CN111420686B - Preparation of F, S, Zr, Al co-doped TiO2 photocatalyst and its photocatalytic degradation efficiency of acrylonitrile industrial wastewater - Google Patents
Preparation of F, S, Zr, Al co-doped TiO2 photocatalyst and its photocatalytic degradation efficiency of acrylonitrile industrial wastewater Download PDFInfo
- Publication number
- CN111420686B CN111420686B CN201910037676.0A CN201910037676A CN111420686B CN 111420686 B CN111420686 B CN 111420686B CN 201910037676 A CN201910037676 A CN 201910037676A CN 111420686 B CN111420686 B CN 111420686B
- Authority
- CN
- China
- Prior art keywords
- catalyst
- acrylonitrile
- solution
- preparation
- photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 229910052731 fluorine Inorganic materials 0.000 title claims abstract description 15
- 229910052717 sulfur Inorganic materials 0.000 title claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 14
- 229910052726 zirconium Inorganic materials 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 239000011941 photocatalyst Substances 0.000 title claims description 15
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title abstract description 53
- 238000013033 photocatalytic degradation reaction Methods 0.000 title abstract description 6
- 239000010842 industrial wastewater Substances 0.000 title description 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 28
- 239000002351 wastewater Substances 0.000 claims abstract description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims abstract description 14
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000002243 precursor Substances 0.000 claims abstract description 7
- WXKDNDQLOWPOBY-UHFFFAOYSA-N zirconium(4+);tetranitrate;pentahydrate Chemical compound O.O.O.O.O.[Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O WXKDNDQLOWPOBY-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000001354 calcination Methods 0.000 claims abstract 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 9
- 239000011737 fluorine Substances 0.000 claims description 8
- 239000000741 silica gel Substances 0.000 claims description 7
- 229910002027 silica gel Inorganic materials 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- -1 zirconium nitric acid pentahydrate Zirconium Chemical compound 0.000 claims description 6
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 239000000499 gel Substances 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229960000583 acetic acid Drugs 0.000 claims description 2
- 230000032683 aging Effects 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000012018 catalyst precursor Substances 0.000 claims description 2
- 230000000593 degrading effect Effects 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 239000012362 glacial acetic acid Substances 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- 238000002525 ultrasonication Methods 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims 5
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 claims 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 239000007864 aqueous solution Substances 0.000 claims 1
- 239000004570 mortar (masonry) Substances 0.000 claims 1
- 239000003054 catalyst Substances 0.000 abstract description 42
- 230000001699 photocatalysis Effects 0.000 abstract description 13
- 239000002131 composite material Substances 0.000 abstract description 7
- 230000031700 light absorption Effects 0.000 abstract description 4
- 239000002253 acid Substances 0.000 abstract description 3
- 238000000149 argon plasma sintering Methods 0.000 abstract description 3
- 239000011148 porous material Substances 0.000 abstract description 3
- 238000003980 solgel method Methods 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 230000006872 improvement Effects 0.000 abstract description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 abstract description 2
- 230000002195 synergetic effect Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 15
- 239000010936 titanium Substances 0.000 description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- 238000011068 loading method Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000004408 titanium dioxide Substances 0.000 description 6
- 239000003344 environmental pollutant Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 229910052755 nonmetal Inorganic materials 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/135—Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
Abstract
本发明涉及模拟及自然太阳光下条件照射下光催化降解丙烯腈实际废水COD满足国家排放标准的F、S、Zr、Al共掺杂改性二氧化钛复合氧化物催化剂的其制备方法。本发明首先提供了优化溶胶凝胶法F掺杂的TiO2催化剂制备方法基础上,即利用五水硝酸锆和硫脲作为前驱体进行S、Zr、Al共掺杂。F、S、Zr、Al共掺杂改性后的TiO2催化剂协同作用优势明显,催化剂的光响应范围拓宽,样品表面的酸性位点强度大,硅胶的加入所形成凸凹不平的表观形貌和孔结构造成的光散射,有利于光吸收,这对光催化活性的提高起了重要的作用,其中,Zr、Al的添加使得整个催化剂体系稳定性明显提高。最适宜的Ti、F、S、Zr、Al的比例为1∶0.5‑5%∶1‑10%∶0.1‑2%,适宜的煅烧温度和煅烧时间分别为350‑500℃和1‑3h。该催化剂重复4次,COD仍可从约89降至42mg/L以下。
The invention relates to a preparation method of an F, S, Zr, Al co-doped modified titanium dioxide composite oxide catalyst that meets national discharge standards for photocatalytic degradation of acrylonitrile actual wastewater COD under simulated and natural sunlight conditions. The present invention firstly provides an optimized sol-gel method for preparing F-doped TiO2 catalysts, that is, using zirconium nitrate pentahydrate and thiourea as precursors for S, Zr, and Al co-doping. F, S, Zr, Al co-doped modified TiO 2 catalyst has obvious synergistic advantages, the photoresponse range of the catalyst is broadened, the acid site strength on the sample surface is strong, and the addition of silica gel forms a rough appearance The light scattering caused by the pore structure is conducive to light absorption, which plays an important role in the improvement of photocatalytic activity. Among them, the addition of Zr and Al can significantly improve the stability of the entire catalyst system. The most suitable ratio of Ti, F, S, Zr and Al is 1:0.5-5%:1-10%:0.1-2%, and the suitable calcination temperature and calcination time are 350-500°C and 1-3h respectively. The catalyst was repeated 4 times, and the COD could still drop from about 89 to below 42mg/L.
Description
技术领域technical field
本发明涉及一种丙烯腈实际废水光催化降解用复合氧化物催化剂,具体的说,涉及水相中光催化降解丙烯腈工业废水,用硅胶分散氟、硫、锆、铝共掺改性的二氧化钛的光催化剂及其制备方法,属于环保技术领域。The invention relates to a composite oxide catalyst for the photocatalytic degradation of acrylonitrile actual wastewater, specifically, it relates to the photocatalytic degradation of acrylonitrile industrial wastewater in the water phase, and uses silica gel to disperse fluorine, sulfur, zirconium and aluminum co-modified titanium dioxide A photocatalyst and a preparation method thereof belong to the technical field of environmental protection.
背景技术Background technique
丙烯腈(acrylonitrile,CH2=CH-CN,简称AN)丙烯腈是生产丙烯酸纤维,丁腈橡胶,丙烯酰胺,丙烯腈-丁二烯苯乙烯的重要原料(ABS)树脂。全球丙烯腈生产能力每年超过500万吨。中国和美国是世界上最大的两个丙烯腈生产国。不幸的是,目前的丙烯腈生产工艺在生产一吨丙烯腈时产生至少一吨废水。更严重的是,丙烯腈生产废水由大量高毒性化合物组成,丙烯腈废水不仅破坏了水生态系统,而且对人体健康也有很大的危害。然而,由于市场上对丙烯腈的巨大需求,丙烯腈的应用在短时间内是不可避免的,并且迫切需要有效处理丙烯腈废水的计划。目前,丙烯腈的处理主要包括吸附,焚烧,回收,活性污泥等。上述方法不仅成本高,而且去除不足,工作条件苛刻,难以有效控制丙烯腈废水的污染。在丙烯腈废水中处理最困难的污染物是聚合物。它主要来自低分子聚合物或腈类物质的共聚物。这些聚合物通常以胶体或溶解形式存在于水中,难以水解并被微生物使用,并且不能实际除去。丙烯腈废水通常被认为是最难处理的有机废水。Acrylonitrile (acrylonitrile, CH 2 =CH-CN, AN for short) is an important raw material (ABS) resin for the production of acrylic fiber, nitrile rubber, acrylamide, and acrylonitrile-butadiene styrene. The global acrylonitrile production capacity exceeds 5 million tons per year. China and the United States are the two largest producers of acrylonitrile in the world. Unfortunately, the current acrylonitrile production process generates at least one ton of waste water when one ton of acrylonitrile is produced. What's more serious is that the acrylonitrile production wastewater is composed of a large number of highly toxic compounds, and the acrylonitrile wastewater not only destroys the aquatic ecosystem, but also has great harm to human health. However, due to the huge demand for acrylonitrile in the market, the application of acrylonitrile is inevitable in a short time, and a plan to effectively treat acrylonitrile wastewater is urgently needed. At present, the treatment of acrylonitrile mainly includes adsorption, incineration, recycling, activated sludge and so on. The above method not only has high cost, but also has insufficient removal and harsh working conditions, making it difficult to effectively control the pollution of acrylonitrile wastewater. The most difficult pollutants to treat in acrylonitrile wastewater are polymers. It mainly comes from low molecular polymers or copolymers of nitrile substances. These polymers are usually present in water in colloidal or dissolved form, are difficult to hydrolyze and are used by microorganisms, and cannot be practically removed. Acrylonitrile wastewater is generally considered to be the most difficult organic wastewater to treat.
光催化剂氧化是催化剂受光照射,吸收光能,发生电子跃迁,生成电子空穴对,对吸附于表面的污染物直接进行氧化还原,生成强氧化性的氢氧自由基,将污染物氧化。由于其丰富的资源和低碳的生产,太阳能是最好的替代能源之一。目前,对太阳能利用系统的研究和开发已经取得了很大的进展,研究最多的半导体催化材料是TiO2,在300nm到390nm的紫外光范围内,TiO2的光催化活性很高,且在多次的循环使用后仍然能保持很高的光催化活性,TiO2可以把目标污染物彻底矿化为水与二氧化碳,不会对环境造成二次污染,此外,TiO2在化学、热力学、机械学性能等方面具有很大的稳定性,故其在环境净化领域中得到广泛的应用。Photocatalyst oxidation is that the catalyst is irradiated by light, absorbs light energy, undergoes electronic transition, generates electron-hole pairs, directly oxidizes and reduces the pollutants adsorbed on the surface, generates strong oxidizing hydroxyl radicals, and oxidizes pollutants. Due to its abundant resources and low-carbon production, solar energy is one of the best alternative energy sources. At present, great progress has been made in the research and development of solar energy utilization systems. The most researched semiconductor catalytic material is TiO 2 . In the ultraviolet range of 300nm to 390nm, TiO 2 has a high photocatalytic activity, and in many It can still maintain a high photocatalytic activity after repeated use. TiO 2 can completely mineralize the target pollutants into water and carbon dioxide, and will not cause secondary pollution to the environment. Performance and other aspects have great stability, so it has been widely used in the field of environmental purification.
TiO2的光催化活性可以通过添加硅胶来增加其比表面积而获得提高。近年来,很多文献报道了二氧化钛的负载方式,例如活性碳负载TiO2,分子筛负载TiO2,玻璃珠负载TiO2,二氧化硅负载TiO2。利用载体吸附特性可以提高催化剂对降解污染物的矿化能力。负载后催化剂的活性与无负载的二氧化钛的活性相比有较大的提高,这是因为二氧化钛与载体之间能够形成协同效应。其中二氧化硅由于吸附性能好,比表面积较大。二氧化硅负载TiO2是一种性能优良的负载型催化剂,此种催化剂既有二氧化硅的热稳定性和机械稳定性,并且是光的透明体,可以减少光的散射,从而能够有效提高催化剂的降解性能。加入SiO2能有效地控制TiO2的晶体颗粒长大,有效的抑制催化剂的团聚现象,使催化剂获得较小的粒径和较高的比表面积。负载在硅胶上的TiO2还会与二氧化硅发生界面扩散,形成Si-O-Ti键。Si-O-Ti键的形成可以抑制锐钛型的TiO2向金红石型的TiO2转变。金亮等人发现现纳米二氧化钛在开放的反应器中,在充足稳定的光照条件下,能够有效降解配水中的丙烯腈。Pang D.D等人发现以HF为F源,经F掺杂SiO2负载的TiO2复合光催化剂表现出最高的降解丙烯腈的活性。原位红外与NH3-TPD的结果则显示F掺杂提高了SiO2负载的TiO2复合光催化剂的表面酸位数量和酸强度。当HF与Ti的摩尔比为1∶1且TiO2的负载量为36%时,在模拟太阳光的照射下,6min丙烯腈的去除率可达到66%。The photocatalytic activity of TiO2 can be improved by adding silica gel to increase its specific surface area. In recent years, many literatures have reported the loading methods of titanium dioxide, such as activated carbon loading TiO 2 , molecular sieve loading TiO 2 , glass beads loading TiO 2 , and silica loading TiO 2 . Utilizing the adsorption properties of the carrier can improve the mineralization ability of the catalyst to degrade pollutants. Compared with the activity of unsupported titanium dioxide, the activity of the supported catalyst is greatly improved, because the synergistic effect can be formed between titanium dioxide and the support. Among them, silica has a large specific surface area due to its good adsorption performance. Silica-supported TiO 2 is a supported catalyst with excellent performance. This catalyst not only has the thermal stability and mechanical stability of silica, but also is a transparent body of light, which can reduce light scattering, thereby effectively improving Catalyst degradation performance. Adding SiO 2 can effectively control the growth of TiO 2 crystal particles, effectively inhibit the agglomeration of the catalyst, and enable the catalyst to obtain a smaller particle size and a higher specific surface area. TiO2 supported on silica gel also undergoes interfacial diffusion with silica to form Si-O-Ti bonds. The formation of Si-O-Ti bonds can inhibit the transformation of anatase TiO2 to rutile TiO2 . Jin Liang and others found that nano-titanium dioxide can effectively degrade acrylonitrile in distribution water in an open reactor under sufficient and stable light conditions. Pang DD et al. found that with HF as the F source, the F-doped SiO 2 -supported TiO 2 composite photocatalyst exhibited the highest activity for degrading acrylonitrile. In situ infrared and NH 3 -TPD results show that F doping improves the surface acid sites and acid strength of SiO 2 supported TiO 2 composite photocatalysts. When the molar ratio of HF to Ti is 1:1 and the loading amount of TiO2 is 36%, the removal rate of acrylonitrile can reach 66% in 6 min under the irradiation of simulated sunlight.
利用非金属元素掺杂改性提高TiO2活性的一个的优点是能够在拓展TiO2可见光催化活性的同时又不影响到催化剂紫外光的催化活性。半导体TiO2中金属离子Ti4+的d轨道能级决定了其导带的能级,而价带的能级由非金属离子O2-的p轨道能级来确定。与降低导带的电势相比,提高价带电位的空间更大,比较容易实现,故一般对价带进行修饰。与O的2p轨道相比,B、C、N和S等非金属元素具有更高能量的p轨道,当这些元素替换O原子后,使得半导体二氧化钛的价带电势有一定提高,从而减少了半导体TiO2的禁带宽度。但从理论上讲,只有当非金属元素的离子与O离子半径十分接近时,该非金属元素离子才能够替换TiO2的晶格中的氧离子。因此,科学家们所研究的非金属元素主要分布在氧元素附近,如C、N、S、B和卤族元素。氟原子的直径比氧原子小,因此从理论上来说,氟原子可以替换二氧化钛中的氧原子。在大量的氟掺杂改性TiO2的研究中,氟可以取代TiO2晶格中的氧离子,也可以吸附在TiO2颗粒的表面。与氮掺杂TiO2不同,氟掺杂改性TiO2不会显著改变催化剂的光吸收边,这是因为氟的2p轨道的电势比TiO2的价带电势低。有研究者采用水热法合成锐钛矿型TiO2,催化剂的可见光催化活性很高,该作者发现氟掺杂TiO2后,部分Ti4+转换为Ti3+,形成氧空位,捕获催化剂表面的氧分子生成超氧自由基,进而提高了催化剂的活性。除此之外,F掺杂TiO2也能增加TiO2的表面酸度。F掺杂TiO2后,样品表面出现了Lewis和Bronsted酸性位点,而Lewis和Bronsted酸性位点是氧气分子和带孤对电子分子良好的吸附中心,故F掺杂能有效提高带孤对电子有机物的降解活性。One of the advantages of using non-metal element doping modification to improve the activity of TiO 2 is that it can expand the visible light catalytic activity of TiO 2 without affecting the catalytic activity of the catalyst under ultraviolet light. The d orbital energy level of the metal ion Ti 4+ in the semiconductor TiO 2 determines the energy level of its conduction band, while the energy level of the valence band is determined by the p orbital energy level of the non-metal ion O 2- . Compared with lowering the potential of the conduction band, there is more room for increasing the potential of the valence band and it is easier to realize, so the valence band is generally modified. Compared with the 2p orbital of O, non-metallic elements such as B, C, N and S have p orbitals with higher energy. When these elements replace O atoms, the valence band potential of semiconductor titanium dioxide is increased to a certain extent, thereby reducing the semiconductor Bandgap width of TiO2 . But in theory, only when the ions of the non-metal element are very close to the O ion radius, the non-metal element ions can replace the oxygen ions in the crystal lattice of TiO 2 . Therefore, the non-metallic elements studied by scientists are mainly distributed near oxygen elements, such as C, N, S, B and halogen elements. Fluorine atoms have a smaller diameter than oxygen atoms, so in theory, fluorine atoms could replace oxygen atoms in titanium dioxide. In a large number of studies on fluorine-doped modified TiO2 , fluorine can replace oxygen ions in the TiO2 lattice, and can also be adsorbed on the surface of TiO2 particles. Unlike nitrogen-doped TiO2 , fluorine-doped modified TiO2 does not significantly change the light absorption edge of the catalyst because the potential of the 2p orbital of fluorine is lower than the valence band potential of TiO2 . Some researchers used the hydrothermal method to synthesize anatase TiO 2 , and the visible light catalytic activity of the catalyst was very high. The author found that after fluorine doped TiO 2 , part of Ti 4+ was converted into Ti 3+ , forming oxygen vacancies and trapping the surface of the catalyst. Oxygen molecules in the catalyst generate superoxide radicals, thereby improving the activity of the catalyst. Besides, F doping TiO2 can also increase the surface acidity of TiO2 . After F doping TiO 2 , Lewis and Bronsted acidic sites appear on the surface of the sample, and Lewis and Bronsted acidic sites are good adsorption centers for oxygen molecules and molecules with lone pair electrons, so F doping can effectively improve the concentration of electrons with lone pair electrons. Degradation activity of organic matter.
另外一个有效增加催化及活性的途径是增加其表面酸性位点的数量。已经证实光催化活性随着催化剂表面酸性位点的增多而增强。Cui等1995年报道称可以通过金属氧化物掺杂TiO2来增加其表面酸性和光催化活性。Wang等2006年报道称不定型TiO2和硫化合物在高温下可以合成硫掺杂TiO2,具有酸性位点可以作为光催化剂。然而很少有人报道用酸性和高稳定性催化剂来光催化降解丙烯腈。Another effective way to increase catalysis and activity is to increase the number of acidic sites on the surface. It has been confirmed that the photocatalytic activity increases with the increase of acidic sites on the catalyst surface. Cui et al. reported in 1995 that TiO2 could be doped with metal oxides to increase its surface acidity and photocatalytic activity. Wang et al. reported in 2006 that amorphous TiO 2 and sulfur compounds can synthesize sulfur-doped TiO 2 at high temperature, which can be used as a photocatalyst with acidic sites. However, there are few reports on the photocatalytic degradation of acrylonitrile using acidic and highly stable catalysts.
Zr的掺杂一方面进入了TiO2晶格,由于Zr本身就非常稳定,所以整体的稳定性得到了提高。另一方面,由于Zr在晶体生长过程中也会影响Ti的生长方向,形成力的作用,所以也提高了晶体结构的稳定性,同时它还有氟固定作用。而Al则上述两种作用都有,前者作用更强。On the one hand, the doping of Zr has entered the TiO2 lattice, and since Zr itself is very stable, the overall stability has been improved. On the other hand, since Zr also affects the growth direction of Ti and acts as a force during the crystal growth process, it also improves the stability of the crystal structure, and it also has a fluorine fixation effect. While Al has the above two effects, and the former effect is stronger.
发明内容Contents of the invention
上述光催化过程都是在实际丙烯腈废水中进行的,由于实际废水大量存在各种干扰离子,有机物和无机成分也非常复杂,为解决上述问题,本发明的目的在于提供高效可重复使用的光催化降解丙烯腈实际废水的光催化剂,以100-200目的二氧化硅为分散剂,以氟化氢、硝酸锆、硝酸铝和硫脲作为掺杂前驱体,制备得到具有介孔结构的大比表面积的催化剂,该催化剂中F、S的复合掺杂提高了催化剂表面的酸性强度和光吸收的能力,这提高光催化活性及抗干扰能力,而Zr、Al的掺杂则很大程度提高了催化剂整体的持久性。The above-mentioned photocatalytic process is carried out in the actual acrylonitrile wastewater, because there are a large number of various interfering ions in the actual wastewater, and the organic and inorganic components are also very complicated. In order to solve the above problems, the purpose of the present invention is to provide efficient and reusable photocatalytic A photocatalyst that catalyzes the degradation of acrylonitrile actual wastewater, using 100-200 mesh silica as a dispersant, hydrogen fluoride, zirconium nitrate, aluminum nitrate and thiourea as doping precursors, to prepare a photocatalyst with a large specific surface area with a mesoporous structure Catalyst, the compound doping of F and S in the catalyst improves the acidity intensity and light absorption ability of the catalyst surface, which improves the photocatalytic activity and anti-interference ability, while the doping of Zr and Al greatly improves the overall photocatalytic activity of the catalyst. Persistence.
本发明的目的还在于提供上述丙烯腈实际废水太阳光催化降解的催化剂的制备方法,利用溶胶凝胶法制备得到硅胶担载氟、硫、锆、铝掺杂的二氧化钛复合氧化物催化剂。The purpose of the present invention is also to provide a preparation method for the catalyst for the solar photocatalytic degradation of the above-mentioned acrylonitrile actual wastewater, and prepare a titanium dioxide composite oxide catalyst loaded with fluorine, sulfur, zirconium and aluminum doped on silica gel by using a sol-gel method.
本发明的发明人通过研究发现,F掺杂TiO2催化剂对丙烯腈实际废水降解表现出了很出色的效果,且该催化剂与有机物的暗吸附量相比P25 TiO2也有比较大的提高,分析表明在催化剂表面的酸性中心和丙烯腈废水有机物中的孤对电子之间存在着吸附作用。The inventors of the present invention have found through research that the F-doped TiO2 catalyst has shown a very good effect on the degradation of acrylonitrile actual wastewater, and the dark adsorption of the catalyst and organic matter is also relatively large compared with P25 TiO2 . Analysis It shows that there is an adsorption between the acid center on the surface of the catalyst and the lone pair of electrons in the organic matter of acrylonitrile wastewater.
为了进一步提高催化剂的光催化活性,本发明所提供的复合氧化物催化剂采用氟、硫、锆共掺杂。在用溶胶凝胶法制备过程中,将氟化氢、五水硝酸锆、硝酸铝和硫脲溶液作为掺杂前驱体中加入到催化剂中,进而高温煅烧而成氟掺杂催化剂,其具有较多的表面酸性位点,硅胶的加入形成凸凹不平的表观形貌和孔结构造成的光散射,有利于光吸收,这对光催化活性的提高起了重要的作用,可以大大提高其光催化活性。尤其是Zr、Al的加入大大提高了催化剂的稳定性。In order to further improve the photocatalytic activity of the catalyst, the composite oxide catalyst provided by the present invention is co-doped with fluorine, sulfur and zirconium. In the preparation process by the sol-gel method, hydrogen fluoride, zirconium nitrate pentahydrate, aluminum nitrate and thiourea solution are added to the catalyst as doping precursors, and then calcined at high temperature to form a fluorine-doped catalyst, which has more The acidic sites on the surface, the addition of silica gel to form the uneven appearance and light scattering caused by the pore structure, is conducive to light absorption, which plays an important role in the improvement of photocatalytic activity, and can greatly improve its photocatalytic activity. Especially the addition of Zr and Al greatly improved the stability of the catalyst.
本发明还提供了上述复合氧化物光催化剂的制备方法,其包括以下步骤:The present invention also provides the preparation method of above-mentioned composite oxide photocatalyst, it comprises the following steps:
在10-16mL无水乙醇中逐滴滴加2-8ml的钛酸丁酯与之混合,得到澄清溶液即为溶液A。Add 2-8ml of butyl titanate dropwise into 10-16mL of absolute ethanol and mix with it to obtain a clear solution which is solution A.
在150mL烧杯中依次加入12-32mL无水乙醇,2.3-5.3mL冰醋酸,15-35mg硫脲,429-449mg五水硝酸锆,13-18mg硝酸铝,0.2-1.5mL氢氟酸和0.4-1.9mL去离子水,超声2min后即为溶液B。Add 12-32mL absolute ethanol, 2.3-5.3mL glacial acetic acid, 15-35mg thiourea, 429-449mg zirconium nitrate pentahydrate, 13-18mg aluminum nitrate, 0.2-1.5mL hydrofluoric acid and 0.4- 1.9mL deionized water, after ultrasonication for 2min, is solution B.
将B溶液逐滴加入到A溶液中,密封搅拌1-3h,敞开密封,继续搅拌形成均匀的水状溶胶,继续搅拌一段时间待形成油状的溶胶后加入100-200目硅胶直至形成凝胶。Add solution B to solution A drop by drop, seal and stir for 1-3 hours, open the seal, continue to stir to form a uniform aqueous sol, continue to stir for a period of time until an oily sol is formed, then add 100-200 mesh silica gel until a gel is formed.
将上述凝胶放在室温(20-30℃)环境下老化8-12h左右,然后在70-130℃干燥箱中烘干,将得到的干燥粉末状的催化剂前驱体磨匀,最后在管式炉中350-500℃下煅烧1-3h。即得到掺杂改性SiO2分散的TiO2/SiO2催化剂。其组成比是Ti∶F∶S∶Zr∶Al=1∶1∶0.5-5%∶1-10%∶0.1-2%。Aging the above gel at room temperature (20-30°C) for about 8-12h, then drying in a drying oven at 70-130°C, grinding the obtained dry powder catalyst precursor, and finally Calcined in the furnace at 350-500°C for 1-3h. That is, a TiO 2 /SiO 2 catalyst dispersed with doped modified SiO 2 is obtained. Its composition ratio is Ti:F:S:Zr:Al=1:1:0.5-5%:1-10%:0.1-2%.
TEM结果(左图)显示催化剂为约直径30nm的颗粒,放大的右图更清楚显示这些颗粒是由似乎更小的粒子团聚而成,还有四方形的颗粒存在。The TEM results (left image) show that the catalyst is about 30nm in diameter, and the enlarged right image more clearly shows that these particles are agglomerated by seemingly smaller particles, and there are also square particles.
F、S、Zr、Al共掺杂改性TiO2/SiO2光催化剂的活性评价选用丙烯腈实际废水中有机污染物作为目标降解物。The activity evaluation of F, S, Zr, Al co-doped modified TiO 2 /SiO 2 photocatalysts selected the organic pollutants in the actual wastewater of acrylonitrile as the target degradation products.
从研究比较和实际应用的角度出发,分别选择350w AHD350型球形氙灯和日光两种光源处理丙烯腈实际废水。From the point of view of research comparison and practical application, 350w AHD350 spherical xenon lamp and sunlight are respectively selected to treat the actual wastewater of acrylonitrile.
附图说明Description of drawings
图1为F-S-Zr-Al-TiO2/SiO2样品的TEM图。Figure 1 is a TEM image of the FS-Zr-Al-TiO 2 /SiO 2 sample.
图2为使用F-S-Zr-Al-TiO2/SiO2催化剂经过四次反应(三次回收活化)处理丙烯腈实际废水的COD随模拟太阳光照时间变化曲线。Figure 2 is the COD curve of the actual wastewater treated with FS-Zr-Al-TiO 2 /SiO 2 after four reactions (three recovery and activation) with simulated sunlight time.
图3为使用F-S-Zr-Al-TiO2/SiO2催化剂第一次处理丙烯腈实际废水的COD随模拟及自然光照时间变化曲线。Fig. 3 is the COD curve of the actual wastewater treated with FS-Zr-Al-TiO 2 /SiO 2 for the first time with simulation and natural light time.
具体实施方式Detailed ways
以下通过具体实施例介绍本发明的实现和所具有的优异效果,但不应据此对本发明的实施范围构成任何限定。The implementation and excellent effects of the present invention are described below through specific examples, but the implementation scope of the present invention should not be construed as any limitation.
催化剂活性的评价方法:Evaluation method of catalyst activity:
具体步骤:光催化剂的活性评价选用低浓度丙烯腈实际废水作为目标降解物,将150mL实际废水倒入石英反应器中,加入300mg光催化剂,然后将反应器封闭,在黑暗中搅拌35min达到吸附脱附平衡后,打开氙灯开始光照,光源选择350w AHD350型球形氙灯光源,光照过程中,分别在2h,6h,10h,14h取出两组4mL的废水悬浮液平行样。Specific steps: The activity evaluation of the photocatalyst selects the actual wastewater with low concentration of acrylonitrile as the target degradation product, pours 150mL of actual wastewater into the quartz reactor, adds 300mg of photocatalyst, then closes the reactor, and stirs in the dark for 35min to achieve adsorption and desorption. After the balance, turn on the xenon lamp and start to illuminate. The light source is a 350w AHD350 spherical xenon lamp light source. During the illumination process, two sets of 4mL parallel samples of wastewater suspension are taken out at 2h, 6h, 10h, and 14h respectively.
检测方法:COD的测定采用联华LH-5B-3B(V8)型COD快速测定仪。在COD误差±10%。样品COD的测定:取样后立即用0.45μm孔径滤膜过滤后测定,即为该时间COD对应值。Detection method: The determination of COD adopts the Lianhua LH-5B-3B (V8) COD rapid tester. In COD error ±10%. Determination of sample COD: Immediately after sampling, filter it with a 0.45 μm pore size filter and measure it, which is the corresponding value of COD at this time.
随光照时间延长,催化剂、溶液中的COD下降曲线如图2,经14h照射,溶液COD从89降至25mg/L左右,经过4次反应,依然可以到达42mg/L左右,演示有机物基本完全降解和催化剂很好的稳定性。With the prolongation of the light time, the decline curve of COD in the catalyst and solution is shown in Figure 2. After 14 hours of irradiation, the COD of the solution dropped from 89 to about 25mg/L. After 4 reactions, it can still reach about 42mg/L, demonstrating that the organic matter is basically completely degraded. and good catalyst stability.
用同样的方法我们获得日光照射下,经充足阳光反应,丙烯腈实际废水降解到COD=50mg/L左右。Using the same method, we obtained that the actual wastewater of acrylonitrile was degraded to about COD=50mg/L under sunlight irradiation and through sufficient sunlight reaction.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910037676.0A CN111420686B (en) | 2019-01-10 | 2019-01-10 | Preparation of F, S, Zr, Al co-doped TiO2 photocatalyst and its photocatalytic degradation efficiency of acrylonitrile industrial wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910037676.0A CN111420686B (en) | 2019-01-10 | 2019-01-10 | Preparation of F, S, Zr, Al co-doped TiO2 photocatalyst and its photocatalytic degradation efficiency of acrylonitrile industrial wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111420686A CN111420686A (en) | 2020-07-17 |
CN111420686B true CN111420686B (en) | 2023-07-04 |
Family
ID=71546624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910037676.0A Expired - Fee Related CN111420686B (en) | 2019-01-10 | 2019-01-10 | Preparation of F, S, Zr, Al co-doped TiO2 photocatalyst and its photocatalytic degradation efficiency of acrylonitrile industrial wastewater |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111420686B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113789018B (en) * | 2021-01-28 | 2024-06-04 | 海信容声(广东)冰箱有限公司 | SAN material for refrigerator transparent piece, preparation method of SAN material and refrigerator transparent piece |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1523141A (en) * | 1974-07-22 | 1978-08-31 | Standard Oil Co | Process for the oxidation of olefins using catalysts containing various promoter elements |
CN104923271A (en) * | 2014-03-20 | 2015-09-23 | 哈尔滨工业大学深圳研究生院 | Supported fluorine-doped and nitrogen-fluorine co-doped titanium dioxide for acrylonitrile photocatalytic degradation |
CN108906112A (en) * | 2018-08-06 | 2018-11-30 | 上海工程技术大学 | A kind of method that flame combustion process prepares multi-element doping photocatalysis material of titanium dioxide |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITSA20080012A1 (en) * | 2008-05-29 | 2009-11-30 | Univ Degli Studi Salerno | CATALYTIC PHOTOREACTOR WITH HIGH LIGHT EFFICIENCY FOR INTENSIFIED PHOTOSSIDATION PROCESSES |
US8791044B2 (en) * | 2010-04-30 | 2014-07-29 | The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency | Doped titanium dioxide as a visible and sun light photo catalyst |
-
2019
- 2019-01-10 CN CN201910037676.0A patent/CN111420686B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1523141A (en) * | 1974-07-22 | 1978-08-31 | Standard Oil Co | Process for the oxidation of olefins using catalysts containing various promoter elements |
CN104923271A (en) * | 2014-03-20 | 2015-09-23 | 哈尔滨工业大学深圳研究生院 | Supported fluorine-doped and nitrogen-fluorine co-doped titanium dioxide for acrylonitrile photocatalytic degradation |
CN108906112A (en) * | 2018-08-06 | 2018-11-30 | 上海工程技术大学 | A kind of method that flame combustion process prepares multi-element doping photocatalysis material of titanium dioxide |
Non-Patent Citations (3)
Title |
---|
Investigation on F-B-S tri-doped nano-TiO2 films for the photocatalytic degradation of organic dyes;Fang Li,et al.;《J Nanopart Res》;20110622;第13卷(第10期);第4839-4846页 * |
N-Al/TiO2 催化剂的制备及可见光降解染料;王鑫等;《精细化工》;20180831;第35卷(第8期);第1325-1330页 * |
掺锆纳米TiO2 制备表征及其对光催化活性的影响;毕怀庆等;《材料科学与工程学报》;20040229;第22卷(第1期);第98-101页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111420686A (en) | 2020-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102039118B (en) | Preparation method of loaded nano TiO2 photocatalytic material with diatomite filter aid as carrier | |
CN105749893B (en) | A kind of preparation method of the modified active carbon fiber silk of area load nano titanium oxide | |
CN103100398B (en) | A method for preparing highly catalytically active natural zeolite-supported one-dimensional TiO2 nanowires | |
Zhao et al. | Scalable one-pot synthesis of phosphorus-doped g-C3N4 nanosheets for enhanced visible-light photocatalytic hydrogen evolution | |
CN103028386A (en) | Ti3+ and carbon co-doped TiO2 photocatalyst with visible light activity and preparation method thereof | |
CN101972639A (en) | Method for preparing high-activity titanium dioxide photocatalyst by using segmental calcination method | |
CN103599810B (en) | Sr 2+doped Ti O 2the preparations and applicatio of composite hollow ball photocatalyst | |
An et al. | Coral reef-like Pt/TiO2-ZrO2 porous composites for enhanced photocatalytic hydrogen production performance | |
CN105664995A (en) | A multi-element co-doped nano titanium dioxide photocatalytic material | |
CN107890880A (en) | A kind of preparation method of Nano-size Porous Graphite phase carbon nitride/metatitanic acid manganese composite photo-catalyst | |
CN108325527A (en) | A kind of Cu2The preparation method and applications of O-AC photochemical catalysts | |
CN102698727A (en) | A kind of method for preparing the load-type TiO2 photocatalyst of high thermal stability | |
El Gaini | Enhancing solar-driven photocatalysis: synergistic integration of biochar, semiconductors, and magnetic materials for degrading organic pollutants | |
CN102008949B (en) | Preparation method of demercuration catalyst for non-metal-modified one-dimensionally structured titanium dioxide | |
CN103846090B (en) | A kind of silicon dioxide dioxide composite titanium catalyst for the treatment of of Coking Wastewater and preparation method thereof | |
CN111420686B (en) | Preparation of F, S, Zr, Al co-doped TiO2 photocatalyst and its photocatalytic degradation efficiency of acrylonitrile industrial wastewater | |
CN104923271A (en) | Supported fluorine-doped and nitrogen-fluorine co-doped titanium dioxide for acrylonitrile photocatalytic degradation | |
CN105214600A (en) | A kind of modified nano-titanium dioxide preparation method adapting to highway tunnel illumination condition | |
CN102500406B (en) | Iron Nitrogen Fluoride Co-doped TiO2 Photocatalyst and Its Application in Visible Light Degradation of Organic Pollutants | |
CN103301866B (en) | A kind of preparation method of nano-silicon aluminum pipe load nitrogen-doped titanium dioxide | |
CN111420685A (en) | FSBi-doped TiO for efficiently degrading acrylonitrile wastewater by sunlight catalysis2/SiO2Preparation and use of the catalyst | |
CN106925252A (en) | A kind of metal doping nano TiO2/ sepiolite composite and preparation method | |
CN104689842A (en) | Preparation method of two-dimensional honeycomb-shaped ZnO/zeolite for water secondary treatment | |
CN106542584A (en) | A kind of preparation method of rich defect cobalt oxide photocatalyst | |
Wang et al. | Fabrication of weak-room-light-driven TiO2-based catalysts through adsorbed-layer nanoreactor synthesis: enhancing catalytic performance by regulating catalyst structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
DD01 | Delivery of document by public notice | ||
DD01 | Delivery of document by public notice |
Addressee: OuYang Feng Document name: Notification of conformity |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230704 |