集合中的数据特征,所述数据特征包括:属性特征和影像特征,属性特征是指数据的来源、类型、分辨率,影像特征是直方图特征、边缘特征、纹理特征;2) extracting data features in each data set, said data features include: attribute features and image features, attribute features refer to the source, type, resolution of data, image features are histogram features, edge features, texture features;
3)根据所述数据特征,对每个数据集合中遥感数据进行层级聚类,从而将每个数据集合中具有相同数据特征的遥感数据分类为同一数据类别;3) performing hierarchical clustering on the remote sensing data in each data set according to the data characteristics, thereby classifying the remote sensing data with the same data characteristics in each data set into the same data category;
4)为每个数据类别添加一个语义标签;4) Add a semantic label for each data category;
进一步,所述步骤1)包括:Further, said step 1) includes:
在标准的椭球坐标系下,对各遥感数据的按地理空间位置进行编码,得到各遥感数据的地理编码,所述地理编码包括:数据的层级、经度和纬度;把全球空间范围按经纬度、高度网格划分并进行编号,地理编码由20位构成,前两位表示高度编号,中间9位表示经度编号,后9位表示纬度编号;Under the standard ellipsoidal coordinate system, the remote sensing data is coded according to the geographic spatial position to obtain the geographic code of each remote sensing data. The geographic code includes: the data level, longitude and latitude; The height grid is divided and numbered. The geocoding is composed of 20 digits. The first two digits represent the height number, the middle nine digits represent the longitude number, and the last nine digits represent the latitude number;
将具有相同地理编码的遥感数据归并至同一数据集合,得到至少一个数据集合;merging remote sensing data with the same geocoding into the same data set to obtain at least one data set;
在每个数据集合中,根据各遥感数据的时间信息,建立序列关系;In each data set, according to the time information of each remote sensing data, a sequence relationship is established;
对已经建立序列关系的数据集合,建立时空索引;Create a spatio-temporal index for data sets that have established a sequence relationship;
进一步,所述步骤3)中,采用层级中餐馆模型对所述遥感数据进行层级聚类;Further, in the step 3), the remote sensing data is hierarchically clustered using a hierarchical Chinese restaurant model;
在采用层级中餐馆模型对任意一遥感数据进行层级聚类时,将该遥感数据分类到已有的数据类别,或者新建立一个数据类别,并将该遥感数据分类到该新建立的数据类别;When using the hierarchical Chinese restaurant model to perform hierarchical clustering on any remote sensing data, classify the remote sensing data into an existing data category, or create a new data category, and classify the remote sensing data into the newly established data category;
采用层级中餐馆模型对新加入的遥感数据进行层级聚类,将该新加入的遥感数据分类到已有的数据类别,或者新建立一个数据类别,并将该新加入的遥感数据分类到该新建立的数据类别。Use the hierarchical Chinese restaurant model to perform hierarchical clustering on the newly added remote sensing data, classify the newly added remote sensing data into existing data categories, or create a new data category, and classify the newly added remote sensing data into the new Created data categories.
进一步,传感器节点随机部署在山地探测部位中的方法,山地探测部位表示为一个单值函数z=h(x,y),每个传感器的感知半径r都相同,感知区域形成了一个在三维空间中以为传感器位置为中心,r为半径的球体。Further, the method of randomly deploying sensor nodes in the mountain detection position, the mountain detection position is expressed as a single-valued function z=h(x, y), the sensing radius r of each sensor is the same, and the sensing area forms a three-dimensional space In is a sphere whose center is the sensor position and r is the radius.
本发明的另一目的在于提供一种终端,所述终端搭载实现所述山地地貌遥感提取方法的处理器。Another object of the present invention is to provide a terminal equipped with a processor for realizing the remote sensing extraction method of mountain landforms.
本发明的另一目的在于提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行所述的山地地貌遥感提取方法。Another object of the present invention is to provide a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute the method for remote sensing extraction of mountain landforms.
本发明的另一目的在于提供一种实施所述山地地貌遥感提取的山地地貌遥感提取系统,所述山地地貌遥感提取系统包括:Another object of the present invention is to provide a remote sensing extraction system for mountainous landforms that implements remote sensing extraction of mountainous landforms. The remote sensing extraction system for mountainous landforms includes:
电磁波探测模块,与主控模块连接,用于通过遥感器探测山地发射的电磁波;The electromagnetic wave detection module is connected with the main control module, and is used to detect the electromagnetic wave emitted by the mountain through the remote sensor;
主控模块,与电磁波探测模块、遥感图像生成模块、校正模块、图像分割模块、特征提取模块、遥感数据分类模块、遥感图存储模块、显示模块连接,用于通过单片机控制各个模块正常工作;The main control module is connected with the electromagnetic wave detection module, the remote sensing image generation module, the correction module, the image segmentation module, the feature extraction module, the remote sensing data classification module, the remote sensing image storage module and the display module, and is used to control the normal operation of each module through the single-chip microcomputer;
遥感图像生成模块,与主控模块连接,用于通过成像设备将探测的电磁波生成山地遥感图像;The remote sensing image generation module is connected with the main control module, and is used to generate the mountain remote sensing image from the detected electromagnetic wave through the imaging device;
校正模块,与主控模块连接,用于通过校正软件对生成的山地遥感图像进行校正;The correction module is connected with the main control module, and is used for correcting the generated mountain remote sensing image through correction software;
图像分割模块,与主控模块连接,用于通过图像分割软件对山地遥感图像进行分割操作;The image segmentation module is connected with the main control module, and is used for segmenting the mountain remote sensing image through the image segmentation software;
特征提取模块,与主控模块连接,用于通过图像处理软件提取山地遥感图像的地貌特征;The feature extraction module is connected with the main control module, and is used to extract the geomorphic features of the remote sensing images of mountains through image processing software;
遥感数据分类模块,与主控模块连接,用于通过数据处理软件对遥感数据进行分类处理操作;The remote sensing data classification module is connected with the main control module, and is used to classify and process the remote sensing data through data processing software;
遥感图存储模块,与主控模块连接,用于通过存储器存储山地遥感图像数据;The remote sensing image storage module is connected with the main control module and is used to store mountain remote sensing image data through memory;
显示模块,与主控模块连接,用于通过显示器显示山地遥感图像。The display module is connected with the main control module and is used for displaying mountain remote sensing images through the display.
本发明的优点及积极效果为:Advantage of the present invention and positive effect are:
本发明通过图像分割模块对影像构建高斯二型模糊隶属函数模型并将所有隶属度加权平均构建分割决策模型,有效解决了灰度级隶属的不确定性及分割决策的不确定性带来的分割问题,实现对高分辨率遥感数据复杂直方图分布特征的更加精确的拟合,并很好的克服了噪声,提高了山地地貌遥感图像分割精度;同时,通过感数据分类模块利用分类体系学习和时空数据自组织,根据数据自动建立层级分类体系,提供由粗到细逐级细化的聚类结果,灵活方便,并且在后续使用过程中,可以动态的根据新数据不断调整和完善层级分类体系,实现山地遥感数据的动态组织和分类管理。The invention constructs a Gaussian type II fuzzy membership function model for the image through the image segmentation module and constructs a segmentation decision model by weighting all membership degrees, effectively solving the segmentation problems caused by the uncertainty of gray level membership and the uncertainty of segmentation decision problem, to achieve a more accurate fitting of the complex histogram distribution characteristics of high-resolution remote sensing data, and to overcome the noise well, improving the segmentation accuracy of mountainous landform remote sensing images; at the same time, through the sensory data classification module, the classification system is used Spatial-temporal data self-organization, automatically establishes a hierarchical classification system based on the data, and provides hierarchically refined clustering results from coarse to fine, flexible and convenient, and can dynamically adjust and improve the hierarchical classification system based on new data in the subsequent use process , realize the dynamic organization and classification management of mountain remote sensing data.
本发明的成像设备在生成山地遥感图像过程中通过PURE-LET的小波域去噪模型,有效去除外界因素对电磁波的干扰,提高成像效果;通过计算机利用图像分割软件采用FCM图像分割算法,有效提高山地遥感图像分割效果,加快分割速度,提高分割速度,有利提高图像处理分析效果;利用数据处理软件采用朴素贝叶斯算法对遥感数据进行分类处理,在保证分类质量的条件下,提高对遥感数据的分类速度。The imaging device of the present invention uses the PURE-LET wavelet domain denoising model in the process of generating mountain remote sensing images to effectively remove the interference of external factors on electromagnetic waves and improve the imaging effect; the computer utilizes image segmentation software and uses FCM image segmentation algorithms to effectively improve Segmentation effect of mountainous remote sensing images, speed up the segmentation speed, increase the segmentation speed, and improve the image processing and analysis effect; use data processing software to classify remote sensing data using Naive Bayesian algorithm, and improve the accuracy of remote sensing data under the condition of ensuring the quality of classification classification speed.
本发明将M个传感器节点随机部署在山地探测部位中,对每个节点的中心点进行Delaunay三角形剖分;做出每个Delaunay三角形的外接圆,比较节点半径和外接圆半径,如果R>r,那么肯定存在隐蔽部分,保存这个Delaunay三角形和外接圆,否则去掉外接圆,传感器节点半径为r,每个外接圆的半径为R;计算剩余两个相邻三角形的公共边长d,如果d>2r,或者公共边不与两个三角形外接圆的中心连线相交,那么对这些三角形进行聚类分组得到边界节点,每个聚类分组都会存在隐蔽部分;对每个聚类分组中的传感器节点中心点,用能够包含隐蔽部分的最小多边形的方法,表示出隐蔽部分边界;对边界节点进行假边界节点的判定,去掉假边界节点之后,再次用能够包含隐蔽部分的最小多边形方法,表示出改善后的隐蔽部分边界;传感器节点随机部署在山地探测部位的实际覆盖面积会变小,经过地形修正的传感器节点的二维覆盖区域为椭圆,利用坡度和坡向角算出实际探测半径,使用检测算法算出修正后的隐蔽部分边界,最终山地遥感图像的地貌特征;能很好地运用在起伏较大的地形表面。In the present invention, M sensor nodes are randomly deployed in the mountain detection site, and the center point of each node is divided into Delaunay triangles; the circumscribed circle of each Delaunay triangle is made, and the radius of the node is compared with the radius of the circumscribed circle, if R>r , then there must be a hidden part, save the Delaunay triangle and circumcircle, otherwise remove the circumcircle, the radius of the sensor node is r, and the radius of each circumcircle is R; calculate the common side length d of the remaining two adjacent triangles, if d >2r, or the common side does not intersect with the center line of the circumcircle of the two triangles, then these triangles are clustered and grouped to obtain boundary nodes, and each cluster group will have a hidden part; for each cluster group The sensor The center point of the node uses the method of the smallest polygon that can contain the hidden part to show the boundary of the hidden part; the boundary node is judged as a false border node, and after the false border node is removed, the method of the smallest polygon that can include the hidden part is used to express the boundary of the hidden part The improved boundary of the concealed part; the actual coverage area of the sensor nodes randomly deployed in the mountain detection site will become smaller, and the two-dimensional coverage area of the sensor nodes after terrain correction is an ellipse, and the actual detection radius is calculated by using the slope and aspect angle, and the detection is used The algorithm calculates the corrected boundary of the concealed part, and finally the geomorphic features of the mountain remote sensing image; it can be well used on the terrain surface with large undulations.
附图说明Description of drawings
图1是本发明实施例提供的山地地貌遥感提取方法流程图。Fig. 1 is a flow chart of a remote sensing extraction method for mountain topography provided by an embodiment of the present invention.
图2是本发明实施例提供的山地地貌遥感提取系统结构图。Fig. 2 is a structural diagram of a remote sensing extraction system for mountain topography provided by an embodiment of the present invention.
图中:1、电磁波探测模块;2、主控模块;3、遥感图像生成模块;4、校正模块;5、图像分割模块;6、特征提取模块;7、遥感数据分类模块;8、遥感图存储模块;9、显示模块。In the figure: 1. Electromagnetic wave detection module; 2. Main control module; 3. Remote sensing image generation module; 4. Calibration module; 5. Image segmentation module; 6. Feature extraction module; 7. Remote sensing data classification module; 8. Remote sensing map storage module; 9. display module.
具体实施方式Detailed ways
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明包括。In order to further understand the invention content, features and effects of the present invention, the following embodiments are exemplified, and detailed descriptions are included with the accompanying drawings.
下面结合附图对本发明的结构作详细的描述。The structure of the present invention will be described in detail below in conjunction with the accompanying drawings.
如图1所示,本发明提供的山地地貌遥感提取方法包括以下步骤:As shown in Figure 1, the remote sensing extraction method of mountain landform provided by the present invention comprises the following steps:
S101,利用遥感器探测和采集山地发射的电磁波。S101, using remote sensors to detect and collect electromagnetic waves emitted from mountains.
S102,利用具有PURE-LET的小波域去噪模型的成像设备将探测的电磁波生成山地遥感图像。S102, using an imaging device with a PURE-LET wavelet domain denoising model to generate a mountain remote sensing image from the detected electromagnetic waves.
S103,通过计算机利用校正软件对生成的山地遥感图像进行校正。通过计算机利用图像分割软件采用FCM图像分割算法对山地遥感图像进行分割操作。S103, correcting the generated mountain remote sensing image by using the correction software through the computer. The remote sensing images of mountains are segmented by computer using image segmentation software using FCM image segmentation algorithm.
S104,通过计算机利用图像处理软件提取山地遥感图像的地貌特征。通过计算机利用数据处理软件采用朴素贝叶斯算法对遥感数据进行分类处理操作。S104, using image processing software to extract geomorphic features of the mountain remote sensing image through a computer. The computer uses data processing software to classify and process the remote sensing data using the Naive Bayesian algorithm.
S105,利用存储器存储山地遥感图像数据。并通过显示器显示山地遥感图像。S105, storing mountain remote sensing image data in memory. And display mountain remote sensing images through the monitor.
步骤S102中,本发明实施例提供的成像设备在生成山地遥感图像过程中通过PURE-LET的小波域去噪模型,有效去除外界因素对电磁波的干扰,提高成像效果,具体算法为:In step S102, the imaging device provided by the embodiment of the present invention uses the PURE-LET wavelet domain denoising model in the process of generating mountain remote sensing images to effectively remove the interference of external factors on electromagnetic waves and improve the imaging effect. The specific algorithm is:
在每一尺度下将小波系数估计均写成一组基本阈值函数的线性组合:At each scale the wavelet coefficients are estimated Both are written as a linear combination of a set of basic threshold functions:
并通过PURE的最小化来确定系数向量a=[a1,…,aM]T。And determine the coefficient vector a=[a 1 , . . . , a M ] T through the minimization of PURE.
令θ(d,s)=θj(dj,sj)为无噪声小波系数δ=δj的一个估计。Let θ(d, s) = θ j (d j , s j ) be an estimate of the noise-free wavelet coefficient δ = δ j .
函数θ+(d,s)和θ-(d,s)包括:The functions θ + (d, s) and θ - (d, s) include:
其中,为/>的标准基,除ek(k)=1外其余元素均为0。则随机变量PUREj为子带j下MSE的无偏估计,即E{PUREj}=E{MSEj}。in, for /> The standard base of , all elements are 0 except e k (k)=1. Then the random variable PURE j is an unbiased estimate of the MSE under subband j, that is, E{PURE j }=E{MSE j }.
通过PURE的最小化,来计算式(2)中小波估计的线性组合参数。将式(2)代入式(3),并省略自变量(d,s),有Through the minimization of PURE, the linear combination parameters estimated by the wavelet in formula (2) are calculated. Substituting formula (2) into formula (3), and omitting the independent variable (d, s), we have
步骤S103中,本发明实施例提供的通过计算机利用图像分割软件采用FCM图像分割算法,有效提高山地遥感图像分割效果,加快分割速度,提高分割速度,有利提高图像处理分析效果。具体步骤:In step S103, the FCM image segmentation algorithm provided by the embodiment of the present invention can effectively improve the segmentation effect of mountainous remote sensing images, speed up the segmentation speed, and improve the image processing and analysis effect by using the image segmentation software provided by the computer. Specific steps:
(1)初始化的确定:根据图像分割的要求,需要对图像进行初始化的确定,并对需要的参数进行初始化,并将直方图的聚类中心。(1) Determination of initialization: According to the requirements of image segmentation, it is necessary to determine the initialization of the image, initialize the required parameters, and set the clustering center of the histogram.
(2)因子的自适应性的确定,适应度,根据构造的适应函数:(2) The determination of the adaptability of the factor, the degree of fitness, according to the constructed fitness function:
f=a/(b+J)。f=a/(b+J).
其中,a,b是可调整的参数,根据实验可以分别取值为10和1.5,J为的目标函数。Among them, a and b are adjustable parameters, which can be set to 10 and 1.5 respectively according to the experiment, and J is the objective function.
(3)变异操作:个体前后的变化量为0.5r(t/T),数据r是在规定的区间内产生的随机数,T为计算的最大代数。(3) Mutation operation: the amount of change before and after the individual is 0.5r(t/T), the data r is a random number generated within a specified interval, and T is the maximum number of calculations.
(4)迭代计算:将通过新的切割数据得出新的模糊隶属度矩阵,产生新的切割参数,返回步骤二进行迭代计算,直到完成条件的终止,完成图像的分割。(4) Iterative calculation: the new fuzzy membership degree matrix will be obtained through the new cutting data, and new cutting parameters will be generated. Return to step 2 for iterative calculation until the condition is terminated and the image segmentation is completed.
步骤S104中,本发明实施例提供的利用数据处理软件采用朴素贝叶斯算法对遥感数据进行分类处理,在保证分类质量的条件下,提高对遥感数据的分类速度,具体的算法为:In step S104, the data processing software provided by the embodiment of the present invention adopts the naive Bayesian algorithm to classify the remote sensing data, and under the condition of ensuring the classification quality, improve the classification speed of the remote sensing data. The specific algorithm is:
设D是训练对象与其相关联的类标号的集合。每个对象用一个n维属性向量X={x1,x2…xn}表示,描述n个属性A1,A2…An的值。假定原始集合基于n维属性共划分为m个类C1,C2…Cm,计算每个类对X的后验概率,并将对象X归属于具有最高后验概率的类。后验概率P(Ci|X)的计算公式为:Let D be the set of class labels associated with training objects. Each object is represented by an n-dimensional attribute vector X={x 1 , x 2 ... x n }, which describes the values of n attributes A 1 , A 2 ... A n . Assuming that the original set is divided into m classes C 1 , C 2 ... C m based on n-dimensional attributes, calculate the posterior probability of each class pair X, and assign the object X to the class with the highest posterior probability. The formula for calculating the posterior probability P(C i |X) is:
由于P(Ci|X)的计算开销较大,进行类条件独立的假定,给定向量的类标号,并假定属性值有条件的相互独立。P(Xi|C)的计算公式为:Due to the large calculation overhead of P(C i |X), the conditional independence of classes is assumed, the class label of the vector is given, and the attribute values are assumed to be conditionally independent of each other. The calculation formula of P(X i |C) is:
其中,P(x1|Ci)P(x2|Ci)…P(xn|Cn)可以容易地由训练对象求算,xk表示X在属性Ak上的值。对每个类别Ci计算P(X|Ci)P(Ci)。当P(X|Ci)P(Ci)>P(X|Cj)P(C j),1≤j≤m,j≠i成立时,X属于类Ci。Among them, P(x 1 |C i )P(x 2 |C i )...P(x n |C n ) can be easily calculated by the training object, and x k represents the value of X on attribute A k . Compute P(X|C i )P(C i ) for each class C i . When P(X|C i )P(C i )>P(X|C j )P(C j ), 1≤j≤m, j≠i holds, X belongs to class C i .
步骤S104中,将M个传感器节点随机部署在山地探测部位中,对每个节点的中心点进行Delaunay三角形剖分。In step S104, M sensor nodes are randomly deployed in the mountain detection site, and Delaunay triangulation is performed on the center point of each node.
做出每个Delaunay三角形的外接圆,比较节点半径和外接圆半径,如果R>r,那么肯定存在隐蔽部分,保存这个Delaunay三角形和外接圆,否则去掉外接圆,传感器节点半径为r,每个外接圆的半径为R;计算剩余两个相邻三角形的公共边长d,如果d>2r,或者公共边不与两个三角形外接圆的中心连线相交,那么对这些三角形进行聚类分组得到边界节点,每个聚类分组都会存在隐蔽部分;对每个聚类分组中的传感器节点中心点,用能够包含隐蔽部分的最小多边形的方法,表示出隐蔽部分边界;对边界节点进行假边界节点的判定,去掉假边界节点之后,再次用能够包含隐蔽部分的最小多边形方法,表示出改善后的隐蔽部分边界;传感器节点随机部署在山地探测部位的实际覆盖面积会变小,经过地形修正的传感器节点的二维覆盖区域为椭圆,利用坡度和坡向角算出实际探测半径,使用检测算法算出修正后的隐蔽部分边界,最终山地遥感图像的地貌特征。Make the circumcircle of each Delaunay triangle, compare the node radius and the circumcircle radius, if R>r, then there must be a hidden part, save the Delaunay triangle and circumcircle, otherwise remove the circumcircle, the sensor node radius is r, each The radius of the circumcircle is R; calculate the length d of the common side of the remaining two adjacent triangles, if d>2r, or the common side does not intersect the center line of the circumcircle of the two triangles, then cluster and group these triangles to get Boundary nodes, each clustering group will have a hidden part; for the center point of the sensor node in each clustering group, use the method of the smallest polygon that can contain the hidden part to indicate the boundary of the hidden part; make a false boundary node for the boundary node After removing the false boundary nodes, the minimum polygon method that can contain the hidden part is used again to show the improved hidden part boundary; the actual coverage area of the sensor nodes randomly deployed in the mountain detection part will become smaller, and the sensor after terrain correction The two-dimensional coverage area of the node is an ellipse, and the actual detection radius is calculated by using the slope and aspect angle, and the corrected boundary of the hidden part is calculated by using the detection algorithm, and finally the topographic features of the mountain remote sensing image.
传感器节点随机部署在山地探测部位中的方法,山地探测部位表示为一个单值函数z=h(x,y),每个传感器的感知半径r都相同,感知区域形成了一个在三维空间中以为传感器位置为中心,r为半径的球体。The method of randomly deploying sensor nodes in the mountain detection position, the mountain detection position is expressed as a single-valued function z=h(x, y), the sensing radius r of each sensor is the same, and the sensing area forms a three-dimensional space as A sphere with the sensor position as the center and r as the radius.
实际探测半径的计算方法在曲面z=h(x,y)上,对于点P(x,y)方向梯度为:The calculation method of the actual detection radius is on the curved surface z=h(x, y), and the direction gradient for point P(x, y) is:
其中和/>分别为x和y方向的偏导数,i和j为单位矢量,方向梯度的模为坡度;in and /> are the partial derivatives in the x and y directions, respectively, i and j are unit vectors, and the modulus of the directional gradient is the slope;
点P沿着β方向的坡度G为:The slope G of point P along the β direction is:
G=ScosβG=Scosβ
β是坡向,由于三维地形的起伏缺陷,传感器节点沿β方向的实际探测半径r’与理想探测半径r的关系表示为:β is the slope aspect. Due to the undulating defects of the three-dimensional terrain, the relationship between the actual detection radius r’ of the sensor node along the β direction and the ideal detection radius r is expressed as:
r'=rcosγr'=rcosγ
实际探测半径r’与坡度S和坡向角β的关系为:The relationship between the actual detection radius r' and the slope S and aspect angle β is:
r'=rcos(arctan(Scosβ))。r'=rcos(arctan(Scosβ)).
修正方法为沿着坡向方向,节点相交的两条等高线之间的差值为高度差Δh,相交的两条等高线之间的距离为Δd,坡度S表示为:The correction method is along the slope direction, the difference between the two contour lines intersected by the node is the height difference Δh, the distance between the two intersecting contour lines is Δd, and the slope S is expressed as:
计算出三维地形下每个传感器节点在二维平面上的椭圆投影。Calculate the ellipse projection of each sensor node on the two-dimensional plane under the three-dimensional terrain.
如图2所示,本发明实施例提供的山地地貌遥感提取系统包括:As shown in Figure 2, the remote sensing extraction system for mountain landforms provided by the embodiment of the present invention includes:
电磁波探测模块1、主控模块2、遥感图像生成模块3、校正模块4、图像分割模块5、特征提取模块6、遥感数据分类模块7、遥感图存储模块8、显示模块9。Electromagnetic wave detection module 1,
电磁波探测模块1,与主控模块2连接,用于通过遥感器探测山地发射的电磁波。The electromagnetic wave detection module 1 is connected with the
主控模块2,与电磁波探测模块1、遥感图像生成模块3、校正模块4、图像分割模块5、特征提取模块6、遥感数据分类模块7、遥感图存储模块8、显示模块9连接,用于通过单片机控制各个模块正常工作。The
遥感图像生成模块3,与主控模块2连接,用于通过成像设备将探测的电磁波生成山地遥感图像。The remote sensing
校正模块4,与主控模块2连接,用于通过校正软件对生成的山地遥感图像进行校正。The correction module 4 is connected with the
图像分割模块5,与主控模块2连接,用于通过图像分割软件对山地遥感图像进行分割操作。The image segmentation module 5 is connected with the
特征提取模块6,与主控模块2连接,用于通过图像处理软件提取山地遥感图像的地貌特征。The
遥感数据分类模块7,与主控模块2连接,用于通过数据处理软件对遥感数据进行分类处理操作。The remote sensing
遥感图存储模块8,与主控模块2连接,用于通过存储器存储山地遥感图像数据。The remote sensing
显示模块9,与主控模块2连接,用于通过显示器显示山地遥感图像。The
本发明提供的图像分割模块5分割方法包括:Image segmentation module 5 segmentation methods provided by the invention include:
(1)读取待分割的高分辨率遥感影像。(1) Read the high-resolution remote sensing image to be segmented.
(2)利用待分割的高分辨率遥感影像中各地物类别的高斯二型模糊隶属函数模型,计算每个灰度级所对应的高斯二型模糊隶属度。(2) Using the Gaussian type II fuzzy membership function model of each object category in the high-resolution remote sensing image to be segmented, calculate the Gaussian type II fuzzy membership degree corresponding to each gray level.
(3)利用待分割的高分辨率遥感影像中各地物类别的分割决策模型,计算每个灰度级在各分割决策模型中的隶属度。(3) Using the segmentation decision-making model of each object category in the high-resolution remote sensing image to be segmented, calculate the membership degree of each gray level in each segmentation decision-making model.
(4)高分辨遥感影像中每个像素的灰度级在各分割决策模型中的最大隶属度值所对应的地物类别,即为分割结果。(4) The ground object category corresponding to the maximum membership value of the gray level of each pixel in each segmentation decision model in the high-resolution remote sensing image is the segmentation result.
(5)按照设定步长改变高斯二型模糊隶属函数模型并重复步骤(2)至步骤(4),对所有分割结果进行比较,取分割精度最高的分割结果作为最终的高分辨率遥感影像分割结果。(5) Change the Gaussian type II fuzzy membership function model according to the set step size and repeat steps (2) to (4), compare all the segmentation results, and take the segmentation result with the highest segmentation accuracy as the final high-resolution remote sensing image Split results.
本发明提供的步骤(2)包括:Step (2) provided by the present invention comprises:
构建高斯主隶属函数模型并计算主隶属度:对待分割的高分辨率遥感影像中的每个地物类别进行监督采样提取训练样本,计算训练样本中各灰度级在对应的地物类别中出现的频率,对不同地物类别建立高斯主隶属函数模型并计算高斯主隶属度。Construct the Gaussian master membership function model and calculate the master degree of membership: perform supervised sampling for each feature category in the high-resolution remote sensing image to be segmented to extract training samples, and calculate the occurrence of each gray level in the training sample in the corresponding feature category The frequency of the Gaussian main membership function model is established for different surface object categories and the Gaussian main membership degree is calculated.
确定高斯二型模糊隶属函数模型的不确定区域:将高斯主隶属函数模型中的标准差模糊化为标准差区间,该标准差区间所对应的高斯主隶属函数模型组成的区域即为高斯二型模糊隶属函数模型的不确定区域,此时每个灰度级所对应的高斯主隶属度为一个区间。Determine the uncertainty region of the Gaussian type II fuzzy membership function model: Fuzzify the standard deviation in the Gaussian main membership function model into a standard deviation interval, and the area composed of the Gaussian main membership function model corresponding to the standard deviation interval is Gaussian type II The uncertain region of the fuzzy membership function model, at this time, the Gaussian master membership degree corresponding to each gray level is an interval.
构建高斯次隶属函数模型:确定灰度范围内每个灰度级的高斯次隶属函数模型均值和方差建立高斯次隶属函数模型并计算高斯次隶属度。Construct the Gaussian sub-membership function model: determine the mean and variance of the Gaussian sub-membership function model for each gray level within the gray scale range, establish the Gaussian sub-membership function model and calculate the Gaussian sub-membership degree.
利用由高斯主隶属函数模型、高斯次隶属函数模型、不确定区域构成的高斯二型模糊隶属函数模型,计算高斯二型模糊隶属度:计算灰度范围内每个灰度级的高斯主隶属度集合元素与对应的高斯次隶属度集合元素的乘积,即该灰度级的高斯二型模糊隶属度,每个灰度级所对应的高斯二型模糊隶属度为一个集合。Using the Gaussian type II fuzzy membership function model composed of Gaussian main membership function model, Gaussian secondary membership function model and uncertain region, calculate the Gaussian type II fuzzy membership degree: calculate the Gaussian main membership degree of each gray level in the gray scale range The product of the set element and the corresponding Gaussian sub-membership set element is the Gaussian type II fuzzy membership degree of the gray level, and the Gaussian type II fuzzy membership degree corresponding to each gray level is a set.
本发明提供的遥感数据分类模块7分类方法包括:Remote sensing
1)根据海量遥感数据中各遥感数据的空间信息和时间信息,将海量遥感数据划分为至少一个数据集合,其中,每个数据集合包括至少一个遥感数据。1) According to the spatial information and time information of each remote sensing data in the massive remote sensing data, divide the massive remote sensing data into at least one data set, wherein each data set includes at least one remote sensing data.
2)提取每个数据集合中的数据特征,所述数据特征包括:属性特征和影像特征,属性特征是指数据的来源、类型、分辨率,影像特征是直方图特征、边缘特征、纹理特征。2) Extract the data features in each data set, the data features include: attribute features and image features, the attribute features refer to the source, type, resolution of the data, and the image features are histogram features, edge features, and texture features.
3)根据所述数据特征,对每个数据集合中遥感数据进行层级聚类,从而将每个数据集合中具有相同数据特征的遥感数据分类为同一数据类别。3) According to the data characteristics, perform hierarchical clustering on the remote sensing data in each data set, so as to classify the remote sensing data with the same data characteristics in each data set into the same data category.
4)为每个数据类别添加一个语义标签。4) Add a semantic label to each data category.
本发明提供的步骤1)包括:Step 1) provided by the present invention comprises:
在标准的椭球坐标系下,对各遥感数据的按地理空间位置进行编码,得到各遥感数据的地理编码,所述地理编码包括:数据的层级、经度和纬度。把全球空间范围按经纬度、高度网格划分并进行编号,地理编码由20位构成,前两位表示高度编号,中间9位表示经度编号,后9位表示纬度编号。Under the standard ellipsoidal coordinate system, the geographical space position of each remote sensing data is coded to obtain the geographical code of each remote sensing data, and the geographical code includes: data level, longitude and latitude. The global spatial range is divided and numbered according to latitude, longitude, and height grids. The geocoding consists of 20 digits, the first two digits represent the height number, the middle nine digits represent the longitude number, and the last nine digits represent the latitude number.
将具有相同地理编码的遥感数据归并至同一数据集合,得到至少一个数据集合。The remote sensing data with the same geocoding are merged into the same data set to obtain at least one data set.
在每个数据集合中,根据各遥感数据的时间信息,建立序列关系。In each data set, according to the time information of each remote sensing data, a sequence relationship is established.
对已经建立序列关系的数据集合,建立时空索引。Create a spatio-temporal index for data sets that have established a sequence relationship.
本发明提供的步骤3)中,采用层级中餐馆模型对所述遥感数据进行层级聚类。In step 3) provided by the present invention, hierarchical clustering is performed on the remote sensing data using a hierarchical Chinese restaurant model.
在采用层级中餐馆模型对任意一遥感数据进行层级聚类时,将该遥感数据分类到已有的数据类别,或者新建立一个数据类别,并将该遥感数据分类到该新建立的数据类别。When using the hierarchical Chinese restaurant model to perform hierarchical clustering on any remote sensing data, the remote sensing data is classified into an existing data category, or a new data category is created, and the remote sensing data is classified into the newly established data category.
采用层级中餐馆模型对新加入的遥感数据进行层级聚类,将该新加入的遥感数据分类到已有的数据类别,或者新建立一个数据类别,并将该新加入的遥感数据分类到该新建立的数据类别。Use the hierarchical Chinese restaurant model to perform hierarchical clustering on the newly added remote sensing data, classify the newly added remote sensing data into existing data categories, or create a new data category, and classify the newly added remote sensing data into the new Created data classes.
以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Any simple modifications made to the above embodiments according to the technical essence of the present invention, equivalent changes and modifications, all belong to this invention. within the scope of the technical solution of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010206562.7A CN111428627B (en) | 2020-03-23 | 2020-03-23 | A remote sensing extraction method and system for mountainous landforms |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010206562.7A CN111428627B (en) | 2020-03-23 | 2020-03-23 | A remote sensing extraction method and system for mountainous landforms |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111428627A CN111428627A (en) | 2020-07-17 |
CN111428627B true CN111428627B (en) | 2023-03-24 |
Family
ID=71548625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010206562.7A Active CN111428627B (en) | 2020-03-23 | 2020-03-23 | A remote sensing extraction method and system for mountainous landforms |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111428627B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112036246B (en) * | 2020-07-30 | 2021-08-24 | 长安大学 | Construction method of remote sensing image classification model, remote sensing image classification method and system |
CN114881892B (en) * | 2022-07-04 | 2022-10-14 | 清华大学 | Remote sensing image feature discretization method and device based on type II fuzzy rough model |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105590325A (en) * | 2016-02-22 | 2016-05-18 | 辽宁工程技术大学 | High resolution remote sensing image segmentation method based on fuzzy Gauss membership function |
CN106127784A (en) * | 2016-07-01 | 2016-11-16 | 辽宁工程技术大学 | A kind of high-resolution remote sensing image dividing method |
WO2017071160A1 (en) * | 2015-10-28 | 2017-05-04 | 深圳大学 | Sea-land segmentation method and system for large-size remote-sensing image |
CN106971156A (en) * | 2017-03-22 | 2017-07-21 | 中国地质科学院矿产资源研究所 | Rare earth mining area remote sensing information extraction method based on object-oriented classification |
WO2017161892A1 (en) * | 2016-03-23 | 2017-09-28 | 深圳大学 | Classification method for hyperspectral remote sensing image, and system for same |
WO2019047248A1 (en) * | 2017-09-07 | 2019-03-14 | 深圳大学 | Feature extraction method and device for hyperspectral remotely sensed image |
CN110826509A (en) * | 2019-11-12 | 2020-02-21 | 云南农业大学 | A system and method for extracting grassland fence information based on high-resolution remote sensing images |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108256419B (en) * | 2017-12-05 | 2018-11-23 | 交通运输部规划研究院 | A method of port and pier image is extracted using multispectral interpretation |
-
2020
- 2020-03-23 CN CN202010206562.7A patent/CN111428627B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017071160A1 (en) * | 2015-10-28 | 2017-05-04 | 深圳大学 | Sea-land segmentation method and system for large-size remote-sensing image |
CN105590325A (en) * | 2016-02-22 | 2016-05-18 | 辽宁工程技术大学 | High resolution remote sensing image segmentation method based on fuzzy Gauss membership function |
WO2017161892A1 (en) * | 2016-03-23 | 2017-09-28 | 深圳大学 | Classification method for hyperspectral remote sensing image, and system for same |
CN106127784A (en) * | 2016-07-01 | 2016-11-16 | 辽宁工程技术大学 | A kind of high-resolution remote sensing image dividing method |
CN106971156A (en) * | 2017-03-22 | 2017-07-21 | 中国地质科学院矿产资源研究所 | Rare earth mining area remote sensing information extraction method based on object-oriented classification |
WO2019047248A1 (en) * | 2017-09-07 | 2019-03-14 | 深圳大学 | Feature extraction method and device for hyperspectral remotely sensed image |
CN110826509A (en) * | 2019-11-12 | 2020-02-21 | 云南农业大学 | A system and method for extracting grassland fence information based on high-resolution remote sensing images |
Non-Patent Citations (2)
Title |
---|
基于区间二型模糊神经网络的高分辨率遥感影像分割方法;王春艳等;《信号处理》;20170525(第05期);全文 * |
融入空间关系的二型模糊模型高分辨率遥感影像分割;王春艳等;《遥感学报》;20160125(第01期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111428627A (en) | 2020-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7995055B1 (en) | Classifying objects in a scene | |
Huang et al. | An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery | |
Jin et al. | A point-based fully convolutional neural network for airborne LiDAR ground point filtering in forested environments | |
CN107341813B (en) | SAR Image Segmentation Method Based on Structural Learning and Sketch Feature Inference Network | |
WO2009124139A1 (en) | Methods and systems of comparing face models for recognition | |
CN107067405A (en) | Based on the preferred Remote Sensing Image Segmentation of yardstick | |
Yang et al. | Classified road detection from satellite images based on perceptual organization | |
Xiao et al. | Building segmentation and modeling from airborne LiDAR data | |
Cheng et al. | Efficient sea–land segmentation using seeds learning and edge directed graph cut | |
Chen et al. | A local tangent plane distance-based approach to 3D point cloud segmentation via clustering | |
CN111738332A (en) | Underwater multi-source acoustic image substrate classification method and system based on feature level fusion | |
CN111428627B (en) | A remote sensing extraction method and system for mountainous landforms | |
CN117173424B (en) | A point cloud slope edge line identification method, system and readable storage medium | |
Robb et al. | A semi-automated method for mapping glacial geomorphology tested at Breiðamerkurjökull, Iceland | |
JP2019185787A (en) | Remote determination of containers in geographical region | |
Patel et al. | Adaboosted extra trees classifier for object-based multispectral image classification of urban fringe area | |
Xia | A method to improve classification with shape information | |
CN115019163A (en) | Identification method of urban elements based on multi-source big data | |
Christ et al. | Magnetic resonance brain image segmentation | |
CN110414379A (en) | A Building Extraction Algorithm Combining Elevation Map Gabor Texture Features and LiDAR Point Cloud Features | |
Azzaoui et al. | Detection of crescent sand dunes contours in satellite images using an active shape model with a cascade classifier | |
Xue et al. | Adaptive neighbourhood recovery method for machine learning based 3D point cloud classification | |
Ramiya et al. | Assessment of various parameters on 3D semantic object-based point cloud labelling on urban LiDAR dataset | |
CN114187404A (en) | Three-dimensional reconstruction method and system for high resolution of offshore area | |
Zhu et al. | A multi-resolution hierarchy classification study compared with conservative methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |