CN111426381A - 一种基于超构透镜阵列的超紧凑型光谱光场相机系统 - Google Patents

一种基于超构透镜阵列的超紧凑型光谱光场相机系统 Download PDF

Info

Publication number
CN111426381A
CN111426381A CN202010047021.4A CN202010047021A CN111426381A CN 111426381 A CN111426381 A CN 111426381A CN 202010047021 A CN202010047021 A CN 202010047021A CN 111426381 A CN111426381 A CN 111426381A
Authority
CN
China
Prior art keywords
super
lens array
lens
phase
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010047021.4A
Other languages
English (en)
Other versions
CN111426381B (zh
Inventor
王漱明
邹秀娟
华夏
曹汛
王振林
祝世宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202010047021.4A priority Critical patent/CN111426381B/zh
Publication of CN111426381A publication Critical patent/CN111426381A/zh
Application granted granted Critical
Publication of CN111426381B publication Critical patent/CN111426381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Color Television Image Signal Generators (AREA)
  • Lenses (AREA)

Abstract

一种基于超构透镜阵列的超紧凑型光谱光场相机系统,包括依次排列的平行光源镜头,线偏振片,四分之一波片、物镜、超消色差超构透镜阵列、单色相机;所述的超消色差超构透镜阵列置于两对依次排列的线偏振片、四分之一波片和物镜组成结构之间,且主透镜像平面到超构透镜阵列的距离a、超构透镜阵列到再成像平面的距离b与超构透镜的焦距f满足一定的关系,相机置于像面上用于接受图像;超消色差超构透镜阵是由超消色差超构透镜在平面上按一定规律排列而成的二维透镜阵列平面,设计具有离轴聚焦性质的超消色差超构透镜,利用不同波长下超构透镜聚焦位置的变化,实现光谱的色散。

Description

一种基于超构透镜阵列的超紧凑型光谱光场相机系统
技术领域
本发明属于光学成像的技术领域,涉及到一种基于超构透镜阵列的光谱光场 相机系统及斜入射的离轴聚焦的相位设计方法。
背景技术
自然界的生物具有很多高度特殊的视觉系统,比如皮皮虾的眼睛可以感知到 从紫外到红外的12种波长通道的电磁波,且视网膜具有16种光学接受器,既可以 感知光谱信息还可以感知到深度信息。受到自然界生物的启发,如今已经研究出 能够记录更多信息的成像系统,如光场相机、光谱相机。光场相机除了记录场景 二维平面上的强度信息,还包含场景的深度信息。光谱相机除了记录二维空间信 息,还记录了场景的一维光谱曲线。为了实现完整的全光函数,计算光学领域利 用一些传统的光学元件如光栅、棱镜、掩模板、微透镜阵列等添加到成像光路中 来获取光谱和光场信息。但是,基于这些传统的光学元件组成的系统很难实现小 型化的轻量成像系统;同时限于微加工水平,在微小尺度下加工复杂的曲面微透 镜阵列具有很大的难度。目前为止,提出的光谱光场成像系统在实际使用中受到非常多的限制,如结构复杂,光谱分辨率和通光量不高。
超构表面在系统的小型化设计上显示出极大的优势。超构表面由密集的亚波 长超构单元排列组成,具有精确控制相位、强度、极化、轨道角动量和入射光频 率的能力。超构透镜是超构表面的最主要的光学应用。通过调制亚波长超构单元 的几何尺寸和转角,设计的超构透镜可以实现与商用透镜相当甚至更好的成像效 果。
发明内容
本发明目的是,基于超构透镜阵列设计实现可见光波段的光谱光场相机系统。 通过引入超构表面的设计原理,在可将光波段实现斜入射情况下波长相关的侧向 离轴聚焦。利用波长相关的侧向离轴聚焦,实现了超薄的色散透镜。将该色散透 镜贴在CMOS相机的镜头上,可以获得色散模糊的图像,从色散模糊的图像能够重 现出3D空间信息和光谱信息,从而实现光谱光场成像的功能。所述的光谱光场相 机系统获得的光谱信息与光谱仪获得的光谱信息基本吻合,可应用于材质鉴别上。
本发明的技术方案是,一种基于超构透镜阵列的超紧凑型光谱光场相机系统, 同时获取场景的三维位置信息和光谱信息。该相机系统包括(1)平行光源镜头, (2)线偏振片,(3)四分之一波片、(4)物镜,(5)超消色差超构透镜阵列,(6) 单色相机;所述的超消色差超构透镜阵(5)列置于两个依次排列的线偏振片(2)、 四分之一波片(3)和物镜(4)组成结构之间,相机(6)置于像面上用于接受图 像,实现相机单次曝光可同时记录场景的三维位置信息和光谱信息,并且具有很 高的光通量。
超消色差超构透镜阵是由超消色差超构透镜在平面上按一定规律排列而成的 二维透镜阵列平面。所述的超构透镜是利用相位拆分原理,即将相位分解为波长 无关的基础相位和随波长变化的补偿相位,分别称为几何相位和共振相位。利用 超构表面的特殊设计,实现不同波长对应于焦平面上不同聚焦位置的消色差平面 透镜;
根据超构透镜离轴聚焦的功能要求,波长为λ的平面波,斜入射角θ(角度定 义从x轴右下方入射为正),,聚焦在任意位置(x',y',f),平面透镜上某一位置 (x,y,0)需要补偿的相位为如式(1)所示:
Figure BDA0002369785640000021
设红光聚焦在(xr,0,f),蓝光聚焦在(xb,0,f),其余波长的焦点分布在这两点 之间。根据式(1)可以得到红光和蓝光的相位差如式(2)所示,f是单个超构 透镜的焦距:
Figure BDA0002369785640000022
上式中
Figure BDA0002369785640000023
由共振的纳米结构提供,来实现蓝光到红光的正值 相位补偿。将所述的任意波长下产生的相位利用相位拆分原理得到式(3)所示的 两部分:
Figure BDA0002369785640000031
式(3)中第一项利用超构表面单元的几何相位实现,第二项利用共振相位实 现。
Figure BDA0002369785640000032
是增加的相位差。
基于超构透镜阵列的光谱光场相机系统的设计原理:环境光经过所述的线偏 振片、四分之一波片调节形成圆偏振光,物镜对圆偏振光聚焦形成虚像,超构透 镜阵列将包含不同入射方向、不同波长、不同位置的光谱信息和光场信息以色散 模糊的分块子图像同时记录在相机中。每个子图像对应于一个超构透镜。通过对 每个子图像进行光谱重建,获取不同波长下的子图像,再对不同波长的子图像进 行光场重构,获得不同波长下的场景图像。最后,将不同波长下的场景图像按照 光谱信息组合成彩色图像。
设计具有离轴聚焦性质的超消色差超构透镜,利用不同波长下超构透镜聚焦 位置的变化,实现光谱的色散。通过应用超消色差超构透镜阵列,实现相机单次 曝光可同时记录场景的三维位置信息和光谱信息,并且具有很高的光通量。本发 明采用超构表面的波前设计原理结合计算成像和深度学习算法,能够实现三维成 像以及材料鉴别。
超构透镜阵列是由单个波长相关的侧向离轴聚焦超构透镜按一定规律排列而成。侧向离轴聚焦的超构透镜是根据超构表面的相位拆分的设计原理实现的。
超构透镜阵列:实验上利用电子束光刻与反应离子刻蚀相结合制备的按照一 定规律排列的大约48×48个二氧化钛(TiO2)超构透镜阵列。采用自上而下的蚀 刻工艺来实现TiO2超构透镜的批量制造,提高产量,同时减少了时间消耗。
白光照射的不同波长光经过超构透镜聚焦在轴向距离固定的成像平面的不同 位置,且波长引起的聚焦位置变化能够被CMOS相机分辨。由相机捕获的色散图像 可以进一步利用计算成像和深度学习算法,重建出具有空间信息和光谱信息的四 维图像。
单个超构透镜能够实现二维成像,而超构透镜阵列能够实现三维空间成像。 每个超构透镜记录了一个视角的场景子图像,每个子图像包括了多个像素。
本发明所述的侧向离轴聚焦超构透镜实现的是不同波长下光在同一焦平面上 的侧向离轴聚焦,离轴聚焦的目的是将不同波长的光色散开。
本发明所述的超构透镜阵列将包含不同入射方向、不同波长、不同位置的光 谱信息和光场信息以色散模糊的分块子图像同时记录在相机中。从相机获得的图 像是色散模糊的,因此需要进行光谱重建。
利用超色差超构透镜阵列,实现光场多光轴成像特性的光谱重建算法如下。 首先,根据色散模型解开色散混叠,从而获得对齐的多波长图像,如式(4)所示:
Figure BDA0002369785640000041
式(4)中S是待求解的清晰图像,D是相机捕获的色散图像,φ是色散矩阵。 式(4)中第一项是成像模型的数据残差项,第二项是约束图像数据分块平滑项, 第三项是光谱平滑约束项。
利用式(4)求解出无色散的清晰图像后,使用此图像信息来重建高光谱图像, 如式(5)所示:
Figure BDA0002369785640000042
式(5)中第一项依然是成像模型的数据残差项,第二项是模糊差分约束项, 第三项是光谱先验约束项。M是子图像的边缘掩模板。⊙是逻辑运算符,表示同或 运算,即两边输入变量值相同时结果为1。
由此得到光谱图像后,利用深度学习进一步提高光谱的分辨率。利用深度神 经网络提出了数据驱动的光谱超分辨率算法。将配对的低分辨率(8nm)光谱数 据和高分辨率(4nm)的光谱数据作为输入和输出来训练光谱超分辨网络。配对的 光谱数据的空间信息是一个像素对应一个像素。
根据上述的计算成像算法和深度学习的图像处理,可以获得本发明的所述的 场景的3D空间位置信息和光谱信息。
超构透镜由40-200*40-200个超构透镜排列形成;每个超构透镜由六角形柱 状或者凹槽状结构按照相位要求排列构成,六角形柱状或者凹槽状结构的周期是 330nm,高度是800nm;每个超构透镜的焦距是165±100um,直径是30±10um,数 值孔径NA值为0.09;此处超构透镜的设计针对的是斜入射光,入射角度为16° 左右,实现可见光范围内不同波长在焦平面上色散的最大距离为25um;对可见光 波段选择二氧化钛、氮化镓、氮化硅材料;对于近红外波段,选择硅作为材料; 上述材料在对应波段都具有透过率高,损耗低的特点。
综上所述,上述成像方法的设计及附图仅为本发明的较佳实施例而已,并不 用以限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、 等同替换、改进等,皆应包含在本发明的保护范围内。
有益效果
本发明基于超构透镜阵列设计实现可见光波段的光谱光场相机系统。采用超 构表面器件的相位设计原理,利用亚波长结构实现侧向离轴聚焦透镜的功能,从 而获得具有光谱信息和光场信息的色散模糊图像,结合计算成像和深度学习算法, 能够实现三维成像以及材料鉴别等应用。所述的光谱光场相机系统在小型化的集 成成像上具有极大的优势。本发明的相机系统光路设计简单,易于集成。本发明 使用的超构透镜属于平板透镜,工艺复杂度低,工序简单,适合大规模生产,成 本也相较更为低廉。通过设计具有离轴聚焦性质的超消色差超构透镜,利用不同 波长下超构透镜聚焦位置的变化,实现光谱的色散。通过应用超消色差超构透镜 阵列,实现相机单次曝光可同时记录场景的三维位置信息和光谱信息,并且具有 很高的光通量。
附图说明
图1为本发明的成像光路实施例示意图;
图2为本发明的超构透镜阵列的SEM图、单个超构透镜SEM图、两处局部放大图;
图3为本发明的超构透镜对不同波长的离轴聚焦示意图;
图4为本发明的光谱光场相机系统获得的具有3D空间信息和光谱信息的图像。
图5为图1的抽象光路图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1、5中所示分别为本发明的实施例示意图和光路实施图,1是商用相机 的镜头、2是线偏振片、3是四分之一波片、4是物镜、5是超构透镜阵列、6是单 色相机、7是具有深度的目标场景。超消色差超构透镜阵列在光路中的依次排列的 结构:线偏振片2、四分之一波片3和物镜4、超消色差超构透镜阵列5、第二线 偏振片7、第二四分之一波片8和第二物镜9的结构;所述具有深度的场景指的就 是实例中深度不同、横向位置错开的图1中的A T EM字母,白光照射后不同颜 色的字母反射不同波长的光进入成像系统。因此,这里说明了既有光场成像,也 有光谱成像。最终成像在单色相机上,相机得到的图像见图4(a)。图4(a)虽然是色散模糊的,但是包含了光谱信息、深度信息和位置信息,即3D空间信息和 光谱信息。
白色LED灯用作宽带光源以照亮目标场景。从场景反射进入商用相机的镜头 的光,经过偏振片2和四分之一波片3后变成圆偏振光,物镜(5倍放大倍率,NA =0.14,Mitutoyo)用于将光收集到超构透镜阵列上,另一个物镜(1X放大倍率, NA=0.28,Mitutoyo),用于将超构透镜阵列上的像重新成像在相机(FLIR BFS-U3-200S6)上。聚焦光场的超构透镜阵列的位置遵循高斯透镜公式:
Figure BDA0002369785640000061
f是单个超构透镜的焦距,a和b分别是从主透镜像平面到超构透镜阵列的距离和 从超构透镜阵列到再成像平面的距离。
如图2所示,(d)图是整个超构透镜阵列的平面图,一共由48*48个超构透镜 排列形成。(e)图是单个超构透镜的SEM图像。每个超构透镜的焦距是165um,直 径是30um,数值孔径NA值为0.09。对可见光波段可以选择二氧化钛、氮化镓、 氮化硅材料;对于近红外波段,可以选择硅作为材料;上述材料在对应波段都具 有透过率高,损耗低的特点。
如图3所示,分别是频率为4.5THz、5.0THz、5.5THz、6.0THz、6.5THz、7.0THz、7.5THz的入射光以-16°角度入射到超构透镜上产生的离轴聚焦图;且不同频率的 光的焦平面相同,与超构透镜阵列平面的距离都为165um。
表1:组成本发明的超构透镜的亚波长共振单元的尺寸和补偿相位。
Figure BDA0002369785640000062
Figure BDA0002369785640000071
如图4所示,(a)是基于超构透镜阵列相机拍摄到的原始光场图像,(b)是 图(a)的局部放大图像。(c)是从原始图像数据经过计算成像处理得到的全聚焦 彩色图像。(d)(e)(f)(g)分别是对场景中不同深度进行聚焦的图像。(h)(i) (j)(k)分别是不同深度的字母在可见光波段的光谱图。

Claims (7)

1.一种基于超构透镜阵列的超紧凑型光谱光场相机系统,其特征是,系统包括依次排列的平行光源镜头(1),线偏振片(2、7),四分之一波片(3、8)、物镜(4、9),超消色差超构透镜阵列(5),单色相机(6);所述的超消色差超构透镜阵(5)列置于两对依次排列的线偏振片(2、7)、四分之一波片(3、8)和物镜(4、9)组成结构之间,且主透镜像平面到超构透镜阵列的距离a、超构透镜阵列到再成像平面的距离b与超构透镜的焦距f满足一定的关系,单色相机(6)置于像面上用于接受图像,实现相机单次曝光同时记录场景的三维位置信息和光谱信息;
超消色差超构透镜阵是由超消色差超构透镜在平面上按一定规律排列而成的二维透镜阵列平面;所述的超构透镜是利用相位拆分原理,即将相位分解为波长无关的基础相位和随波长变化的补偿相位,分别称为几何相位和共振相位;利用超构表面的设计,实现不同波长对应于焦平面上不同聚焦位置的消色差平面透镜;
根据超构透镜离轴聚焦的要求,波长为λ的平面波,斜入射角θ,角度定义从x轴右下方入射为正,f是单个超构透镜的焦距,聚焦在任意位置(x',y',f),平面透镜上某一位置(x,y,0)需要补偿的相位为如式(2)所示:
Figure FDA0002369785630000011
设红光聚焦在(xr,0,f),蓝光聚焦在(xb,0,f),其余波长的焦点分布在这两点之间;根据式(1)可以得到红光和蓝光的相位差如式(2)所示:
Figure FDA0002369785630000012
上式中
Figure FDA0002369785630000013
Figure FDA0002369785630000014
分别是蓝光和红光的补偿相位,
Figure FDA0002369785630000015
由共振的纳米结构提供,来实现蓝光到红光的正值相位补偿;将所述的任意波长下产生的相位利用相位拆分原理得到式(3)所示的两部分:
Figure FDA0002369785630000021
式(3)中第一项利用超构表面单元的几何相位实现,第二项利用共振相位实现;
Figure FDA0002369785630000022
是增加的相位差。
2.根据权利要求1所述的基于超构透镜阵列的超紧凑型光谱光场相机系统,其特征是,超构透镜阵列是由单个波长相关的侧向离轴聚焦超构透镜按一定规律排列即直接规则排列而成;侧向离轴聚焦的超构透镜是根据超构表面的相位拆分的设计原理实现的。
3.根据权利要求1所述的基于超构透镜阵列的超紧凑型光谱光场相机系统,其特征是,超构透镜由40-200*40-200个超构透镜排列形成;每个超构透镜由六角形柱状或者凹槽状结构按照相位要求排列构成,六角形柱状或者凹槽状结构的周期是330nm,高度是800nm;超构透镜的焦距是165±100um,直径是30±10um,数值孔径NA值为0.09;此处超构透镜的设计针对的是斜入射光,入射角度为16°左右,实现可见光范围内不同波长在焦平面上色散的最大距离为25um;对可见光波段选择二氧化钛、氮化镓、氮化硅材料;对于近红外波段,选择硅作为材料。
4.根据权利要求1所述的基于超构透镜阵列的超紧凑型光谱光场相机系统,其特征是,所述的侧向离轴聚焦超构透镜实现的是不同波长下光在同一焦平面上的侧向离轴聚焦,离轴聚焦的目的是将不同波长的光色散开;不同频率的入射光以一个角度入射到超构透镜上产生的离轴聚焦图;且不同频率的光的焦平面相同,与超构透镜阵列平面的距离都相同。
5.根据权利要求3所述的基于超构透镜阵列的超紧凑型光谱光场相机系统,其特征是,所述超构透镜阵列:利用电子束光刻与反应离子刻蚀相结合制备的按照一定规律排列的大约48×48个二氧化钛(TiO2)超构透镜阵列。
6.根据权利要求1所述的基于超构透镜阵列的超紧凑型光谱光场相机系统,其特征是,利用超色差超构透镜阵列,实现光场多光轴成像特性的光谱重建算法如下。首先,根据色散模型解开色散混叠,从而获得对齐的多波长图像,如式(4)所示:
Figure FDA0002369785630000023
式(4)中S是待求解的清晰图像,D是相机捕获的色散图像,φ是色散矩阵。式(4)中第一项是成像模型的数据残差项,第二项是约束图像数据分块平滑项,第三项是光谱平滑约束项。
利用式(4)求解出无色散的清晰图像后,使用此图像信息来重建高光谱图像,如式(5)所示:
Figure FDA0002369785630000031
式(5)中第一项依然是成像模型的数据残差项,第二项是模糊差分约束项,第三项是光谱先验约束项。M是子图像的边缘掩模板。
7.根据权利要求1所述的基于超构透镜阵列的超紧凑型光谱光场相机系统,其特征是,由此得到光谱图像后,利用深度学习进一步提高光谱的分辨率;利用深度神经网络提出了数据驱动的光谱超分辨率算法;将配对的低分辨率(8nm)光谱数据和4nm高分辨率的光谱数据作为输入和输出来训练光谱超分辨网络;配对的光谱数据的空间信息是一个像素对应一个像素。根据上述的计算成像算法和深度学习的图像处理,可以获得本发明的所述的场景的3D空间位置信息和光谱信息。
CN202010047021.4A 2020-01-16 2020-01-16 一种基于超构透镜阵列的超紧凑型光谱光场相机系统 Active CN111426381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010047021.4A CN111426381B (zh) 2020-01-16 2020-01-16 一种基于超构透镜阵列的超紧凑型光谱光场相机系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010047021.4A CN111426381B (zh) 2020-01-16 2020-01-16 一种基于超构透镜阵列的超紧凑型光谱光场相机系统

Publications (2)

Publication Number Publication Date
CN111426381A true CN111426381A (zh) 2020-07-17
CN111426381B CN111426381B (zh) 2021-11-19

Family

ID=71547048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010047021.4A Active CN111426381B (zh) 2020-01-16 2020-01-16 一种基于超构透镜阵列的超紧凑型光谱光场相机系统

Country Status (1)

Country Link
CN (1) CN111426381B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198668A (zh) * 2020-10-19 2021-01-08 中国人民解放军国防科技大学 光纤激光相干合成产生涡旋光束的光场重构系统及方法
CN112326031A (zh) * 2020-10-15 2021-02-05 湖南大学 一种广义哈德曼传感器
WO2022017199A1 (zh) * 2020-07-22 2022-01-27 南京大学 一种基于超构透镜阵列的大视场集成显微成像装置
CN114114677A (zh) * 2021-10-14 2022-03-01 广州科易光电技术有限公司 一种双波长消色差偏振无关超构透镜设计方法及超构透镜
CN114675370A (zh) * 2022-04-06 2022-06-28 哈尔滨工业大学(深圳) 测量光子轨道角动量模式的超构表面集成器件的制作方法
CN114786572A (zh) * 2020-11-04 2022-07-22 上海交通大学医学院附属瑞金医院 平行探测的和/或挂钩式的光纤传输的微循环监测装置
CN114791669A (zh) * 2022-04-28 2022-07-26 中国科学院苏州纳米技术与纳米仿生研究所 大尺寸消色差超表面透镜及其设计方法、制造方法
CN114879355A (zh) * 2021-02-05 2022-08-09 中国科学院苏州纳米技术与纳米仿生研究所 一种望远镜结构及其制作方法
WO2022257164A1 (zh) * 2021-06-08 2022-12-15 南京大学 基于平面透镜的宽视角成像方法
CN117192790A (zh) * 2023-11-08 2023-12-08 浙江大学 实现边缘增强成像的消色差涡旋超透镜和光波导光学模组
CN117974478A (zh) * 2024-04-02 2024-05-03 武汉工程大学 一种可见光至近红外高光谱图像重构方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009258A2 (en) * 2016-04-08 2018-01-11 President And Fellows Of Harvard College Super-dispersive off-axis meta-lenses for high resolution compact spectroscopy
CN207263300U (zh) * 2017-10-24 2018-04-20 中国计量大学 一种基于超表面结构的光谱仪
CN109343217A (zh) * 2018-11-13 2019-02-15 南京大学 一种基于超构透镜阵列的消色差光场相机系统及消色差方法
US20190196068A1 (en) * 2017-12-26 2019-06-27 Academia Sinica Broadband achromatic metalens in the visible spectrum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009258A2 (en) * 2016-04-08 2018-01-11 President And Fellows Of Harvard College Super-dispersive off-axis meta-lenses for high resolution compact spectroscopy
CN207263300U (zh) * 2017-10-24 2018-04-20 中国计量大学 一种基于超表面结构的光谱仪
US20190196068A1 (en) * 2017-12-26 2019-06-27 Academia Sinica Broadband achromatic metalens in the visible spectrum
CN109343217A (zh) * 2018-11-13 2019-02-15 南京大学 一种基于超构透镜阵列的消色差光场相机系统及消色差方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022017199A1 (zh) * 2020-07-22 2022-01-27 南京大学 一种基于超构透镜阵列的大视场集成显微成像装置
GB2602756A (en) * 2020-07-22 2022-07-13 Nanjing University Super-structured lens array based large-view-field integrated microscopic imaging device
CN112326031A (zh) * 2020-10-15 2021-02-05 湖南大学 一种广义哈德曼传感器
CN112326031B (zh) * 2020-10-15 2022-01-04 湖南大学 一种广义哈德曼传感器
CN112198668A (zh) * 2020-10-19 2021-01-08 中国人民解放军国防科技大学 光纤激光相干合成产生涡旋光束的光场重构系统及方法
US12023141B2 (en) 2020-11-04 2024-07-02 Ruijin Hospital, Shanghai Jiao Tong University School Of Medicine Systems for monitoring microcirculation
CN114786572A (zh) * 2020-11-04 2022-07-22 上海交通大学医学院附属瑞金医院 平行探测的和/或挂钩式的光纤传输的微循环监测装置
CN114786572B (zh) * 2020-11-04 2023-08-18 上海交通大学医学院附属瑞金医院 平行探测的和/或挂钩式的光纤传输的微循环监测装置
CN114879355A (zh) * 2021-02-05 2022-08-09 中国科学院苏州纳米技术与纳米仿生研究所 一种望远镜结构及其制作方法
WO2022257164A1 (zh) * 2021-06-08 2022-12-15 南京大学 基于平面透镜的宽视角成像方法
CN114114677A (zh) * 2021-10-14 2022-03-01 广州科易光电技术有限公司 一种双波长消色差偏振无关超构透镜设计方法及超构透镜
CN114114677B (zh) * 2021-10-14 2023-10-20 广州科易光电技术有限公司 一种双波长消色差偏振无关超构透镜设计方法及超构透镜
CN114675370B (zh) * 2022-04-06 2023-08-01 哈尔滨工业大学(深圳) 测量光子轨道角动量模式的超构表面集成器件的制作方法
CN114675370A (zh) * 2022-04-06 2022-06-28 哈尔滨工业大学(深圳) 测量光子轨道角动量模式的超构表面集成器件的制作方法
CN114791669A (zh) * 2022-04-28 2022-07-26 中国科学院苏州纳米技术与纳米仿生研究所 大尺寸消色差超表面透镜及其设计方法、制造方法
CN117192790A (zh) * 2023-11-08 2023-12-08 浙江大学 实现边缘增强成像的消色差涡旋超透镜和光波导光学模组
CN117192790B (zh) * 2023-11-08 2024-04-09 浙江大学 实现边缘增强成像的消色差涡旋超透镜和光波导光学模组
CN117974478A (zh) * 2024-04-02 2024-05-03 武汉工程大学 一种可见光至近红外高光谱图像重构方法及系统

Also Published As

Publication number Publication date
CN111426381B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN111426381B (zh) 一种基于超构透镜阵列的超紧凑型光谱光场相机系统
McClung et al. Snapshot spectral imaging with parallel metasystems
Mait et al. Computational imaging
KR102394823B1 (ko) 하이브리드 분광 이미저
Gao et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction
Kudenov et al. Compact real-time birefringent imaging spectrometer
Hagen et al. Review of snapshot spectral imaging technologies
Tahara et al. Roadmap of incoherent digital holography
CN109343217A (zh) 一种基于超构透镜阵列的消色差光场相机系统及消色差方法
US20220086372A1 (en) Multi-Modal Computational Imaging via Metasurfaces
CN106872037A (zh) 快照式紧凑小型化光场成像全偏振光谱探测装置及方法
Lin et al. Metasurface-empowered snapshot hyperspectral imaging with convex/deep (CODE) small-data learning theory
US20220206205A1 (en) Systems and methods for parallel polarization analysis
CN114659634A (zh) 微型快照式压缩光谱成像探测装置及探测方法
Su et al. A snapshot light field imaging spectrometer
Zou et al. Advanced optical imaging based on metasurfaces
CN200962160Y (zh) 基于主动光学位相共轭的成像装置
Jeon et al. Multisampling compressive video spectroscopy
US20230292016A1 (en) Meta-lens enabled light-field camera with extreme depth-of-field
Han et al. Deep image prior plus sparsity prior: toward single-shot full-Stokes spectropolarimetric imaging with a multiple-order retarder
Wang et al. Snapshot channeled imaging spectrometer using geometric phase holograms
WO2022162800A1 (ja) 撮像装置及び光学素子
Harvey et al. Imaging spectrometry at visible and infrared wavelengths using image replication
Ding et al. Snapshot spectral imaging: from spatial-spectral mapping to metasurface-based imaging
US9304372B2 (en) Optical element with sub elements and an addressable mask

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant