CN111417430B - 设备之间的组织传导通信 - Google Patents

设备之间的组织传导通信 Download PDF

Info

Publication number
CN111417430B
CN111417430B CN201880077540.6A CN201880077540A CN111417430B CN 111417430 B CN111417430 B CN 111417430B CN 201880077540 A CN201880077540 A CN 201880077540A CN 111417430 B CN111417430 B CN 111417430B
Authority
CN
China
Prior art keywords
tcc
signal
beacon
frequency
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880077540.6A
Other languages
English (en)
Other versions
CN111417430A (zh
Inventor
J·D·瑞恩克
J·B·阿尔特曼
M·T·海明
D·J·佩歇尔
J·P·罗伯茨
M·B·泰瑞
E·R·威廉姆斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CN111417430A publication Critical patent/CN111417430A/zh
Application granted granted Critical
Publication of CN111417430B publication Critical patent/CN111417430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37217Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • A61N1/37288Communication to several implantable medical devices within one patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3756Casings with electrodes thereon, e.g. leadless stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3956Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3956Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
    • A61N1/3962Implantable devices for applying electric shocks to the heart, e.g. for cardioversion in combination with another heart therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • A61N1/37264Changing the program; Upgrading firmware
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3975Power supply

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种系统,诸如IMD系统,包括组织传导通信(TCC)发射器,该TCC发射器被配置为通过生成载波信号并且根据第一类型的调制来调制载波信号的第一属性来生成信标信号。TCC发射器被配置为:通过生成载波信号并且根据不同于第一类型的调制的第二类型的调制来调制载波信号的不同于第一属性的第二属性来在信标信号之后生成数据信号。

Description

设备之间的组织传导通信
技术领域
本公开大体上涉及用于使用组织传导通信来在设备间通信的设备、系统和方法。
背景技术
与人相关联的两个或更多个设备(例如,植入人体内和/或附接至人或以其他方式接触人的设备)之间的通信在多个应用中可能是期望的,诸如用于监测或管理患者的健康。这些设备之间的通信可例如实现信息的交换、健康状况的协调监测和/或用于治疗健康状况的协调治疗。此类系统(在下文描述了此类系统的一些示例)可使用组织传导通信(TCC)来通信。TCC将人体用作通信的介质。TCC可有时被称为人体传导(HBC)或体内通信。
用于向患者递送治疗或监测患者的生理状况的各种植入式医疗设备(IMD)已在临床上用于患者体内或已被提出在患者体内临床使用。示例包括IMD,该IMD向心脏、肌肉、神经、脑部、胃或其他组织递送治疗和/或监测与心脏、肌肉、神经、脑部、胃或其他组织相关联的状况。一些治疗包括向此类组织递送电刺激。一些IMD可采用用于向此类器官或组织递送治疗性电信号的电极、用于感测患者体内固有的生理电信号(其可由此类器官或组织传播)的电极、和/或用于感测患者的生理信号的其他传感器。
例如,当检测到房性或室性快速性心律失常(例如,心动过速或纤颤)时,植入式心脏复律除颤器(ICD)可被用于向患者的心脏递送高能量除颤和/或心脏复律电击。ICD可基于分析经由电极感知到的心脏电描记图来检测快速性心律失常,并且可经由电极递送抗快速性心律失常电击(例如,除颤电击和/或心脏复律电击)。作为另一示例,当自然起搏器和/或心脏的传导系统无法以足够维系健康的患者功能的频率和间期提供同步的心房和心室收缩时,ICD或植入式心脏起搏器可向心脏提供心脏起搏治疗。ICD和心脏起搏器也可提供超速(overdrive)心脏起搏(称为抗心动过速起搏(ATP))以抑制检测到的快速性心律失常或使检测到的快速性心律失常转变,以试图避免心脏复律/除颤电击。
一些IMD被耦合至用于感测电生理信号的电极中的一个或多个并且经由一个或多个引线递送电刺激。携载感测和/或电治疗递送电极的医疗电引线允许IMD壳体被定位在与用于感测和/或刺激递送的目标部位分开的位置。例如,皮下地或肌肉下植入的ICD或植入式心脏起搏器的壳体可经由经静脉地延伸至患者的心脏的一个或多个医疗电引线被耦合至心内膜电极。其他ICD系统(被称为心血管外ICD系统)没有被耦合至任何经静脉引线,并且反而经由植入远离患者的心脏(例如,皮下地植入或胸骨下地植入)的电极感测以及递送电击。心血管外电极可沿着皮下ICD的壳体被提供和/或经由从壳体皮下地、肌肉下地或胸骨下地延伸的一个或多个引线被耦合至壳体。
无引线IMD也可被用于向患者递送治疗,和/或感测患者的生理参数。在一些示例中,无引线IMD可包括在其外部壳体上的一个或多个电极,以用于向患者递送治疗电刺激,和/或感测患者的固有电信号。例如,无引线起搏器可被用于感测患者的固有去极化或其他生理参数,和/或向心脏递送治疗电刺激。无引线起搏器可被定位在心脏内或外部,并且在一些示例中,可经由固定机制被锚定至心脏的壁。
在一些情况下,两个或更多个IMD被植入单个患者体内。可能期望的是,两个或更多个IMD能够彼此通信,例如,以协调或协作地提供感测或监测患者和/或治疗递送。尽管一些IMD使用射频(RF)遥测来与其他医疗设备通信,例如,与外部编程设备通信,但是TCC允许了通过经由传导组织通路在两个IMD的电极之间发射信号来在两个或更多个IMD之间通信。相似地,TCC可被利用以用于在IMD与外部设备之间通信,该外部设备具有接近患者的皮肤或与患者的皮肤接触的电极,或用于在具有接近患者的皮肤或与患者的皮肤接触的电极的两个外部设备之间通信。
发明内容
本公开的技术大体上涉及用于发射和接收TCC信号的设备、系统和方法。本公开的技术在IMD的背景下被描述。然而,该技术可由使用TCC通信的任何设备利用,无论是医疗设备还是非医疗设备,植入设备还是外部设备。被包括在IMD中的TCC发射器被配置为生成载波信号,并且调制载波信号以在TCC发射器的唤醒模式期间生成信标信号,并且调制载波信号以在TCC发射器的数据发射模式期间生成数据信号。在本文公开的其他TCC发射技术中,TCC发射器能够根据第一类型的调制生成并且发射经调制的信标信号,并且根据第二不同类型的调制生成并且发射一个或多个数据包。IMD系统的接收设备包括TCC信号检测器,该TCC信号检测器被配置为基于第一调制类型检测信标信号,随后唤醒以用于接收并且解调制根据第二类型的调制而被调制的数据包。
在一个示例中,本公开提供了被配置为发射TCC信号的IMD。该IMD包括壳体以及由壳体封围的TCC发射器。TCC发射器包括控制器、驱动信号电路以及极性切换电路,用于生成经由可耦合至该IMD的发射电极向量发射至接收设备的TCC信号。控制器被配置为控制TCC发射器以通过生成载波信号并且根据第一类型的调制来调制载波信号的第一属性以生成信标信号,并且通过生成载波信号并且根据不同于第一类型的调制的第二类型的调制来调制载波信号的不同于第一属性的第二属性以在信标信号之后生成数据信号。
在另一示例中,本公开提供了用于由具有TCC发射器的植入式医疗设备(IMD)发射组织传导通信(TCC)信号的方法。该方法包括由TCC发射器通过生成载波信号并且根据第一类型的调制来调制载波信号的第一属性以生成信标信号,并且通过生成载波信号并且根据不同于第一类型的调制的第二类型的调制来调制载波信号的不同于第一属性的第二属性以在信标信号之后生成数据信号。
在另一示例中,本公开提供了一种非瞬态计算机可读存储介质,该非瞬态计算机可读存储介质包括一组指令,当该一组指令由具有TCC发射器的IMD的控制器执行时,使得TCC发射器:通过生成载波信号并且根据第一类型的调制来调制载波信号的第一属性以生成信标信号,并且通过生成载波信号并且根据不同于第一类型的调制的第二类型的调制来调制载波信号的不同于第一属性的第二属性以在信标信号之后生成数据信号。
在又另一示例中,本公开提供了被配置为接收TCC信号的IMD。该IMD包括壳体以及由壳体封围的TCC信号检测器。TCC信号检测器被配置为:通过检测载波信号的第一属性的第一类型的调制来检测从发射设备发射的信标信号,并且通过检测载波信号的不同于第一属性的第二属性的第二类型的调制来检测由发射设备在信标信号之后发射的数据信号第二类型的调制不同于第一类型的调制。
在下面的所附附图和说明书中阐述了本公开的一个或多个方面的细节。本公开中描述的技术的其他特征、目的以及优点将从描述、附图以及权利要求书中显而易见。
附图说明
图1是根据一个示例的能够TCC的IMD系统的概念图。
图2是根据另一示例的IMD系统的概念图,该IMD系统被配置为使用本文公开的TCC技术通信。
图3A是根据一个示例的无引线心内起搏器的概念图。
图3B是根据一个示例的可被包括在图3A的起搏器中的电路系统的示意图。
图4示出了根据一个示例的无引线压力传感器的透视图。
图5是根据一个示例的能够发射TCC信号的ICD的示意图。
图6是示出了可被包括在图5的ICD中或图3B的起搏器中或图4的压力传感器中的TCC发射器的示例配置的概念图。
图7是可由图6的TCC发射器执行的发射会话的概念图。
图8是根据一个示例的在图6的TCC发射器的唤醒模式期间执行的操作的一个示例的图。
图9是根据一个示例的可由图6的TCC发射器生成的信标信号的图。
图10是根据一个示例的由IMD系统(诸如图1的系统或图2的系统)执行的发射会话的一部分的图。
图11是可在TCC发射器的数据发射模式期间被发射的数据包的图。
图12是可被包括在图11的数据包中的一个数据字节的一部分的概念图。
图13是根据一个示例的可由IMD系统执行的用于发射和接收TCC信号的方法的流程图。
图14是根据一个示例的可由发射IMD执行的TCC信号发射控制的时序图。
具体实施方式
出于多个原因,两个或更多个医疗设备之间的无线通信可以是期望的,包括交换数据和/或协调或协同地提供生理信号的感测和/或治疗递送。TCC信号可从一个IMD被无线地传送至共同植入患者体内的一个或多个IMD和/或被无线地传送至具有耦合至患者以用于发射和/或接收TCC信号的皮肤或表面电极的外部医疗设备。一些IMD和外部医疗设备可被配置为经由感测电极感测电生理信号和/或监测诸如经胸阻抗信号之类的电阻抗。电生理信号的示例包括由患者的心脏产生的心脏电信号、由骨骼肌肉组织产生的肌电图信号、以及由脑部、神经或肌肉组织产生的其他电生理信号。通信信号的传输可导致干扰电信号感测电路系统。取决于发射的信号的幅度和频率,通过身体组织的通信信号的发射可无意间导致对肌肉或神经的电刺激。
包括被配置为接收电生理信号或监测阻抗的电信号感测电路系统的IMD或外部医疗设备可以是TCC发射设备、预期的TCC接收设备、或非预期的接收设备,该非预期的接收设备被耦合至TCC信号在两个其他设备之间被发射的组织传导通路内的电极。在每一个情况下,发射的TCC信号可由感测电极接收并且干扰感测电路系统,该感测电极耦合至发射或接收IMD或外部设备。在其他示例中,发射或接收设备可被配置为监测一个或多个医疗电引线的电阻抗或监测耦合至该设备的一个或多个电极向量之间的组织阻抗。本文公开了TCC技术,该TCC技术用于实现经编码的数据的多字节流在医疗设备之间的可靠通信,同时最小化TCC信号导致意外刺激以及干扰电生理信号感测电路系统、阻抗监测、或由IMD系统执行的电信号的其他监测的可能性。
图1是根据一个示例的能够TCC的IMD系统10的概念图。图1是植入有IMD系统10的患者12的前视图。IMD系统10包括ICD 14、耦合至ICD 14的心血管外电刺激和感测引线16、和心内起搏器100。ICD 14和起搏器100可被启用经由TCC通信,以用于发射各种数据或命令。例如,ICD 14和起搏器100可被配置为经由TCC通信以确认检测到的心脏事件或检测到的心脏节律和/或协调响应于由IMD 14和100中的一者或二者检测到了异常心脏节律而进行的用于心动过缓起搏、ATP治疗、心脏复律/除颤(CV/DF)电击、电击后起搏、心脏再同步治疗(CRT)或其他电刺激治疗的心脏起搏脉冲的递送。
IMD系统10感测心脏电信号,诸如伴随心室去极化的R波和/或伴随心房去极化的P波,以用于以高灵敏度和特异性来检测异常心脏节律,以启用IMD系统10在适当的时间处递送(或抑制)适当的治疗。由IMD(例如,由ICD 14或起搏器100)发射TCC信号可导致干扰该发射IMD的感测电路系统,从而导致对心脏事件的错误感测。由于TCC干扰被包括在电信号感测电路中的心脏事件检测器而引起的此类对心脏事件的错误感测可导致当实际需要起搏脉冲时抑制起搏脉冲或促成错误地检测到快速性心律失常事件。本文公开的TCC信号发射技术降低了TCC信号由发射设备的心脏电信号感测电路错误地检测为心脏事件的可能性。
该TCC信号发射技术也可降低植入患者12体内的被配置为感测电生理信号(诸如,R波和/或P波)的另一IMD将TCC信号错误地感测为生理信号的可能性。植入患者12体内的另一IMD可以是发射的TCC信号的预期的接收设备,例如,从ICD 14接收信号的起搏器100,或反之亦然。在其他情况中,共同植入患者12体内的另一IMD可以不是发射的TCC信号的接收设备,但是可被配置为经由耦合至共同植入的IMD的电极感测电生理信号。电压信号可在预期或非预期的接收设备的感测电极两端产生并且干扰电生理感测和事件检测。本公开的TCC信号发射技术可减少或消除TCC信号被植入患者12体内的任何其他IMD或具有外部地耦合至患者的电极的外部设备感知为电生理信号或事件的发生率。
图1是在包括ICD 14和起搏器100的能够感测由患者心脏8产生的心脏电信号并且向患者的心脏8递送心脏复律和/或除颤(CV/DF)电极以及心脏起搏脉冲的IMD系统10的背景下被描述的。在一些示例中,TCC通信可以是“单向”通信,例如,从ICD 14至起搏器100或从起搏器100至ICD 14。在其他示例中,TCC通信可以是ICD 14与起搏器100之间的“双向”通信。所认识到的是,本文公开的TCC信号发射技术的各方面可在各种IMD系统中被实现,该各种IMD系统可包括ICD、起搏器、心脏监测器或其他仅用于感测的设备、神经刺激器、药物递送设备或(多个)其他植入式医疗设备。可在要求一个IMD与至少一个其他植入的医疗设备或外部的医疗设备之间通信的任何IMD系统中实现本文公开的TCC信号发射技术。此外,本文描述的技术可由使用TCC通信的两个外部设备利用。该技术也可具有非医疗应用,同样以用于使用TCC通信的植入设备和/或外部设备。
ICD 14包括壳体15,壳体15形成保护ICD 14的内部部件的气密密封。ICD 14的壳体15可由导电材料(诸如,钛或钛合金)形成。壳体15可用作电极(有时被称为“罐”电极)。在其他情况下,ICD 14的壳体15可以包括在壳体的外部部分上的多个电极。壳体15的充当(多个)电极的(多个)外部部分可以涂覆有材料,诸如,氮化钛,以用于减少刺激后极化伪影。壳体15可以用作有源(active)罐电极,以用于在递送使用高压治疗电路所递送的CV/DF电击或其他高压脉冲时使用。在其他示例中,壳体15可用于结合由引线16携载的电极来递送相对较低电压的心脏起搏脉冲和/或用于感测心脏电信号。在这些示例的任一个中,根据本文公开的技术,壳体15可在发射电极向量中被用于发射TCC信号。
ICD 14包括连接器组件17(也被称为连接器块或头部),连接器组件17包括穿过壳体15的电馈通件,以提供在引线16的引线体18内延伸的导体与被包括在ICD 14的壳体15内的电子部件之间的电连接。如在本文中将进一步详细描述的,壳体15可容纳一个或多个处理器、存储器、收发器、电心脏信号感测电路系统、治疗递送电路系统、TCC发射和接收电路系统、电源、和用于感测心脏电信号、检测心脏节律、以及控制并递送电刺激脉冲以治疗异常心脏节律以及用于向起搏器100发射TCC信号和/或接收来自起搏器100的TCC信号的其他部件。
引线16包括具有近侧端27和远侧部分25的细长引线体18,近侧端27包括被配置为被连接至ICD连接器组件17的引线连接器(未显示),并且远侧部分25包括一个或多个电极。在图1示出的示例中,引线体18的远侧部分25包括除颤电极24和26以及起搏/感测电极28和30。在一些情况下,除颤电极24和26可以一起形成除颤电极,因为它们可以被配置为同时被激活。替代地,除颤电极24和26可以形成分开的除颤电极,在这种情况下,电极24和26中的每一个可以被选择性地独立地激活。
电极24和26(以及在一些示例中,壳体15)在本文中被称为除颤电极,因为它们被单独或共同地利用,以用于递送高电压刺激治疗(例如,心脏复律或除颤电击)。电极24和26可以是细长的线圈电极,并且与起搏和感测电极28和30相比,通常具有相对大的表面积以用于递送高电压电刺激脉冲。然而,除了高电压刺激治疗之外或代替高电压刺激治疗,电极24和26以及壳体15还可以被利用以用于提供起搏功能、感测功能和/或TCC信号发射和接收。在这个意义上,本文中对术语“除颤电极”的使用不应当被视为将电极24和26限制成仅用于高电压心脏复律/除颤电击治疗应用。例如,电极24和26可以在用于感测心脏电信号以及检测并且区分快速性心律失常的感测向量中被使用。电极24和26可在TCC信号发射电极向量中彼此结合地使用、或一同结合壳体15使用、或单独地结合壳体15使用。在ICD 14被配置为从起搏器100接收TCC信号的情况中,电极24、26和/或壳体15可在TCC接收电极向量中被使用。发射和接收电极向量可以是相同的或不同的向量。
电极28以及30是具有相对较小的表面积的电极,其可在感测电极向量中使用以用于感测心脏电信号,并且在一些配置中可用于递送相对低电压的起搏脉冲。电极28和30被称为起搏/感测电极,因为它们通常被配置为用于低电压应用,例如,用于递送相对低电压的起搏脉冲和/或感测心脏电信号,这与递送高电压心脏复律除颤电击相反。在一些实例中,电极28和30可以提供仅起搏功能、仅感测功能、或起搏功能和感测功能二者。此外,在一些示例中,电极28和30中的一个或二者可在TCC信号传输和/或接收中被使用。
ICD 14可以经由包括电极24、26、28、30和/或壳体15的组合的感测电极向量的组合来获得与心脏8的电活动对应的心脏电信号。可由被包括在ICD 14中的感测电路系统选择利用电极24、26、28和30的组合的各种感测电极向量,以用于经由一个或多个感测电极向量接收心脏电信号。
在图1示出的示例中,电极28位于除颤电极24的近侧,并且电极30位于除颤电极24与26之间。电极28和30可以是环形电极、短线圈电极、半球电极等。电极28和30可以沿着引线体18被定位在其他位置处,并且不限于示出的位置。在其他示例中,引线16可不包括任何电极、或包括一个或多个起搏/感测电极和/或一个或多个除颤电极。
可从除颤电极24、26和壳体15选择TCC发射电极向量以用于发射由被包括在ICD14中的TCC发射器产生的TCC信号。诸如除颤电极24和26以及壳体15之类的具有相对大的表面积的电极可被用于发射TCC信号,以减小发射电极向量的阻抗。发射电极向量的低阻抗最大化注入的电流信号。
TCC发射电极向量可被选择用于减小发射电极向量的阻抗并且最大化从发射电极向量到预期的接收电极对的跨阻抗二者。如本文所使用的,术语“跨阻抗”指的是在TCC信号接收电极向量处接收到的电压除以发射的电流(输出电压除以输入电流)。由此,被配置为双向通信的两个IMD中的每一个的给定TCC通信电极向量的跨阻抗与发射和接收电极向量的给定组在两个方向上通信的跨阻抗相同。通过最大化跨阻抗,针对注入组织传导通路中的给定的电流信号,预期的接收电极处的电压信号被最大化。由此,发射电极向量的低阻抗和TCC通路的高跨阻抗增加了接收电极向量处接收到的TCC信号强度(电压信号)。
可能贡献于TCC通路的最大化的跨阻抗的因素包括:发射和接收电极向量的基本平行(parallel)的电配置;发射电极相对宽的间隔;接收电极相对宽的间隔;以及发射电极向量与接收电极向量紧密相邻。与发射电极向量和接收电极向量的较大分隔相比较,发射电极向量与接收电极向量距离更近改进了TCC信号的强度。接收电极向量的最佳取向是与电流流动的传导组织通路平行。和与电流流过身体组织的通路正交的接收电极向量(这可能导致空(null)信号)相比较,与接收电极向量基本电平行的发射电极向量改进了TCC信号的强度。
发射电极向量与接收电极向量之间的平行电配置可与物理平行的电极对一致。在一些情况下,物理电极向量可被看作是从向量的一个电极延伸到该向量的另一电极的线,以用于确定发射向量和接收向量相对于彼此的取向。然而,在一些实例中,取决于中间组织的电传导属性,物理平行的电极对可能不是电平行的。例如,与其他周围组织相比,具有相对低的导电率的身体组织(诸如,肺组织)可能要求不一定平行的物理电极配置以便于实现基本平行的电配置。
TCC发射电极向量可被选择用于包括未被耦合至ICD感测电路系统(例如,心脏事件检测器)的电极,该心脏事件检测器被配置为从由感测电极向量接收到的电信号感测R波和/或P波。使用也被耦合至心脏电事件检测器或其他电信号感测电路系统的电极以用于TCC信号发射可增加对于心脏事件检测或其他电信号监测的干扰。发射电极向量可被选择以包括未被耦合至ICD 14的心脏电事件检测器的至少一个或两个电极,由此使得由心脏事件检测器无意间接收到的TCC信号经由从发射电极向量到感测电极向量的跨阻抗通路被接收到,而不是直接通过感测电极阻抗被接收到。
然而,在其他示例中,TCC发射电极向量可包括耦合至被包括在ICD 14中的心脏电事件检测器的一个或多个电极。当所得的发射电极向量以其他方式是最佳的时(例如,低阻抗和高跨阻抗),发射电极向量可包括耦合至ICD感测电路系统的电极。可以以权衡的方式选择使用被包括在耦合至心脏事件检测器的感测电极向量中的一个或两个电极来发射TCC,以用于优化实现可靠的TCC信号发射和接收的其他考虑。本文公开的TCC信号发射技术可减少或消除TCC信号发射对心脏事件(或其他电生理信号)感测以及其他感测功能(诸如,对医疗电引线或身体组织的电阻抗监测)的干扰。
在一个示例中,除颤电极24可被选择以结合壳体15用于将TCC信号发射至起搏器100。在其他示例中,可由ICD 14使用除颤电极26和壳体15或使用两个除颤电极24和26发射TCC信号。发射电极向量阻抗(递送的电压除以递送的电流)可能高达数百欧姆。TCC通路的跨阻抗可小于10欧姆并且甚至小于1欧姆,该TCC通路包括发射电极向量,该发射电极向量包括与壳体15配对的一个除颤电极24或26。TCC信号发射频率下的高跨阻抗被期望针对TCC信号的给定的注入电流在接收电极上产生相对高的电压。
在一些示例中,被选择用于发射TCC信号的电极对可包括起搏/感测电极28和30中的一者或二者。例如,起搏/感测电极28或30可与壳体15、除颤电极24或除颤电极26配对以用于发射TCC信号。发射电极向量的阻抗可由于起搏/感测电极28和30的相对较小的表面积而增加,这可能具有降低TCC信号发射期间的注入电流并且由此降低接收电极向量处的接收到的电压信号的效果。
ICD 14可被配置为从使用电极24、26、28、30和壳体15的多个可能的向量中选择TCC发射电极向量,以在起搏器100的接收电极处实现最好的TCC信号强度和/或减少TCC信号对于心脏事件检测、阻抗监测或由ICD感测电路和/或由起搏器100的感测电路执行的其他功能的干扰。在一些示例中,多个向量可被用于发射TCC信号以在三维空间中覆盖不同的角度,以实现与接收电极向量基本电平行的至少一个TCC发射向量。当接收电极向量在患者心脏内或耦合至患者心脏时,如在起搏器100的情况下,单个发射向量相对于TCC接收向量的电配置可由于心脏运动而是时变的。
在所示出的示例中,引线16在皮下或肌肉下在胸腔32上方从ICD 14的连接器组件17朝着患者12的躯干中心(例如,朝着患者12的剑突20)居中地延伸。在靠近剑突20的位置处,引线16弯曲或转向并且皮下地或肌肉下地在胸腔和/或胸骨上方靠上延伸和/或胸骨下地在胸腔和/或胸骨22下方延伸。尽管在图1中被示出为从胸骨22侧向偏移并且基本上平行于胸骨22延伸,但是引线16的远侧部分25可被植入在其他位置处,例如在胸骨22上方、偏移到胸骨22的右侧或左侧、从胸骨朝向左或右侧向成角度等。替代地,引线16可以沿着其他皮下、肌肉下或胸骨下路径被放置。心血管外引线16的路径可以取决于ICD 14的位置、由引线体18携载的电极的布置和位置、和/或其他因素。
导电体(未示出)从近侧引线端27处的引线连接器延伸通过引线16的细长引线体18的一个或多个内腔到达沿着引线体18的远侧部分25定位的电极24、26、28和30。被包含在引线体18内的细长导电体各自与可以是引线体18内的分开的相应绝缘导体的相应除颤电极24和26以及起搏/感测电极28和30电耦合。相应的导体将电极24、26、28和30经由连接器组件17中的连接(包括穿过壳体15的相关联的电馈通件)电耦合至ICD 14的电路系统,诸如用于治疗递送和TCC信号发射的信号发生器和/或用于感测心脏电信号和/或接收TCC信号的感测电路。
导电体将治疗从ICD 14内的治疗递送电路发射至除颤电极24和26和/或起搏/感测电极28和30中的一个或多个,并且将感知到的电信号从除颤电极24和26和/或起搏/感测电极28和30中的一个或多个发射至ICD 14内的感测电路。导电体也将TCC信号从TCC发射器发射至被选择用于发射TCC信号的电极。在一些示例中,ICD 14可从起搏器100接收TCC信号,在该情况下,TCC信号从接收电极对被传导至由壳体15封围的TCC信号接收器。
引线16的引线体18可由非导电材料形成,并且被成形为形成一个或多个导体在其内延伸的一个或多个内腔。引线体18可以是符合植入通路的柔性引线体。在其他示例中,引线体18可包括一个或多个预形成的弯曲。在未决的美国公开第2015/0306375号(Marshall等人)和未决的美国公开第2015/0306410号(Marshall等人)中描述了可结合本文所公开的TCC发射技术实现的心血管外引线和电极和尺寸的各种示例配置。
ICD 14分析从一个或多个感测电极向量接收到的心脏电信号,以监测异常节律,诸如心动过缓、心动过速或纤颤。ICD 14可以对心率和心脏电信号的形态进行分析,以根据多种快速性心律失常检测技术中的任一种技术来监测快速性心律失常。响应于检测到快速性心律失常,例如,室性心动过速(VT)或心室纤颤(VF),ICD 14使用治疗递送电极向量(其可从可用的电极24、26、28、30和/或壳体15中任一个中选择)生成并且递送电刺激治疗。ICD14可以响应于VT检测而递送ATP,并且在一些情况下,可以在CV/DF电击之前或者在高电压电容器充电期间递送ATP,以试图避免递送CV/DF电击的需要。如果ATP未成功终止VT或者在检测到VF时,则ICD 14可以经由除颤电极24和26中的一者或两者和/或壳体15递送一个或多个CV/DF电击。ICD 14可以使用包括电极24、26、28和30以及ICD 14的壳体15中的一个或多个的起搏电极向量来生成并递送其他类型的电刺激脉冲,诸如,电击后起搏脉冲或心动过缓起搏脉冲。
ICD 14被示出为沿着胸腔32皮下地植入在患者12的左侧。在一些实例中,ICD 14可被植入在患者12的左侧腋后线和左侧腋前线之间。然而,ICD 14可以被植入在患者12体内的其他皮下或肌肉下位置处。例如,ICD 14可以被植入在胸部区域中的皮下袋(pocket)中。在这种情况下,引线16可以从ICD 14朝向胸骨22的胸骨柄皮下地或肌肉下地延伸,并且从胸骨柄弯曲或转向并且皮下地或肌肉下地向下地延伸到期望位置。在又另一示例中,ICD14可以放置于腹部。
起搏器100被示出为无引线心内起搏器,在本文呈现的示例中,该无引线心内起搏器被配置为经由基于壳体的电极接收来自ICD 14的TCC信号,并且可被配置为经由基于壳体的电极向ICD 14发射TCC信号。起搏器100可被经静脉地递送并且由固定构件锚定在心内起搏和感测部位处。例如,起搏器100可被植入患者心脏的心房或心室腔室中。在其他示例中,起搏器100可被附接至心脏8的外部表面(例如,与心外膜接触),由此使得起搏器100被设置在心脏8之外。
起搏器100被配置为经由一对基于壳体的电极递送心脏起搏脉冲,并且可被配置为感测心脏电信号以用于确定递送的起搏脉冲的需要和计时。例如,起搏器100可递送心动过缓起搏脉冲、频率响应性起搏脉冲、ATP、电击后起搏脉冲、CRT起搏脉冲和/或其他起搏治疗。起搏器100可包括TCC接收器,该TCC接收器接收并且解调制从ICD 14经由基于壳体的电极发射的TCC信号。起搏器100可包括TCC发射器,该TCC发射器经由基于壳体的电极向ICD14发射TCC信号。下文结合图3更为详细地描述了起搏器100。在美国专利第8,744,572号(Greenhut等人)中描述了可被包括在采用TCC的IMD系统中的示例心内起搏器。
在一些示例中,起搏器100可被植入在心脏8的右心房、右心室或左心室中,以用于感测心脏8的电活动并且递送起搏治疗。在其他示例中,系统10可在心脏8的不同腔室内(例如,在右心房内、在右心室内和/或左心室内)包括两个或更多个心内起搏器100。ICD 14可被配置为将TCC信号发射至植入在患者的心脏8内的一个或多个起搏器,以协调电刺激治疗递送。例如,ICD 14可发射命令信号以使得起搏器100递送心脏起搏脉冲、ATP治疗、或请求对感知到的心脏电事件或快速性心律失常检测的确认。
外部设备40被示出通过无线通信链路42与ICD 14遥测通信,并且经由无线通信链路44与起搏器100通信。外部设备40可以包括处理器、显示器、用户接口、遥测单元和用于与ICD 14和起搏器100进行通信以用于分别经由通信链路42和44发射和接收数据的其他部件。可以使用射频(RF)链路(诸如,蓝牙、Wi-Fi或医疗植入通信服务(MICS)或其他RF或通信频带)分别在ICD 14与外部设备40之间或起搏器14与外部设备40之间建立通信链路42或44。在一些示例中,ICD 14或起搏器100可使用TCC与外部设备40通信,例如,使用耦合至在外部被放置在患者12身上的外部设备40的接收表面电极。
外部设备40可被实现为在医院、诊所或医师的办公室中使用的编程器,以从ICD14检取数据并在ICD 14中编程操作参数与算法以用于控制ICD功能。外部设备40可被用于编程ICD 14所使用的心脏事件感测参数(例如,R波感测参数)、心脏节律检测参数(例如,VT和VF检测参数)和治疗控制参数。由ICD 14存储或获取的数据(包括生理信号或从其中导出的相关联的数据、设备诊断的结果、以及检测到的节律发作和递送的治疗的历史)可以在询问命令之后由外部设备40从ICD 14中检取。外部设备40可以替代地被实现为家用监测器或手持式设备。
在一些示例中,起搏器100不能够与外部设备40双向通信。ICD 14可作为控制设备操作,并且起搏器100可作为应答器操作。起搏器100可从ICD 14接收TCC通信信号,该TCC通信信号包括操作控制数据和命令(其可从外部设备40被发射至ICD 14),由此使得RF遥测电路系统无需被包括在起搏器100中。起搏器100可根据来自ICD 14的命令经由TCC发射来发射数据,诸如有关递送的起搏治疗和/或获取的心脏电信号的信息,并且ICD 14可经由RF通信将从起搏器100接收到的数据发射至外部设备40。
图2是根据另一示例的IMD系统200的概念图,该IMD系统200被配置为使用本文公开的TCC发射技术通信。图2的IMD系统200包括ICD 214,该ICD 214经由经静脉电引线204、206和208耦合到患者的心脏8。IMD系统200可包括无引线起搏器100和/或无引线传感器50。传感器50被示出为定位在肺动脉(PA)中以用于监测肺动脉压力的无引线压力传感器。无引线压力传感器50(在本文也被称为“压力传感器”50)可被定位在其他心内或动脉位置处以用于监测血压。在其他示例中,IMD系统200(或图1的IMD系统10)可包括执行仅感测功能或仅监测功能的其他无线传感器,该其他无线传感器被配置为向ICD 214(或图1的ICD 14)和/或起搏器100发送TCC信号和/或接收来自ICD 214(或图1的ICD 14)和/或起搏器100的TCC信号。其他无线传感器可包括例如心电图(ECG)监测器、氧监测器、声学监测器、加速度计、生物阻抗监测器、pH监测器、体温监测器、胰岛素监测器、或包括传感器中的一个或任何组合的其他感测设备。
ICD 214包括连接器块212,该连接器块212可以被配置为接收右心房(RA)引线204、右心室(RV)引线206和冠状窦(CS)引线208的近侧端,这些引线经静脉前进以用于将用于感测和刺激的电极定位在三个或所有四个心脏腔室中。RV引线206被定位成使得其远侧端处于右心室中,以用于在右心室中感测RV心脏信号并且递送起搏或电击脉冲。出于这些目的,RV引线206配备有被示出为尖端电极228和环形电极230的起搏和感测电极。RV引线206被进一步示为携载除颤电极224和226,除颤电极224和226可以是用于递送高电压CV/DF脉冲的细长线圈电极。除颤电极224在本文中可被称为“RV除颤电极”或“RV线圈电极”,因为除颤电极224可沿RV引线206被携载成使得当远侧起搏和感测电极228和230被定位用于在右心室中进行起搏和感测时,除颤电极224基本上位于右心室内。除颤电极226在本文中可以被称为“上腔静脉(SVC)除颤电极”或“SVC线圈电极”,因为除颤电极226可以沿着RV引线206被携载成使得当RV引线206的远侧端在右心室中前进时除颤电极226至少部分地沿着SVC定位。
电极224、226、228和230中的每一个被连接到在RV引线206的主体内延伸的相应绝缘导体。绝缘导体的近侧端被耦合至由近侧引线连接器216(例如,DF-4连接器)携载的对应连接器,以用于提供到ICD 214的电连接。将理解的是,尽管ICD 214在图2中被示出为除了耦合至RV引线206之外还耦合至RA引线204和CS引线208的多腔室设备,但是ICD 214可被配置为仅耦合至两个经静脉引线的双腔室设备或仅耦合至一个经静脉引线的单腔室设备。例如,ICD 214可以是耦合至RV引线206的单腔室设备,并且可被配置为除了从心脏8接收心脏电信号以及向心脏8递送电刺激治疗之外,还使用电极244、226、228和230和/或壳体215执行本文公开的TCC技术。
RA引线204被定位成使得其远侧端在右心房和上腔静脉附近。引线204配备有起搏和感测电极220和222,被示出为尖端电极220以及在近侧与尖端电极220间隔开的环形电极222。电极220和222在右心房中提供感测和起搏,并且各自被连接至RA引线206的主体内的相应绝缘导体。每个绝缘导体在其近侧端处被耦合至由近侧引线连接器210所携载的连接器。
CS引线208经由冠状窦(CS)和心脏静脉(CV)在心脏左侧的脉管系统内前进。CS引线208在图2中被示出为具有一个或多个电极232、234,该一个或多个电极232、234可被用于在心脏的左腔室(即,左心室(LV)和/或左心房(LA))中递送起搏和/或感测心脏电信号。CS引线208的一个或多个电极232、234被耦合至CS引线208的主体内的相应绝缘导体,这提供了到近侧引线连接器218的连接。
电极220、222、224、226、228、230、232、234中的任一个可由ICD 214选择在TCC电极向量中以用于发射和/或接收TCC信号。在一些示例中,壳体215连同基于引线的除颤电极(例如,RV线圈电极224或SVC线圈电极226)被一起选择在TCC发射电极向量中,以用于提供低阻抗并且高跨阻抗TCC发射电极向量。在其他示例中,使用RV线圈电极224和SVC线圈电极226执行TCC发射。在另其他示例中,由CS引线208携载的电极232或234可结合壳体215、RV线圈电极224或SVC线圈电极226被选择。所认识到的是,使用由耦合至ICD 214的引线204、206和208中的一个或多个携载的各种电极的诸多TCC发射电极向量可以是可用的。在一些示例中,多个向量可被选择,以促进经由与起搏器100的基于壳体的电极基本平行的向量或经由与无引线压力传感器50的接收电极基本平行的向量的发射,以用于向相应的起搏器100或压力传感器50发射信号。
壳体215封围与下文结合图5描述的各种电路和部件大体对应的内部电路系统,用于使用本文公开的技术利用起搏器100和/或压力传感器50从心脏8感测心脏信号、检测心律失常、控制治疗递送并且执行TCC。所认识到的是,这些TCC发射技术可结合除了图1和图2的示例中描绘的那些以外的替代引线和电极配置而被实践。
压力传感器50可被植入患者的肺动脉中,以用于监测肺动脉压力,以作为患者12的血液动力学状态的指示。下文结合图4描述了压力传感器50的一个示例。压力传感器50可被配置为经由压力传感器接收压力信号,并且经由耦合至由压力传感器50携载的电极的TCC接收器接收TCC信号。
在图1和图2的示例中,两个或更多个IMD可被共同植入在患者体内并且通信以实现系统水平的功能,诸如在设备之间共享检测到心律失常、抗快速性心律失常电击的同步计时、ATP的同步计时、和/或电击后起搏的同步计时、优化每一个设备可用的资源(例如,电池容量或处理功率)、或共享或协调生理信号获取。在一些示例中,ICD 14或ICD 214与起搏器100之间的通信可被用于发起治疗和/或确认治疗应当被递送。ICD 14或ICD 214与压力传感器50之间的通信可被用于发起压力信号获取和/或从压力传感器50检取压力信号数据。一个方式在于ICD 14或214充当控制设备,并且起搏器100和/或传感器50充当应答器。例如,来自ICD 14或214的TCC信号可使得起搏器100递送心脏起搏脉冲或治疗。
在另一示例中,ICD 214可向压力传感器50发射TCC命令信号,以使得压力传感器50开始获取压力信号。压力传感器50可被配置为经由TCC将压力信号数据发射至ICD 214或外部设备40(图1中示出)。ICD 214可向压力传感器50发射TCC命令以使得压力传感器50实时地发射压力信号、发射先前获取的并且由压力传感器50存储的压力信号、或发射从由压力传感器50接收到的压力信号导出的压力数据。在其他示例中,压力传感器50可被配置为响应于从ICD 214接收到的TCC命令信号,而经由RF遥测向ICD 214和/或外部设备(诸如,图1中示出的设备40)发射压力信号数据。
在TCC信号发射期间,电流被驱动穿过发射IMD(例如,ICD 14或214)的两个或更多个电极之间的患者身体组织。电流传播穿过患者身体,例如,穿过胸腔,从而产生电位场。接收IMD(例如,起搏器100或传感器50)可通过测量其电极中的两个电极(例如,起搏器100或传感器50的两个基于壳体的电极)之间的电位差来检测TCC信号。最佳地,接收电极与注入电流的组织传导通路平行以最大化在接收电极向量上产生的电位差。被注入以用于发射TCC信号的电流的幅度足以产生可由预期的接收IMD检测到的电压电位,但该幅度同时也不应夺获易激动的身体组织,例如,导致对神经或肌肉组织的非预期的刺激,这可能导致肌肉收缩、疼痛以及甚至心脏夺获。
在一些情况下,共同植入的IMD可能是TCC信号非预期的接收器。如果共同植入的IMD包括电极或被耦合至用于接收电信号的电极,但不是TCC信号的预期的接收器,则可能在非预期的接收器的电极两端产生电压电位,从而导致干扰非预期的接收器的正常的信号检测功能。例如,在系统200中,ICD 214和压力传感器50可被配置为使用TCC通信。起搏器100可与ICD 214和压力传感器50共同植入,但是不被配置为发送或接收TCC信号。由ICD214发射至压力传感器50的TCC信号可导致在起搏器100的基于壳体的电极两端产生的电压。起搏器100可能是发射的TCC信号的非预期的接收器。在起搏器100的基于壳体的电极两端产生的电压可干扰被包括在起搏器100中的心脏事件检测器。在其他示例中,具有基于壳体的电极的用于监测皮下获取的心电图(ECG)信号的皮下心脏电信号监测器(诸如,REVEALLINQTM插入式心脏监测器,其可从位于美国明尼苏达州明尼阿波利斯的美敦力公司购得)可被植入具有两个其他IMD的患者体内,该两个其他IMD被配置为经由TCC通信,诸如ICD214和压力传感器50。心脏电信号监测器可能是在ICD 214与压力传感器50之间发射的TCC信号的非预期的接收器。本文公开的用于发射TCC信号的方法可消除或减少TCC信号对患者体内的其他IMD或患者身上的外部设备的电信号感测电路系统的干扰,该其他IMD或外部设备可能是预期或非预期的接收器。
虽然在图1和图2的说明性示例中示出了特定的IMD系统10和200(分别包括ICD 14或214,起搏器100和/或压力传感器50),但是本文描述的用于TCC发射的方法可与其他IMD系统一同被使用,包括其他类型的IMD和IMD的其他位置,以及其他引线和电极布置。例如,植入式心脏监测器(诸如,REVEAL LINQTM插入式心脏监测器)可被利用为无引线起搏器100和/或压力传感器50的中继设备,这是通过经由TCC从那些设备接收数据并且经由RF通信(诸如,蓝牙通信)向外部设备40发射该数据来实现的。大体而言,本公开描述了用于由IMD发射TCC信号以及用于由共同植入的IMD(或外部设备)接收TCC信号的各种技术。TCC信号发射和接收技术促进了经由TCC信号在两个医疗设备之间进行可靠的通信,该通信用于在发射会话期间传输多个字节的数据同时避免非预期的组织刺激。TCC技术也可降低TCC信号由被包括在发射设备和/或与发射设备共同植入的另一IMD中的感测电路系统过感测的可能性。与发射设备共同植入的另一IMD可能是:TCC信号发射的预期的接收设备,或者不是目标接收方并且可能甚至未被配置为接收并且检测TCC通信信号的另一IMD。
图3A是根据一个示例的起搏器100的概念图。如图3A中所示,起搏器100可以是无引线起搏器,包括壳体150、壳体端帽158、远侧电极160、近侧电极152、固定构件162和递送工具接口构件154。壳体150以端帽158密封,壳体150封围并且保护起搏器100内的各种电部件。起搏器100被示出包括两个电极152和160,但是可包括两个或更多个电极,以用于:递送心脏电刺激脉冲(诸如起搏脉冲或ATP);感测心脏电信号以用于检测心脏电事件;并且用于接收和/或发射TCC信号。
电极152和160被携载在壳体150和壳体端帽158上。以此方式,电极152和160可以被认为是基于壳体的电极。在其他示例中,一个或多个电极可经由延伸远离壳体150的电极延伸件被耦合至由壳体150封围的电路系统。在图3A的示例中,电极160被设置在端帽158的外表面上。电极160可以是被定位以在植入时接触心脏组织并且由固定构件162固定在起搏部位处的尖端电极。电极152可以是沿着壳体150的外表面设置的环形电极或圆柱形电极。壳体150和端帽158二者可以电绝缘。在一些示例中,壳体150是导电材料,例如,钛合金或其他生物相容性金属或金属合金。壳体150的多个部分可涂覆有非导电材料,例如,聚对二甲苯、聚氨酯、硅酮或其他生物相容性聚合物,以将壳体150的不充当电极152的多个部分绝缘。
电极160和152可被用作阴极和阳极对,以用于心脏起搏治疗以及接收和/或发射TCC信号。此外,电极152和160可被用于检测来自患者的心脏8的固有电信号。在其他示例中,起搏器100可包括三个或更多个电极,其中该电极中的两个或更多个可被选择以用于形成向量,该向量用于递送电刺激治疗、检测来自患者的心脏8的固有心脏电信号、发射TCC信号以及接收TCC信号。在起搏器100包括三个或更多个电极的一些示例中,该电极中的两个或更多个可被选择(例如,经由开关选择)以用于形成用于TCC的向量。起搏器100可使用多个向量以用于TCC发射或接收,例如,用于促成与ICD 14或ICD 214的TCC发射电极向量的基本平行的电配置,这可增加跨阻抗并且增大接收到的电压信号。
固定构件162可包括为形状记忆材料的多个尖齿,其保持所示的预形成的弯曲形状。在植入期间,固定构件162可向前挠曲以穿刺组织并且向着壳体150弹性地向后挠曲,以恢复(regain)它们预形成的弯曲形状。以此方式,固定构件162可在植入部位处被嵌入心脏组织内。在其他示例中,固定构件162可包括螺旋固定尖齿、倒钩、钩或其他固定特征。
递送工具接口构件154可被提供以用于与递送工具接合,该递送工具被用于将起搏器100推进至植入部位。递送工具可被可移除地耦合至递送工具接口构件154,以用于如果需要移除或重新定位起搏器100,则将起搏器100收回递送工具中。
图3B是根据一个示例的可由起搏器壳体150封围的电路系统的示意图。起搏器壳体150可封围控制电路170、存储器172、脉冲发生器176、感测电路174以及电源178。控制电路170可包括用于控制归属于本文的起搏器100的功能的微处理器和/或其他控制电路系统,诸如控制脉冲发生器176以经由电极152和160递送信号以及控制感测电路174从经由电极152和160接收到的电信号检测信号。电源178可包括用于按需向控制电路170、存储器172、脉冲发生器176和感测电路174提供电力的一个或多个可再充电或不可再充电电池。控制电路170可执行存储在存储器172中的指令,并且可根据存储在存储器172中的控制参数(诸如,各种计时间期、起搏脉冲参数和心脏事件感测参数)控制脉冲发生器176和感测电路174。
脉冲发生器176在被包括在控制电路170中的计时电路系统的控制下生成经由电极152和160递送的治疗起搏脉冲。脉冲发生器176可包括充电电路系统、一个或多个电荷存储设备(诸如,一个或多个电容器)、以及开关电路系统,该开关电路系统将(多个)电荷存储设备耦合至输出电容器(该输出电容器耦合至电极160和152),以使电荷存储设备经由电极160和152放电。在一些示例中,脉冲发生器包括TCC发射器(独立的,或作为收发器的一部分),诸如下文结合图6描述的发射器,以用于生成经由电极160和152发射的TCC信号。电源178向脉冲发生器176的充电电路和TCC发射器(当存在时)提供电力。
起搏器100可被配置用于感测心脏电信号(例如,R波或P波)并且包括心脏事件检测器173。可从由心脏产生并且经由电极152和160接收到的电信号检测固有心脏电信号事件。心脏事件检测器173可包括滤波器、放大器、模数转换器、整流器、比较器、感测放大器或用于从经由电极152和160接收到的心脏电信号检测心脏事件的其他电路系统。在控制电路170的控制下,心脏事件检测器173可将各种消隐和/或不应期应用至被包括在事件检测器173中的电路系统,并且将自动调整的心脏事件检测阈值幅度(例如,R波检测阈值幅度或P波检测阈值幅度)应用至经由电极152和160接收到的电信号。
感测电路174可进一步包括TCC信号检测器175,以用于检测来自ICD 14(或ICD214)的TCC信号。响应于在来自ICD 14或ICD 214的TCC信号发射期间经由组织通路传导的电流,电压电位在电极152和160两端生成。电压信号可由TCC信号检测器175接收并且解调制,并且由控制电路170解码。TCC信号检测器175可包括放大器、滤波器、模数转换器、整流器、比较器、计数器、锁相环和/或被配置为检测来自发射设备的唤醒信标(beacon)信号以及检测并且解调制以包括经编码的数据的数据包发射的经调制的载波信号的其他电路系统。例如,起搏器100的TCC信号检测器175(以及本文提到的其他TCC信号检测器)可包括前置放大器和高Q滤波器,该高Q滤波器被调谐(tune)至被用于在TCC发射会话期间发射信标信号和数据信号的载波信号的载波频率。滤波器之后可跟随着另一放大器和解调器,该解调器将接收到的信号转换为表示经编码的数据的二进制信号。
在一些示例中,TCC信号检测器175的电路系统可包括与心脏事件检测器173共享的电路系统。然而,被包括在TCC信号检测器175和心脏事件检测器173中的滤波器被预期以不同的通带操作,例如,以用于检测不同的信号频率。TCC信号可以以例如在33kHz到250kHz的范围、60kHz到200kHz的范围中的载波频率发射,或者以100kHz的载波频率发射。由心脏8生成的心脏电信号通常低于100Hz。本文公开的TCC信号发射技术可减少或消除接收到的TCC信号(例如,从ICD 14或ICD 214发射的TCC信号)由心脏事件检测器173过感测为心脏电信号。在起搏器100中包括TCC发射器的示例中,本文公开的TCC信号发射技术可减少或防止由TCC发射器产生并且经由电极152和160发射的TCC信号由心脏事件检测器173检测为心脏事件。在一些实例中,TCC发射器可包括与脉冲发生器176共享的电路系统,由此使得TCC信号使用起搏器100的起搏电路系统被发射和/或作为在心脏的不应期期间发生的亚阈值起搏脉冲或起搏脉冲被发射。
在其他示例中,起搏器100可包括比图3B中示出的电路和部件更少或更多的部件。例如,代替TCC信号检测器175和TCC发射器(如果包括)或除了TCC信号检测器175和TCC发射器(如果包括)之外,起搏器100可包括其他生理传感器和/或用于与外部设备40通信的RF遥测电路。
图4示出了根据一个示例的无引线压力传感器50的透视图。无引线压力传感器50可在大体上对应于美国专利公开第2012/0323099A1号(Mothilal等人)中公开的IMD。如图4中所示,压力传感器50包括细长壳体250,细长壳体250具有压敏膜片或将壳体250内的压敏元件暴露至周围压力的窗口252。电极260和262可被固定至壳体250的相对端,并且可与壳体250电绝缘以形成用于接收TCC信号的电极对。电极260和262可被耦合至由壳体250封围的TCC信号检测器(对应于上文描述的TCC信号检测器175)以用于检测并且解调制从ICD 14或214接收到的TCC信号。
壳体250可封围电池、压力感测电路、TCC信号检测器、控制电路系统以及用于存储压力信号数据的存储器。在一些示例中,压力感测电路包括气隙电容性元件和相关联的电路系统,其可包括温度补偿电路系统,以用于产生与沿着窗口252的压力相关的信号。温度感测电路和窗口252可对应于如美国专利第8,720,276号(Kuhn等人)中大体公开的压力传感器模块。在一些示例中,压力感测电路可包括微电机械系统(MEMS)设备。固定构件270从壳体250延伸并且可包括自扩展支架(stent)或一个或多个自扩展环272,其通过轻轻地按压抵靠动脉的内壁来沿着动脉(诸如,肺动脉)稳定压力传感器50的位置。当部署在动脉位置中时,压力传感器50产生并且存储与动脉血压相关的压力信号。
在一些示例中,压力传感器50包括TCC发射器,诸如在图6中示出的发射器,以用于向另一医疗设备发射TCC信号,该另一医疗设备诸如ICD 14或ICD 214、起搏器100或外部设备40。压力传感器50可经由电极260和262发射压力信号、从压力信号提取的数据或TCC信号中的其他通信数据。例如,压力传感器50可包括TCC发射器,以用于响应于接收到TCC信号而至少产生发射回发射设备(例如,ICD 14或ICD 214)的确收和/或确认信号,以确认检测到信标信号和/或接收到发射的数据包。
图5是根据一个示例的能够发射TCC信号的ICD的示意图。出于说明性的目的,图1的ICD 14在图5中被描绘为耦合至电极24、26、28和30,其中壳体15被示意性地表示为电极。然而,要理解的是,图5中示出的电路系统可大体上对应于被包括在图2的ICD 214中的电路系统,并且被相应地适配以用于使用由经静脉引线携载的电极进行单腔室、双腔室或多腔室心脏信号感测和治疗递送功能。例如,在图2的多腔室ICD 214的示例中,信号发生器84可包括多个治疗递送输出通道,并且感测电路86可包括多个感测通道,每一个感测通道选择性地耦合至与每一个心脏腔室(例如,右心房、右心室和左心室)对应的RA引线204、RV引线206和CS引线208的相应电极。
ICD电路系统可包括控制电路80、存储器82、信号发生器84、感测电路86和RF遥测电路88。电源89按需向ICD的电路系统(包括电路80、82、84、86和88中的每一个)提供电力。电源89可以包括一个或多个能量存储设备,诸如一个或多个可再充电或不可再充电的电池。电源89与其他电路80、82、84、86和88中的每一个之间的连接将从图5的总体框图来理解,但是为了清楚起见未被示出。例如,电源89可被耦合至被包括在信号发生器84中的充电电路,以用于为电容器充电,或者为被包括在治疗电路83中的其他电荷存储设备充电,以用于产生电刺激脉冲,诸如,CV/DF电击脉冲或起搏脉冲。电源89被耦合至TCC发射器90以用于提供用于生成TCC信号的电力。例如,电源89向处理器以及控制电路80、存储器82、放大器、模数转换器的其他部件和感测电路86的其他部件以及RF遥测电路88的收发器提供电力。
存储器82可存储计算机可读指令,当该计算机可读指令由被包括在控制电路80中的处理器执行时,使得ICD 14执行归属于ICD 14的各种功能(例如,心律失常的检测、与起搏器100或压力传感器50通信、和/或电刺激治疗的递送)。存储器82可包括任何易失性的、非易失性的、磁、光或电介质,诸如,随机存取存储器(RAM)、只读存储器(ROM)、非易失性RAM(NVRAM)、电可擦除可编程ROM(EEPROM)、闪存存储器、或任何其他数字或模拟介质。
控制电路80与信号发生器84和感测电路86通信以用于感测心脏电活动、检测心脏节律、以及响应于感知到的心脏信号而控制心脏电刺激治疗的递送。图5中所示出的功能框表示被包括在ICD 14(或ICD 214)中的功能,并且可以包括实现能够产生归属于本文的ICD14的功能的模拟电路和/或数字电路的任何分立和/或集成电子电路部件。鉴于本文的公开,在任何现代IMD系统的背景下提供用于实现所描述的功能的软件、硬件和/或固件在本领域技术人员的能力范围内。
感测电路86可以被选择性地耦合到电极24、26、28、30和/或壳体15,以便监测患者的心脏8的电活动。感测模块86可以包括开关电路系统,该开关电路系统用于选择电极24、26、28、30和壳体15中的哪一些被耦合至被包括在心脏事件检测器85中的感测放大器或其他心脏事件检测电路系统。开关电路系统可包括开关阵列、开关矩阵、多路复用器、或适于选择性地将感测放大器耦合至所选择的电极的任何其他类型的开关设备。感测电路86内的心脏事件检测器85可以包括一个或多个感测放大器、滤波器、整流器、阈值检测器、比较器、模数转换器(ADC)、或被配置为从自心脏8接收到的心脏电信号中检测心脏电事件的其他模拟或数字部件。
在一些示例中,感测电路86包括用于从选自电极24、25、28、30和壳体15的多个感测向量获取心脏电信号的多个感测通道。每个感测通道可以被配置用于对从耦合至相应感测通道的选定电极接收到的心脏电信号进行放大、滤波、数字化和整流,以改善用于感测心脏事件(例如,伴随心房去极化的P波和/或伴随心室去极化的R波)的信号质量。例如,感测电路86中的每一个感测通道可包括:用于接收在所选择的感测电极向量两端产生的心脏电信号的输入或前置滤波器和放大器;模数转换器;后置放大器和滤波器;以及整流器,用于产生被传递至被包括在感测电路86中的心脏事件检测器的经滤波、经数字化、经整流并且经放大的心脏电信号。心脏事件检测器85可以包括感测放大器、比较器、或用于将经整流的心脏电信号与可以是自动调整的阈值的心脏事件感测阈值(诸如,R波感测阈值幅度)进行比较的其他电路系统。感测电路86可以响应于感测阈值越过(crossing)而产生感知心脏事件信号。感知到的心脏事件(例如,R波和/或P波)用于检测心脏节律并且通过控制电路80来确定对治疗的需要。图2的ICD 214可包括感测电路,该感测电路具有用于使用心房电极感测P波的分开的心房感测通道以及用于使用形式电极感测R波的心室感测通道。
控制电路80可包括间期计数器,该间期计数器可在从感测电路86接收到心脏感知事件信号时被重置。当由感知到的R波或P波重置时存在于间期计数器中的计数的值可被控制电路80用于测量R-R间期、P-P间期、P-R间期和R-P间期的持续时间,该R-R间期、P-P间期、P-R间期和R-P间期的持续时间是可存储在存储器82中的测量。控制电路80可使用间期计数器中的该计数以用于检测快速性心律失常事件,诸如心房纤颤(AF)、心房心动过速(AT)、VF或VT。这些间期也可被用于检测总心率、心室收缩率以及心率变异性。
信号发生器84包括治疗电路92和TCC发射器90。治疗电路92被配置为生成心脏电刺激脉冲(例如,CV/DF电击脉冲和心脏起搏脉冲)以用于经由由引线16携载的电极(并且在一些情况下是壳体15)递送至心脏8。信号发生器84可包括一个或多个能量存储元件,诸如一个或多个电容器,其被配置为存储治疗性CV/DF电击或起搏脉冲所需的能量。响应于检测到可电击的快速性心律失常,控制电路80控制治疗电路83为(多个)能量存储元件充电,以准备递送CV/DF电击。治疗电路83可包括其他电路系统(诸如充电电路系统),其可包括变压器和/或电荷泵,以用于为能量存储元件充电,并且可包括开关以将能量存储元件耦合至输出电容器,以进行放电并且递送CV/DF,并且改变电击的极性以提供双相或多相电击。治疗电路83可包括各种电压水平变换电路系统、开关、晶体管、二极管或其他电路系统。治疗电路83可包括开关电路系统,以用于选择电击递送向量并且经由该电击递送向量(例如,两个或更多个电极,诸如除颤电极24或26以及壳体15)向患者的心脏8递送电击治疗。
在一些示例中,治疗电路83可包括用于生成并且递送相对低电压的治疗脉冲的低电压治疗电路以及用于生成并且递送CV/DF电击的高电压治疗电路二者。低电压起搏脉冲可经由选自电极24、26、28、30和壳体15的起搏电极向量被递送。当由控制电路80的起搏计时电路设置的起搏逸搏间期超时(time out)而没有导致逸搏间期被重置的感知到的心脏事件时,起搏脉冲可被递送。起搏计时电路可设置各种逸搏间期以用于对起搏脉冲进行计时,例如,以提供心动过缓起搏或电击后起搏,或通过递送ATP来对检测到快速性心律失常作出响应。在一些示例中,起搏器100被提供以用于递送至少一些低电压起搏治疗,例如,当由从ICD 14发射的TCC信号指令如此操作时。除了用于递送CV/DF电击的高电压治疗电路之外,被包括在图2的ICD 214中的低电压治疗电路可包括多个起搏通道,包括心房起搏通道、右心室起搏通道以及左心室起搏通道,以提供单腔室、双腔室或多腔室起搏。
在一些示例中,ICD 14(或ICD 214)被配置为监测电极向量的阻抗。例如,信号发生器84可将电流驱动信号施加至耦合至ICD 14的电极对。感测电路86可检测在该电极对两端产生的所得电压。阻抗监测可被执行以用于检测引线或电极问题并且用于至少部分地基于引线/电极阻抗来选择治疗递送电极向量、TCC发射电极向量或感测电极向量。在其他示例中,ICD 14或ICD 214可被配置为监测组织体积中的生物阻抗(例如,胸阻抗或心脏阻抗),以用于监测患者状况。
TCC发射器90被配置为生成TCC信号,该TCC信号用于从选自电极24、26、28、30和壳体15的发射电极向量经由传导组织通路发射。TCC发射器90被配置为生成并且发射TCC信号,例如,以与起搏器100、传感器50或另一IMD或外部设备40通信。在一些示例中,信号发生器84包括开关电路系统,以用于选择性地将TCC发射器90耦合至所选择的发射电极向量,例如使用电极24、26、28、30和壳体15中的两个或更多个(例如,壳体15和除颤电极24),以用于发射TCC信号。
可发射具有载波信号的TCC信号,该载波信号具有被选择以避免刺激患者12的易激动组织的峰到峰幅度和载波频率。在一些示例中,TCC信号的载波频率可以是100千赫兹(kHz)或更高。以至少大约100kHz的频率由例如电极24和壳体15发射或接收的TCC信号与较低频率的波形相比,可能不太可能刺激附近组织(例如,肌肉或神经)或导致疼痛。因此,具有至少大约100kHz的频率的TCC信号可比较低频率的信号具有更高的幅度,而不会导致无关的神经或肌肉刺激。相对较高幅度的信号可增加起搏器100、压力传感器50或另一植入设备或外部设备可能接收到来自ICD 14(或ICD 214)的TCC信号的可能性。TCC信号的峰到峰幅度可在从大约100微安到10毫安(mA)或更多的范围内,诸如在从大约1mA到大约10mA的范围内。在一些示例中,TCC信号的幅度可大约是3mA。具有至少大约100kHz的频率和不大于大约10mA的幅度的TCC信号不大可能刺激附近组织(例如,肌肉或神经)或导致疼痛。对于具有200欧姆的阻抗注入具有10mA的峰到峰幅度的电流信号的发射电极向量,发射电极向量处的电压信号可以是2伏特峰到峰。在接收电极向量处产生的电压可以在0.1到100毫伏特峰到峰的范围中。
TCC信号的调制可以是例如幅度调制(AM)、频率调制(FM)或数字调制(DM),诸如频移键控(FSK)或相移键控(PSK)。在一些示例中,调制是在大约150kHz与大约200kHz之间切换的FM。在一些示例中,TCC信号具有150/200kHz的频率并且使用FSK调制以12.5kbps被调制。在本文呈现的说明性示例中,具有100kHz的载波频率的TCC信号使用二进制相移键控(BPSK)编码数据被调制。相反极性的平衡脉冲可被用于将TCC信号的相位例如正向或负向地偏移180度,并且在移相期间平衡注入身体组织中的电荷,以降低干扰心脏事件检测器85的心脏事件感测操作的可能性。在美国专利申请第16/202,418号(Roberts等人)中公开了用于使用电荷平衡的相移的TCC载波信号的BPSK调制的技术。在TCC信号(例如,被发送至起搏器100或压力传感器50的TCC信号)上调制的数据可包括例如“唤醒”命令、递送治疗的命令、和/或收集或发送生理信号数据的命令。
在图5中示出的包括TCC发射器90的信号发生器84的配置可提供“单向(one-way)”或单方面的(uni-directional)TCC。如果例如ICD 14被配置为控制设备以向被配置为应答器的另一IMD(例如,向起搏器100或传感器50)发射命令或请求,以提供例如用于起搏递送或压力信号获取的命令,则此类配置可被使用。在一些示例中,感测电路86可包括TCC接收器87以促进ICD与另一IMD之间的“双向”TCC。ICD 14或ICD 214可被配置为接收来自预期的接收设备的确认信号,以确认发射的TCC信号被成功地接收。在其他示例中,ICD 14或ICD214可经由TCC接收器87接收来自另一IMD或外部设备的命令。TCC接收器87可比RF遥测电路88具有更大的灵敏度,例如,以补偿来自发射设备(诸如,起搏器100或传感器50)的较低信噪比的信号。例如,起搏器100可通过由于其较小的电源和/或由于避免对相邻心脏组织的刺激而生成相对低幅度的信号来生成相对低信噪比的信号。经调制或未经调制的载波信号可由TCC接收器87经由选择性地耦合至感测电路86的电极接收。TCC接收器87可包括放大器、滤波器和解调器以将经解调的信号(例如,作为数字值的流)传递至控制电路80以用于解码接收到的信号并且按需进行进一步处理。
在其他示例中,TCC接收器87和/或TCC发射器90可以是分别与感测电路86和信号发生器84分开的不同的部件。例如,ICD 14可包括TCC收发器,该TCC收发器包含TCC接收器87和/或TCC发射器90的电路系统。在该情况下,相对于TCC接收器87和/或TCC发射器90描述的功能可经由不同的TCC部件(而不是作为感测电路86和信号发生器84的一部分)被执行。
存储器82可被配置成存储各种操作参数、治疗参数、感知数据和检测到的数据以及与患者12的监测、治疗和医治有关的任何其他信息。存储器82可存储例如指示快速性心律失常和/或治疗参数值的阈值和参数,该治疗参数值至少部分地限定递送的抗快速性心律失常电击和起搏脉冲。在一些示例中,存储器82也可存储发射至起搏器100、压力传感器50或另一设备的通信和/或从起搏器100、压力传感器50或另一设备接收到的通信。
ICD 14可具有RF遥测电路88,该RF遥测电路88包括天线和收发器以用于与外部设备40进行RF遥测通信。RF遥测电路88可包括振荡器和/或被配置为生成期望频率下的载波信号的其他电路系统。RF遥测电路88进一步包括被配置为调制载波信号上的数据(例如,存储的生理和/或治疗递送数据)的电路系统。RF遥测信号的调制可以是例如AM、FM、或DM,诸如FSK或PSK。
在一些示例中,RF遥测电路88被配置为调制用于由TCC发射器90发射的TCC信号。尽管RF遥测电路88可被配置为调制和/或解调制同一频率带内(例如,在从大约150kHz到大约200kHz的范围内)的RF遥测信号和TCC信号二者,但是针对该两种信号的调制技术可以是不同的。在其他示例中,TCC发射器90包括用于调制TCC信号的调制器,并且/或者TCC接收器87包括用于调制TCC信号的解调器,而不是RF遥测电路88。
图6是根据一个示例的TCC发射器90的概念图。TCC发射器90(或收发器的发射器部分)可包括控制器91、驱动信号电路92、极性切换电路94、交流电(AC)耦合电容器96、保护电路97和电压保持电路98。在其他示例中,TCC发射器90可包括比图6中示出的电路和部件更少或更多的部件。ICD电源89被示出被耦合至TCC发射器90以提供生成TCC信号所必需的电力。虽然控制器91、驱动信号电路92、极性切换电路94、AC耦合电容器96、保护电路97和电压保持电路98由图6中的框示出为分立的电路,但是所认识到的是这些电路可包括可执行归属于图6中示出的分开的电路框的功能的公共部件或公共电路。例如,可由驱动信号电路92和/或极性切换电路94在控制器91的控制下执行生成具有载波频率以及峰到峰幅度的载波电流信号。
在其他示例中,控制器91可在控制电路80内被实现。时钟电路93可被配置为提供时钟信号,该时钟信号可被用于在发射会话期间使用不止一个频率发射TCC信号。例如,TCC发射器90可被配置为提供时钟信号,该时钟信号可被用于使用至少三个不同的频率发射TCC信号,该TCC信号在唤醒模式期间使用FSK而被调制(例如,使用两个不同的频率调制信号)并且切换至数据发射模式,该数据发射模式包括使用载波信号以第三频率发射数据包(例如,使用BPSK或其他调制技术被调制)。例如,在唤醒模式期间,信标信号可使用高和低交替的频率被发射,该高和低交替的频率可以以载波信号的频率为中心。信标信号可指示IMD 14的接近度或位置和/或其通信的准备状态。信标信号之后可跟随着以载波频率发射的用于建立通信的请求,有时被称为“打开”请求或命令。在该特定的示例中,由时钟电路93生成的时钟信号可被要求实现生成TCC信号的至少三个不同的频率,该TCC信号由驱动信号电路92和/或极性切换电路94产生并且被传递至AC耦合电容器96。
在从唤醒模式切换至数据发射模式之后,TCC发射器90可被配置为以载波频率发射载波信号,该载波频率不同于信标信号发射期间使用的不同的高频率和低频率。在一个示例中,使用BPSK调制载波信号,由此使得在数据发射模式期间使用单个频率发射TCC信号。
时钟电路93可以在唤醒模式期间以一个时钟频率操作并且在数据发射模式期间以另一时钟频率操作。例如,时钟电路93可被控制以可能的最低时钟频率操作,该可能的最低时钟频率可被用于生成信标信号在唤醒模式期间的高频率和低频率周期(cycle),以用于节省由电源89提供的电力。时钟电路93可被配置为以较高的频率操作以用于控制驱动信号电路和极性切换电路,以在信号发射期间生成载波信号。时钟电路频率可在控制器91的控制下使用存储在硬件寄存器中的数字微调代码(digital trim code)在唤醒模式与发射模式之间变换。
TCC发射器90被示出被耦合至发射电极向量99,在本示例中发射电极向量99包括除颤电极24和(图1的)壳体15。要理解的是,TCC发射器90可被耦合至一个或多个TCC发射电极向量,该一个或多个TCC发射电极向量是经由被包括在信号发生器84中的开关电路系统选自如上文描述的耦合至发射设备的可用电极中的任一个。控制器91可被配置为例如通过控制被包括在信号发生器84中的开关可切换地将发射电极向量99连接至TCC发射器90以用于发射TCC信号,该开关可被包括在TCC发射器90中在AC耦合电容器96与发射电极向量99之间,例如,在保护电路97中。控制器91可从耦合至发射设备的多个电极中选择发射电极向量,其可包括由发射设备的壳体携载的电极、经静脉引线(例如,图2中示出的引线204、206或208中的任一个)或非经静脉引线(例如,图1中示出的心血管外引线16)。
驱动信号电路92可包括由电源89供电的电压源和/或电流源。在一个示例中,驱动信号电路92可以是有源(active)驱动信号电路,该有源驱动信号电路生成平衡的双向驱动电流信号以平衡返回电流与驱动电流,以得到经由发射电极向量99注入身体组织中的净零(net zero)DC电流。在另一示例中,驱动信号电路92可包括电荷泵以及由该电荷泵充电的保持电容器,以生成耦合至发射电极向量99的电流信号。在又另一示例中,驱动信号电路92可包括电流源,该电流源被用于对被包括在驱动信号电路92中的保持电容器充电。
在一些示例中,由驱动信号电路92生成的驱动信号可以是电压信号。在本文呈现的说明性示例中,驱动信号电路92生成电流信号以通过发射电极向量99递送TCC信号电流,该TCC信号电流具有期望的峰到峰幅度,例如,峰到峰幅度足够高以在接收设备的接收电极上产生可由该接收设备检测到的电压信号,该接收设备可以是起搏器100、传感器50或另一预期的接收医疗设备(植入医疗设备或外部医疗设备)。峰到峰电流幅度足够低以避免或降低刺激组织的可能性。可由驱动信号电路92和/或极性切换电路94生成的载波信号可具有从大约1mA到大约10mA的范围中的峰到峰幅度,诸如大约3mA峰到峰,如上文讨论的。在接收电极向量处产生的电压可以在0.1到100毫伏峰到峰的范围中。
极性切换电路94从驱动信号电路92接收驱动信号,并且包括电路系统,该电路系统被配置为以TCC信号的载波频率切换驱动信号电流的极性。例如,极性切换电路94可包括晶体管和/或开关,该晶体管和/或开关被配置为以TCC信号的频率切换驱动电流信号的极性。在一些示例中,极性切换电路包括耦合至电极24和壳体15中的每一个的相应的一个或多个晶体管和/或开关,并且相应的(多个)晶体管和/或(多个)开关的开-关(on-off)状态交替以按照载波频率切换电极之间TCC信号电流的极性。如上文讨论的,载波频率可以是大约100kHz。例如,载波频率可在从大约33kHz到大约250kHz的范围内。
在一些示例中,RF遥测模块86可包括混合的信号集成电路或被配置为向控制器91提供经调制的TCC信号的数字版本的其他电路系统。在其他示例中,控制器91被配置为产生用于调制TCC载波信号的数字输入信号,以编码发射的信号中的通信数据。控制器91控制驱动信号电路92和/或极性切换电路94中的一者或二者以调制TCC载波频率信号,以生成具有根据编码的幅度、相移和/或频率的经调制的TCC信号。例如,控制器91可控制极性切换电路94以根据FSK调制切换载波信号的频率,以编码通信数据。在另一示例中,控制器91可控制极性切换电路94以在载波频率周期长度的期望的部分之后切换电流信号的极性,以根据BPSK调制将AC电流信号的相位偏移180度。
极性切换电路94经由AC耦合电容器96被电容耦合至发射电极向量99(例如,在示出的示例中是电极24和壳体15)。AC耦合电容器96将从极性切换电路94输出的电流信号耦合至发射电极向量99,以将电流注入传导身体组织通路中。AC耦合电容器96可包括与被包括在电极向量99中的电极中的一个或每一个串联耦合的一个或多个电容器。AC耦合电容器96在TCC信号开始时被充电至DC操作电压。AC耦合电容器96被选择具有基于被用于发射信标和数据信号的载波信号的频率和最大峰到峰电流幅度的最小电容。例如,AC耦合电容器96可具有至少一纳法拉到多至十微法拉的电容,以用于耦合具有在25kHz到250kHz的范围中的频率并且具有100微安到10毫安的峰到峰电流幅度的载波信号。较大的电容可被使用,但是可能增加将AC耦合电容器充电至DC操作电压所需的时间。
在“冷启动”期间,例如,当AC耦合电容器96未充电时的TCC发射会话开始时,将AC耦合电容器96充电至DC操作电压可导致低频率电流通过发射电极向量被注入身体中。该低频率电流更可能干扰心脏事件检测器85或被包括在共同植入的IMD或耦合至患者的外部设备中的其他电生理信号感测电路的操作。心脏事件检测器85和预期或非预期的接收设备的其他电生理信号感测电路可以以低频率带操作,例如,1到100Hz。由此,在TCC信号发射开始时以及在AC耦合电容器96充电期间的低频率伪影可能干扰心脏事件检测器85。在AC耦合电容器96上建立了DC操作电压之后,高频率载波信号(例如,100kHz)通常在心脏事件检测器85和IMD系统的其他电生理感测电路系统的操作带宽之上,并且不太可能导致干扰或错误事件检测。
TCC发射器90可包括耦合至AC耦合电容器96的电压保持电路98。电压保持电路98被配置为在TCC发射会话期间的发射的TCC信号之间和/或在TCC发射会话之间将AC耦合电容器保持在DC操作电压处。通过在TCC信号发射之间的时间间期期间将AC耦合电容器保持在DC电压处,减少或者避免了否则可能由于在将AC耦合电容器96充电至DC操作电压期间注入的低频率伪影而产生的对感测电路系统的干扰。
在美国专利申请第62/591,806号(Peichel等人,代理案卷第C00015935.USP1号)中描述了被包括在电压保持电路98中的电路系统的示例。在一些示例中,电压保持电路98可包括电路系统,以用于让AC耦合电容器96在TCC信号发射之间在DC电压处浮动(float)。在一些示例中,电压保持电路98可包括电路系统,以用于在TCC信号发射之间主动地将AC耦合电容器96保持在DC电压处。各种电路系统可被构想用于防止或最小化在TCC信号发射之间AC耦合电容器96的放电。以此方式,在发射下一TCC信号的开始时,AC耦合电容器96已经在DC操作电压处或在DC操作电压附近。在不需要在AC耦合电容器96上重新建立DC电压的情况下,避免或减少了在下一TCC信号发射的开始时被注入TCC组织通路中的低频率伪影。所认识到的是,泄漏电流可仍存在于TCC发射器90之内,并且可导致AC耦合电容器96在信号发射之间的一些放电。电压保持电路98可被用于减少在发射的TCC信号之间的AC耦合电容器96的任何放电,以减少低频率对发射设备的感测电路86(图5)以及其他共同植入的IMD和/或耦合至患者的外部设备的感测电路的干扰。
TCC发射器90可包括保护电路97,该保护电路97允许经由耦合至其他ICD电路系统的电极递送TCC信号,但是保护TCC发射器90和ICD 14的其他电路系统免受可在电极两端产生的电压的影响,例如,在由治疗电路83或外部除颤器递送CV/DF电击期间在电极两端产生的电压,以及可在诸如电灼进程或磁共振成像之类的其他情况期间在TCC发射电极向量两端产生的高电压。ICD 14的壳体15内的由保护电路97保护的电路系统可包括图5中示出的ICD 14的部件中的任一个的电路系统,诸如控制电路80、存储器82、感测电路86、信号发生器84以及RF遥测电路88。
保护电路97可被耦合在驱动信号电路92与发射电极向量99之间,例如,如所示的,在AC耦合电容器96与电极24和壳体15之间。在一些示例中,保护电路97可包括AC耦合电容器96之前和/或之后的电路系统。保护电路97可包括例如电容器、电感器、开关、电阻器和/或二极管。在美国专利第9,636,511号(Carney等人)中大体描述了可结合本文公开的信号发射技术被利用的TCC信号生成和保护电路系统的示例。
在一些示例中,TCC发射器90可由控制电路80控制以经由TCC在整个心动周期中多次发射数据。在一些情况下,在心动周期期间的不同时间处的多次发射可增加数据在心脏收缩和心脏舒张二者期间被发送的可能性,以利用心脏运动来增加预期的接收电极向量(诸如,起搏器100或压力传感器50的基于壳体的电极)被定向在相对于发射电极向量非正交的位置中的机会。在心动周期期间的不同的时间处的多次发射可由此增加包被接收到的可能性。虽然TCC发射器90在图6中被示出为被耦合至发射电极双极(向量99),但是要理解的是,多个发射电极向量可被耦合至TCC发射器90,以用于沿着多个传导组织通路发射TCC电流信号,以供由多个接收电极向量接收或增加由单个接收电极向量接收到的可能性。
图7是在控制电路80的控制下可由发射器90执行的发射会话300的概念图。在TCC信号中发射经编码的信息的挑战包括:避免对神经和肌肉组织(包括心肌组织)的无意的电刺激;以及避免或最小化干扰被包括在执行TCC的IMD系统中的一个或多个设备中的感测电路系统,同时仍以时效并且能效的方式成功地发射信息。本文公开的技术包括一种方法,该方法用于向接收设备发射唤醒信号,跟随其后的是发射使用对载波频率信号的FSK和/或BPSK调制而编码的数据,该载波频率信号具有低于沿着传导通路的组织的刺激阈值并且使用用于最小化对感测电路系统的干扰的技术的频率和幅度。
发射会话300包括唤醒模式310,之后跟随着数据发射模式311,该数据发射模式311可包括一个或多个数据包330的发射。在本文描述的说明性示例中,经编码的数据的一组位被称为“数据包”。在一些使用中,术语“包”可暗示发射的数据被保证沿着通信通路被接收而没有误差,并且指示接收到而没有误差的确认信号可从预期的接收设备被返回。在一些应用中,当发生经编码的数据的发射而不保证数据到达预期的接收器并且不确定未发生发射误差时,经编码的数据的一组位可被称为“数据报(datagram)”。经编码的数据330的各组位在本文被称为“包”,然而,所认识到的是,在一些临床应用中,各组位330可被发射为数据报,而不保证接收设备实际上无误差地接收到数据。
每一个发射会话300以唤醒模式310开始,如结合图8进一步描述的,并且之后跟随着至少一个数据包330。多个数据包330可被发射并且由接收设备汇集(assemble)成数据流。在包括双向通信的示例中,发射设备可在数据发射(在数据发射期间一个数据包330被发射)与数据包之间的接收窗口350之间切换,在该接收窗口350期间发射设备等待来自预期的接收器的响应,例如,确认接收到所发射的包的信号、发送回至发射器的所请求的数据或针对接收到的数据包的其他请求的响应。下文例如结合图11描述了每一个包330的结构的示例。
图8是根据一个示例的在唤醒模式310期间由IMD系统(例如,图1的系统10或图2的系统200)执行的操作的一个示例的图。由发射设备(TRN)执行的功能在虚线上方被表示。由接收设备(RCV)执行的功能在虚线下方被执行。在ICD 14(或ICD 214)作为发射设备的示例中,控制电路80控制TCC发射器90发射信标信号312以唤醒接收设备。在起搏器100作为接收设备的示例中,控制电路170可周期性地为TCC信号检测器175(图3B中示出)通电达信标搜索期320(图8中示出了多个信标搜索期320a-d),以确定是否检测到信标信号。
在一些示例中,信标信号312可按需被发射多次,直至从接收设备接收到了响应。在示出的示例中,信标信号312被发送了两次,每一次之后跟随着接收期314以等待从接收设备发射的用于确认检测到信标信号312的确收信号328。响应于如箭头316处指示的接收到确收信号328,发射器90停止发射信标信号312并且从唤醒模式310切换至如图7中所示的发射模式311。
如果发射设备包括感测电路(诸如,感测电路86),则可在心脏事件302之后应用至感测电路86的消隐期304期间开始至少第一信标信号312。在发射会话开始时,载波频率信号的早期周期跨AC耦合电容器96建立DC电压。在此期间(其可以是10ms、50ms、100ms或甚至多达200ms或更多),低频率电流可经由TCC发射电极向量被注入身体组织传导通路中。与TCC信号的相对高的载波频率相比,低频率电流更可能导致干扰感测电路86的心脏事件检测器85(或其他植入设备的其他电信号感测电路)。通过在应用至发射设备的感测电路86的消隐期304期间开始发射会话,绝大部分地或完全地在当心脏事件检测器85被消隐且对于低频率伪影相对免疫时的消隐期304期间在AC耦合电容器96上建立DC电压。
消隐期304可以是自动消隐期,控制电路80在固有或起搏的心脏事件302之后将该自动消隐期应用至心脏事件检测器85。心脏事件302可以是由心脏事件检测器85感知到的固有心脏事件,并且消隐期304可以是响应于检测到固有心脏事件(例如,R波或P波)而设置的感测后消隐期。例如,响应于心脏事件感测阈值越过,感测后消隐期可被应用至感测电路86的感测放大器或其他心脏事件检测电路系统。在其他时候,心脏事件302可以是以起搏间期306被递送的起搏脉冲,在该情况下消隐期304是在由治疗电路83递送起搏脉冲时自动地应用至感测电路86的起搏后消隐期。在递送起搏脉冲或心脏复律/除颤电击期间,起搏后或电击后消隐期可被应用以防止感测电路86的(多个)感测放大器饱和。自动感测后或起搏后消隐期可以在50到200ms的范围中,例如150ms。
在消隐期304期间,当AC耦合电容器96被充电至DC操作电压时,在TCC信号(诸如,信标信号312)发射开始时注入身体组织中的低频率电流不会被心脏事件检测器85检测为心脏事件。此外,在感测后、起搏后或电击后消隐期期间,心肌组织处于生理不应的状态,由此使得在消隐期304期间开始的TCC信号开始时注入的任何低频率信号都相当不可能夺获心肌组织。
在接收设备是具有感测电路174的起搏器100的示例中,控制电路170可响应于检测到固有心脏事件或递送起搏脉冲而应用感测后或起搏后消隐期。由控制电路170应用至感测电路174的消隐期被应用至心脏事件检测器173以防止在消隐期期间过感测非心脏事件。消隐期不被应用至TCC信号检测器175,该TCC信号检测器175可以在包括信标搜索期320的轮询模式中操作,并且TCC信号检测器175可被启用以检测信标信号,即便是在应用至心脏事件检测器173的消隐期期间。由于起搏器100和ICD 14(或ICD 214)二者可被配置为感测来自心脏8的心脏电信号,并且可被配置为检测由另一共同植入的设备递送的起搏脉冲,因此发射设备和接收设备分别的感测电路86和174二者可同时处于消隐期中或至少在重叠的时间段期间处于消隐期中。由此,通过在消隐期304期间开始发射新的发射会话的至少第一信标信号312,其他共同植入的设备的被配置为检测心脏电信号的感测电路系统可也处于消隐期中,从而降低了低频率在AC耦合电容器充电期间干扰由其他感测电路进行的心脏事件检测的可能性。
在示出的示例中,控制电路80可控制发射器90发射在消隐期304期间开始的每一个信标信号312。在其他示例中,仅第一信标信号312在消隐期304期间开始,并且其他技术可被用于避免或减少在任何后续信标信号开始时的干扰。例如,电压保持电路98可由控制器91控制以在接收期314期间使得AC耦合电容器96在第一信标信号312期间建立的DC电压处浮动或主动地将AC耦合电容器96保持在该DC电压处。在下一信标信号312开始时,AC耦合电容器96已经处于DC操作电压处(或已经处于DC操作电压附近),由此使得减少或避免了载波频率的早期周期期间的低频率伪影。可要求仅第一信标信号312在消隐期304期间开始,并且任何后续信标信号312的发射不限于心脏事件302和消隐期304的计时。
在其他示例中,每一个信标信号312均在消隐期304期间开始。在该情况下,控制电路80标识心脏事件302,应用消隐期304,并且控制发射器90以在消隐期期间开始信标信号312。信标信号312被示出为在时间上延伸晚于消隐期304。在一些示例中,信标信号312可在自消隐期304开始起的延迟间期318之后开始。在其他示例中,信标信号312可在消隐期304开始时开始,并且可具有小于、等于或大于消隐期304的持续时间。由于TCC信号检测器175中放大器的饱和,因此在递送治疗性刺激脉冲期间以及紧接着递送治疗性刺激脉冲之后,接收设备的TCC信号检测器175可针对TCC信号被盲化(blind)。因此,发射器90可被控制以发射信标信号312达延伸出消隐期304之外的时间段,以增加由接收设备在放大器饱和期之外检测到信标信号312的可能性。
控制电路80可独立于感知到的或起搏的心脏电事件的计时而替代地将通信消隐期应用至心脏事件检测器85。在一些情况下,通信消隐期可在感知到的或起搏的事件之间的心动周期期间被应用。通信消隐期可由控制电路80应用至心脏事件检测器85以使得TCC信号发射在心动周期期间的任意时间处被发起,而无需等待自动感测后或起搏后消隐期。
通信消隐期可比自动感测后或起搏后消隐期更短或更长。例如,通信消隐期可以在10ms到200ms的范围中,并且可取决于心脏事件检测器85的编程的灵敏度以及信标信号发射开始时预期的低频率干扰的持续时间。通信消隐期的最大持续时间可基于特定的临床应用而受到限制。例如,在本文公开的心脏监测和治疗递送IMD系统10和200中,心脏事件检测器85被盲化而无法检测心脏事件的最大时间可以是200ms或更短。在非心脏应用中,例如,监测肌肉或神经信号,可应用更短或更长的通信消隐间期。
在一些示例中,信标信号312可包括未经调制的载波信号频率(例如,100kHz)下的单个音调(tone),并且可被发射达100ms、200ms、500ms、1秒、2秒、或甚至多至8秒。如下文描述的,在其他示例中,信标信号312可在载波信号的范围内的两个或更多个音调之间变化。例如,信标信号312可以是在两个不同的频率之间调制的FSK信号,以发射具有由接收设备(例如,起搏器100或压力传感器50)的TCC信号检测器175检测到的预先限定的频率特征(signature)的信标信号312。以此方式,载波信号被调制的属性是频率。
接收设备的TCC信号检测器175被配置为检测信标信号频率并且将该频率与检测标准相比较。TCC信号检测器175可包括比较器和计数器,该计数器被配置为对在接收电极向量处接收到的电压信号的脉冲进行计数(例如,通过对过零点、边缘或其他特征进行计数),并且将计数与信标检测阈值相比较。在其他示例中,接收设备的TCC信号检测器175可包括锁相环(PLL),该锁相环检测接收电极向量处的电压信号的频率。可将PLL的频率信号输出与预期的信标信号频率或频率模式相比较。
与数据包330期间的载波信号的峰到峰幅度相比较,作为信标信号312被发射的载波信号的峰到峰幅度可被增加。信标信号312的较大的峰到峰幅度可增加信标信号312由接收设备检测到的可能性。在其他示例中,信标信号312期间发射的载波信号的峰到峰幅度与数据包发射期间的经调制的载波信号的峰到峰幅度相同。
在图8的示例中,接收设备包括用于确定信标搜索期320期间的脉冲计数340的计数器。TCC信号检测器175可被配置为对在接收电极向量处接收到的电压脉冲进行计数,并且将脉冲计数的值与信标检测阈值342或阈值范围344相比较。单个计数可对应于假定的载波信号的一个检测到的周期(一个正极性脉冲和一个负极性脉冲,每一个具有半个周期宽度)。信标检测阈值342和阈值范围344可基于信标信号312的已知、未经调制的载波信号频率而被限定,例如,单音调载波频率信标信号。阈值342可被设置为在预先确定的时间间期期间预期的载波信号频率的周期数量的百分比,例如,预期的脉冲数量的40%、50%、60%、70%或多至100%。
信标检测阈值范围344可分别由大于检测阈值342的最大值和小于检测阈值342的最小值限定。信标检测阈值范围344可以以检测阈值342为中心,并且被限定为检测阈值的百分比,例如,检测阈值342的±6.25%、±12.5%、±25%、±50%或其他预先确定的百分比。接收设备的TCC信号检测器175可响应于阈值范围344中的脉冲计数而检测到信标信号312。低于阈值范围344的脉冲计数可与基线噪声或其他非TCC信号相关联。大于阈值范围344的脉冲计数可与电磁干扰(EMI)或患者可能经历的其他高频率噪声相关联。
信标检测阈值342和范围344所基于的预先确定的时间间期可等于信标搜索期320中的每一个的持续时间。在其他示例中,检测阈值342所基于的预先确定的时间间期可以是信标搜索期320的一部分(即,小于每一个信标搜索期320a-d的持续时间)。如果信标信号312在信标搜索期320期间开始或结束,并且如果信标信号312与信标搜索期320存在足够的重叠以允许脉冲计数340在信标搜索期320期间达到检测阈值范围344,则接收设备的TCC信号检测器175可仍检测到信标信号312。
例如,如果载波频率是100kHz并且信标搜索期是4ms长,则多至400个载波频率周期可在信标搜索期期间发生。检测阈值342可以是至少320个载波频率周期的计数,并且范围344可以是±25%或者240个到400个周期。与信标搜索期320的至少60%重叠的信标信号312可被检测到。在其他示例中,如果信标信号312在信标搜索期320的整个持续时间中被连续地发射,则信标检测阈值可被设置为等于载波频率周期的预期计数的值。使用上文给出的示例,阈值342可以是400的计数,具有允许±10到20%的误差的范围。
信标信号312的持续时间被示出为长于图8的示例中的信标搜索期320a-d中每一个的持续时间。然而,在各种示例中,信标信号312的持续时间可能小于、等于或大于信标搜索期320。例如,但不旨在限制,信标信号312可大约是8ms到150ms长。信标搜索期320可以是0.4到4ms长。在其他示例中,信标信号312可多至一秒长、多至四秒长或甚至多至八秒长。如果治疗(诸如,起搏脉冲)被安排以供递送(例如,由治疗电路83递送),则信标信号发射可被暂停。在递送起搏脉冲之后,可恢复发射暂停的信标信号。信标搜索期可以是信标信号的任何部分。
接收设备控制TCC信号检测器(例如,图3的TCC信号检测器175)以轮询模式操作,直至信标信号被检测到。轮询模式包括由轮询间期322a-c分开的信标搜索期320a-d。轮询间期322a-c在图8中被示出为可变的间期。轮询间期322a-c可以是随机或伪随机的间期,例如,选自有限范围的轮询间期。轮询间期322a-c可以在例如5ms到1秒的范围中、8ms到200ms的范围中或8ms到120ms的范围中被随机或伪随机地选择。在其他示例中,轮询间期322a-c可在两个、三个或更多个固定的轮询间期持续时间之间变化或交替,例如,100ms、750ms和2秒。在另其他示例中,轮询间期322a-c可彼此相等,被设置为固定的预先确定的值,例如,从0.5秒到8秒。
在一些实例中,固定的轮询间期可无意地跟踪或近似地(approximately)跟踪心脏起搏频率。例如,当接收设备的感测电路由于放大器饱和而被消隐或盲化时,例如,当起搏器100的TCC信号检测器175在由脉冲发生器176或由ICD 14或214递送起搏脉冲期间被盲化时,在每分钟60次起搏的起搏频率下,每秒一次的轮询速率可凑巧地导致信标搜索期320与递送的起搏脉冲同时地被安排。信标信号312的检测可能失败,或者要求不可接受的长时间才能检测到。通过使用可变的轮询间期(如由轮询间期322a-c所表示的),接收设备的TCC信号检测器175被预期被启用,以在唤醒模式310期间的时间中的至少一些时间在不与递送的起搏脉冲或固有心跳重合的时间处检测到信标信号。由此,TCC信号检测器175可被配置为在轮询模式中操作,在轮询模式期间,TCC信号检测器175将轮询间期3222a-c设置为多个随机选择的轮询间期持续时间。
在图8中,第一最早的信标搜索期320a恰好发生在唤醒模式310的第一信标信号312之前、当没有信标信号正被发射时。脉冲计数340保持在低水平处,该脉冲计数340可能由于基线噪声而是非零的,但是在信标检测阈值范围344之下。第二信标搜索期320b与信标信号312的一部分重叠。脉冲计数340在信标搜索期320b期间增加至亚阈值346,但是在信标信号312结束时停止增加,并且没有达到检测阈值范围344。
第三信标搜索期320c在发射器90的接收期314期间发生。第四信标搜索期320d在信标信号312期间发生。脉冲计数340达到在信标检测范围344内的峰值348,而没有超过检测范围344的最大值。接收设备TCC信号检测器175可生成信标检测中断信号324,该信标检测中断信号324被传递至接收设备的控制电路(例如,起搏器100的控制电路170)。控制电路可结束接收设备的轮询模式,并且切换至通信接收模式,以实现由TCC信号检测器175接收数据包330。在通信接收模式期间,TCC信号检测器175被通电(唤醒)以接收TCC信号,直至TCC发射会话完成。
在示出的示例中,接收设备可包括TCC发射器90,该TCC发射器90被控制用于将确收信号328发射回至发射设备,以确认信标信号检测并且确认接收设备正在等待接收数据包发射。确收信号328可在延迟期326之后被发射,以确保发射设备不再发射信标信号312并且已切换至接收期314并且能够接收确收信号。
发射设备启用TCC接收器87以检测确收信号328,例如,通过为TCC接收器87通电以启用各种滤波器、放大器、比较器、锁相环、或其他电路系统以接收并且检测确收信号328。TCC接收器87可生成被传递至控制电路80的确收检测信号316。控制电路80将发射设备从唤醒模式310切换至数据发射模式311,在数据发射模式311期间数据包330被发射。
在其他示例中,信标信号312可在一个心动周期或不止一个心动周期期间被多次发射。信标信号312之后可跟随着发射至接收设备的“打开”命令信号。接收设备可检测信标信号并且切换至数据接收模式。在接收到后续“打开”命令信号时,接收设备可将确收信号发射回至发射设备,以向发射设备确认TCC信号检测器175已经通电并且准备好接收数据发射。
图9是根据一个示例的信标信号312的图。单音调信标信号(例如,以载波信号频率被发射的单音调信标信号)可导致由接收设备作出的错误的信标信号检测以及唤醒。被配置为检测单音调信标信号(例如,载波信号频率下的单音调信标信号)的TCC信号检测器可能以不可接受的高速率作出错误的信标信号检测。EMI或基线噪声可导致当没有信标信号正被发射时的错误的信标信号检测。错误的唤醒不必要地使用接收设备的电池电力。为了避免错误的唤醒,发射器90可被控制用于发射经FSK调制的信标信号。经FSK调制的信标信号可与接收设备可能经受的其他单音调噪声或EMI区分开。
图9中示出的信标信号312是经FSK调制的信标信号,该经FSK调制的信标信号在高频率360与低频率362之间交替并且由信标结束特征364终止,该信标结束特征364不同于在前的高频率360与低频率362的交替间期。在100kHz载波信号频率的示例中,高频率360可以在102kHz到120kHz的范围中,并且低频率362可以在85到98kHz的范围中。例如,信标信号可在98kHz与102kHz之间、95kHz与105kHz之间、或92kHz与108kHz之间交替。
将高频率和低频率保持在载波信号频率的带通滤波器范围内可使得TCC信号检测器175能够使用常用带通滤波器以用于检测作为数据包或数据报发射的经FSK调制的信标信号以及经BPSK调制的载波信号。在另一示例中,经FSK调制的信标信号312在85kHz的低频率362与115kHz的高频率360之间交替。
可以以按照每一个高频率360和低频率362交替的固定数量的周期发射信标信号312,例如,8个周期、12个周期、16个周期、24个周期、32个周期或更多。在每一个频率下发射的周期数量可被选择以使得每一个高频率360和低频率362被发射达相同的时间间期,以促进由TCC信号检测器175在预期的时间间期中检测到两个不同的频率中的至少一个或二者。在一个示例中,高频率360是载波信号频率的七分之八,并且低频率362是高频率360的四分之三。在使用100kHz载波信号的该示例中,高频率360是115kHz,并且低频率是85kHz。高频率360可被递送达16个周期,并且低频率362可被递送达12个周期,由此使得每一个频率均被递送达相等的140微秒的时间间期。
在另其他示例中,高频率360和低频率362可被选择为不同于包括被用于数据包发射的载波信号频率的范围。经FSK调制的信标信号312的高频率360和低频率362二者可均高于或均低于数据发射期间使用的载波信号频率,而不是一个高于数据发射模式期间使用的载波信号频率,并且一个低于数据发射模式期间使用的载波信号频率。作为示例,图7中示出的数据包330的发射期间的载波信号频率可以是100kHz,并且高频率360和低频率362可分别是200kHz和150kHz。
接收设备可被配置为使用相对短和/或不频繁的信标搜索期来轮询信标信号,以节省电力。信标信号312可被发射达相对长的时间间期(例如,多至1秒或更久),以便于增加被接收设备检测到的可能性。发射电极向量与接收电极向量的相对取向可在心动周期中变化以及在呼吸周期中变化。因此,接收电极向量处的电压信号幅度可在相对长的信标信号期间随着时间变化,并且可甚至由于由心脏、呼吸或其他身体运动导致的发射电极向量和接收电极向量的位置变化而脱离(drop out)。
长信标信号(例如,1秒或更久,或甚至0.5秒或更久)也可干扰起搏脉冲递送。如果治疗电路83被安排以用于在信标信号期间递送起搏脉冲,则信标信号被暂停以允许起搏脉冲递送。接收设备感测电路可由于在接收电极向量上导致极化伪影的大幅度起搏脉冲而被盲化。在ICD 214作为发射设备的情况下,可由ICD 214递送双腔室起搏或多腔室CRT,这导致每个心动周期两个、三个或甚至四个起搏脉冲。
为了避免信号脱离并且避免信标信号发射与起搏脉冲递送之间的竞争,信标信号312可在短时间间期中被递送,该短时间间期短于心动周期或短于呼吸周期(取决于植入位置以及可能促成信号脱离的身体运动)。例如,信标信号312可被发射达200ms、150ms、120ms或100ms或更短。在一些示例中,信标信号312在8ms与118ms之间。信标信号312在单个心动周期期间可被多次发射,以促进在发射电极向量与接收电极向量处于最佳对齐的时间(或至少避免在接收向量与电流通路正交的时间)处进行发射。
接收设备可被配置为基于肯定地检测到高频率360和低频率362中的一者或二者而检测到信标信号。例如,接收设备可被配置为检测高频率360或低频率362达由时间间期分开的预期数量的周期,该时间间期等于同一频率未被检测到的预期数量的周期。替代地,接收设备可被配置为肯定地检测高频率360和低频率362二者达交替的FSK模式中每一个频率的预期数量的周期(以及相等的时间间期)。例如,TCC信号检测器175可被配置为确定预先确定的时间间期中的周期计数,并且当周期计数在两个不同的信标检测阈值范围(其是针对相应的高频率360和低频率362唯一地限定的)之间交替了预先确定的次数时,检测到了信标信号。在另一示例中,TCC信号检测器175包括检测交替的高频率360和低频率362的PLL。
为了促进唤醒接收设备的适当计时并且避免错误的唤醒,可以以信标结束特征364终止信标信号312。信标结束特征364可包括高频率360和/或低频率362间期的任何组合。所认识到的是,信标结束特征的众多变形可被使用,包括与在经FSK调制的信标信号312期间递送的每一个相应频率的周期数量不同的高频率360和/或低频率362的不同的周期数量,从而导致信标结束特征364。在一个示例中,与信标结束特征之前相比较,高频率360和低频率362中的每一个可在信标结束特征期间被递送达两倍的周期数量。在上文给出的包括高频率360的16个周期与低频率362的12个周期交替的示例中,信标结束特征可包括高频率360的32个周期与低频率362的24个周期交替。
虽然出于图示的目的,仅示出了一对交替的高频率360和低频率362,但是要理解的是,信标结束特征364可包括高频率和低频率间期的多个顺序对,例如八个顺序对。在该示例中,使用上文给出的115kHz的高频率和85kHz的低频率,信标结束特征的持续时间可以是56ms。相似地,虽然在图9中出于示出信标信号312的目的,在信标结束特征364之前示出了仅三对交替的高频率和低频率间期,但是在信标结束特征364之前的成对交替的高频率和低频率间期的数量可被选择以便于实现期望的信标信号持续时间。信标信号312的总持续时间可以是50ms到1000ms。在一些示例中,总信标信号持续时间是120ms或更短,包括60ms或更短的信标结束特征。
接收设备可通过如下方式来在信标信号脱离与真正的信标信号312结束之间区分:肯定地检测到信标结束特征364,而不是在刚刚脱离的信标结束特征之前的交替的预先确定的数量的FSK高频率360和FSK低频率362的周期。如果检测到了交替的高频率360和低频率362,但是没有检测到信标结束特征364,那么信标信号312可不会被接收设备检测到。接收设备保持在轮询模式中。如果检测到信标结束特征364,则接收设备切换至数据接收模式,并且可向发射设备发射确收信号,以指示TCC信号检测器175被通电并且准备好接收数据包。
图10是根据一个示例的由IMD系统(诸如图1的系统10或图2的系统200)执行的发射会话400的一部分的图。发射设备(TRN)操作在虚线上方被描绘,并且接收设备(RCV)操作在虚线下方被描绘。发射设备在唤醒模式410和数据发射模式411中操作。接收设备在轮询模式470和数据接收模式480中操作。
发射设备(例如,ICD 14或ICD 214)的控制电路80可确定TCC发射会话400正待定,并且启用TCC发射器90以在唤醒模式410中操作。接收设备(例如,起搏器100或压力传感器50)的控制电路通过根据轮询安排在轮询间期422之后开始信标搜索期420,来控制TCC信号检测器175在轮询模式470中操作。轮询安排可基于固定的轮询间期422,或者包括如上文描述的可变、随机或伪随机的轮询间期。在一些示例中,轮询模式470被启用达一天中指定的时间段,例如,仅在晚上、每4个小时、每8个小时、每24个小时或其他预先确定的时间间期。
TCC信号检测器175可被控制以在一个时间间期期间以一个频率设置信标搜索期420,并且在第二时间间期期间以不同于第一频率的第二频率设置信标搜索期420。例如,ICD 214可在当患者入睡的晚间期间向压力传感器50发射TCC信号。压力传感器50可被配置为通过将晚间期间的信标搜索期安排得比日间期间的信标搜索期更为频繁,来在轮询模式470中操作。轮询间期422可仍是可变的、随机的或伪随机的,但是可在夜间期间具有比日间期间更短的平均间期持续时间,由此使得晚上的平均轮询频率更高。在其他示例中,接收设备可以仅在晚间期间或仅在其他预先确定的时间段中在轮询模式470中操作,并且在其他时间期间TCC信号接收可被禁用。由此,轮询模式470可自完成的发射会话结束起连续地操作直至检测到信标信号,或者在发射会话之间不连续地操作。
在另一示例中,如果起搏器100是接收设备,则在当患者处于清醒或活跃状态的日间期间,起搏或其他治疗可被预期更频繁地被递送。系统10的ICD 14可被配置为在日间期间比在夜间期间更为频繁地向起搏器100发射数据,以确认节律检测和/或协调治疗递送。由此,起搏器100可被配置为根据一个轮询安排和第二轮询安排操作,该一个轮询安排在日间期间设置相对较短的轮询间期,该第二轮询安排在夜间期间设置相对较长的轮询间期。在一些实例中,可变的或随机设置的轮询间期可在日间期间和夜间时间段期间具有重叠的值,但是第一时间段期间(例如,日间期间)的平均轮询频率可大于第二时间段期间(例如,夜间期间)的平均轮询频率。在该示例中,轮询模式470可在数据接收模式480之间是连续的,但是可在在前数据接收模式与下一数据接收模式480之间根据两个或更多个不同的平均轮询频率操作。
发射设备发射信标信号412,该信标信号412可以是如结合图9描述的在高频率460与低频率462之间交替的经FSK调制的信标信号。可发射具有大于数据发射模式411期间的载波信号的峰到峰幅度432的峰到峰幅度406的信标信号412。可以以如上文描述的信标结束特征464终止信标信号412。
TCC发射器90被配置为在信标信号412之后并且在发射“打开”命令415之前等待信标后间期413。信标后间期413被提供以给接收设备留出用于检测高频率460和低频率462的交替间期的信标频率模式、检测信标结束特征464并且开始搜索“打开”命令415的时间。信标信号412的持续时间可以是100ms到1秒,之后跟随着信标后间期413,该信标后间期413可以在100ms到200ms之间。在一些示例中,信标信号412可在等待信标后间期413并且发射“打开”命令之前被重复地发射,例如,在一心动周期中被发射两次或更多次,以增加信标信号被接收设备检测到的可能性。可在该心动周期期间多次重复相对短的信标信号(例如,8到100ms),以促进在接收电极向量与注入的电流的组织传导通路平行的时间处发射。
“打开”命令415的持续时间可以是1ms到25ms,例如,8ms。“打开”命令415可作为单音调载波频率(例如,100kHz信号)被发射达预先确定的持续时间(例如,8ms)。在一些示例中,“打开”命令415可具有小于信标信号的峰到峰幅度406的峰到峰幅度408。较高的峰到峰幅度406可被发射以促进由接收设备检测到信标信号。幅度降低的“打开”命令415可由已由信标信号412唤醒的接收设备可靠地检测到。
在轮询模式470期间,接收设备开始信标搜索期420,在该信标搜索期420期间,TCC信号检测器175操作以检测经FSK调制的信标信号412的交替的频率模式。在上文给出的示例中,其中每一个频率460和462以交替的模式被发射达140微秒的间期,TCC信号检测器175可在只有5ms或更短的时间内检测到信标频率模式。信标搜索期420可具有延伸至结束时间423的最大持续时间。如果没有在信标搜索期420内在结束时间423之前检测到信标频率模式,则接收设备控制电路可根据轮询安排将TCC信号检测器175断电达下一轮询间期422(如由弯曲的虚线箭头所指示的),直至下一信标搜索期420。
如果在信标搜索期420期间(在结束时间432之前)检测到了信标频率模式,则TCC信号检测器175被控制用于在信标跟踪期421期间跟踪信标信号的频率。在图10的示例中,在信标搜索期420期间在箭头424处检测到了交替的高频率460和低频率462,并且信标跟踪期在没有等待至信标搜索期结束时间423的情况下开始。一旦检测到了信标频率模式,TCC信号检测器175就在信标跟踪期421期间跟踪交替的信号频率对以搜索信标结束特征464。
信标跟踪期421可具有延伸至信标跟踪期结束时间425的最大时间限制。如果在箭头424处检测到信标频率模式之后,没有在最大信标跟踪期421内检测到信标结束特征464,则可能检测到了信标信号脱离。没有检测到信标信号412,并且TCC信号检测器175可根据轮询安排(如虚线箭头所指示的)被断电达下一轮询间期422。
在图10的示例中,在信标跟踪期421期间在箭头427处检测到了信标结束特征464。响应于肯定地检测到信标结束特征464,TCC信号检测器175可将信标检测信号427传递至接收设备的控制电路。响应于信标检测信号427,控制电路控制TCC信号检测器175以终止信标跟踪期421并且可开始检测后延迟间期426。在延迟间期426之后,TCC信号检测器175被启用以在“打开”搜索窗口440期间接收“打开”命令415。“打开”搜索窗口440可在例如100ms或更短的延迟间期426之后被开始。延迟间期426可被提供以允许TCC发射器90完成信标发射并且在信标后间期413之后切换至发射“打开”命令415。在其他示例中,TCC信号检测器175被启用以响应于信标检测信号427在没有延迟间期426的情况下检测“打开”命令415。
在“打开”搜索窗口440的结束时间445处超时之前,“打开”搜索窗口440可多至250ms长。如果“打开”搜索间期440在结束时间445处期满而没有检测到“打开”命令415,则TCC信号检测器175根据轮询安排被断电达轮询间期422,直至下一信标搜索窗口420。
在示出的示例中,“打开”命令415在“打开”搜索窗口440期间由TCC信号检测器175检测到。“打开”检测信号442由TCC信号检测器175生成并且被传递至接收设备的控制电路。控制电路控制TCC信号发射器(如果被包括在接收设备中)发射确收信号444。确收信号444可在检测到“打开”命令415的20ms内(例如,2到3ms内)被发射。确收信号444可以以载波频率被发射达多至25ms,并且在一个示例中被发射达7ms。
在发射确收信号444之后,接收设备的控制电路将TCC信号检测器175切换至数据接收模式480。在一些示例中,接收设备可不被配置为发射TCC信号,并且可在不发射确收信号444的情况下从“打开”搜索窗口440切换至数据接收模式480。在数据接收模式期间,TCC信号检测器175检测发射的数据包,如下文描述的。数据包的检测可包括检测载波频率的相移,以解调制经BPSK调制的载波频率并且产生被传递至接收设备控制电路以供解码的位流。由此,从轮询模式470到数据接收模式480的转换可包括从检测并且解调制经FSK调制的信标信号切换至检测并且解调制经BPSK调制的数据包。
发射设备控制TCC接收器87以在确收接收期414期间搜索确收信号444。确收接收期414可具有用于等待确收信号444的最大持续时间。如果截至确收接收期414的结束时间417,确收信号444仍未由发射设备检测到,则发射设备的控制电路80通过如由虚线箭头所指示的等待信标控制间期409并且重新发射信标信号412来保持在唤醒模式410中。如果发射了最大数量的信标信号412而没有接收到来自预期的接收设备的确收信号,则发射器90可被控制以增大信标信号412的峰到峰幅度406和/或调整信标控制间期409(例如,调整至更长或更短的间期)以改变信标信号发射相对于心脏和/或呼吸运动的计时。
在一些示例中,信标信号412、确收接收期414和/或信标控制间期409可根据在一天中不同的时间段或时间期间不同的安排而被控制。例如,当接收设备被配置为根据在不同的时间段期间(例如,如上文描述的在日间期间和在夜间期间)应用的不同的轮询安排而以不同的平均轮询频率安排信标搜索期420时,发射设备可预料供接收设备检测信标信号并且发射确收信号444的更长的等待时间。由此,与第二时间段期间相比较,在第一时间段期间,发射器90可在唤醒模式410期间被控制以发射信标信号412达更长的时间间期、保持确收接收期414打开达更长的时间间期、并且/或者在发射重复的信标信号412之间等待更长的信标控制间期410,例如日间期间与夜间期间相比较,或反之亦然。信标信号持续时间、接收期414和信标控制间期409可根据基于一天中的时间的两个或更多个不同的安排而被控制,以对应于由接收设备在一天中相同的时间期间应用的轮询间期安排。
在接收期414期间检测到确收信号444时,确收检测信号416可由TCC接收器87生成并且被传递至发射设备的控制电路80。控制电路80将TCC发射器90切换至数据发射模式411,以开始发射数据包430。TCC发射器90由控制器91控制以在数据发射模式411期间生成经BPSK调制的数据包。控制器91被配置为控制驱动信号电路92和/或极性切换电路94以在唤醒模式410期间生成经FSK调制的信号(作为信标信号),并且被配置为控制驱动信号电路92和/或极性切换电路94以在数据发射模式411期间生成经BPSK调制的信号(作为数据报或数据包)。
图11是根据一个示例的可在发射设备的数据发射模式411期间被发射的数据包430的图。数据包430可包括使用载波信号和BPSK调制发射的多个字段490、492和494。因此,本情况下,载波信号被调制的属性是相位。同步字段490以未经调制的载波信号频率(例如,100kHz)作为第一字段被发射,用于为由接收设备(例如,起搏器100或压力传感器50)的TCC信号检测器175进行的解调制提供载波锁。同步字段490可包括预先确定的数量的载波频率周期或位,例如,每个位八个周期。在一些示例中,同步字段490的长度可在128个周期与256个周期之间。在其他示例中,同步字段490可以更长,以确保包括经编码的数据的后续字段492和494在AC耦合电容器96在经编码的数据发射之前被充电至DC操作电压之后被发射。
同步字段490期间发射的载波信号在前置码字段492和数据字段494期间根据二进制编码的输入信号被调制,该二进制编码的输入信号可由被包括在控制器91中的调制器产生。前置码字段492可跟随同步字段490,并且可被编码以用于传送被发射的包的类型以及包长度,例如,数据字段494的数量。前置码字段492还可包括向接收设备提供位样本计时的密钥代码(key code)、确收请求位、源和/或目的地地址位、或通常可能被包括在报头或前置码字段492中的其他位或字节。
数据字段494包括被传送至接收设备的信息,该信息可包括:用于执行治疗递送或信号获取的命令、针对数据的请求、要由接收设备使用以用于感测生理信号和/或递送治疗的控制参数设置、或在监测患者和递送治疗中实现IMD系统协调的众多其他类型的信息。每一个前置码字段492和数据字段494可包括预先确定的数量的字节,例如,1到254字节。每一个字节可以是预先确定的数量的位,例如,8位到13位。
图12是可被包括在数据包430的前置码字段492或数据字段494中的一个数据字节500的一部分的概念图。每一个数据字节500可作为使用BPSK调制的载波信号501而被发射。载波信号501具有峰到峰幅度502,并且具有由载波频率周期长度504限定的载波频率。载波信号501具有:正极性,该正极性在载波频率周期长度504的一半期间在一半的峰到峰幅度502处;以及负极性,该负极性在载波频率周期长度504的另一半期间在一半的峰到峰幅度502处。
输入数字信号520可由发射器控制器91生成以用于控制发射器90的驱动信号电路92和/或极性切换电路94(均在图6中示出),以在发射数据字节500期间控制载波信号501的调制。通过递送预先确定的数量的具有根据输入数字信号520被控制的相位的载波频率周期,对发射的TCC信号数据字节500的每一个位505-509进行编码。在示出的示例中,每一个位505-509包括八个载波频率周期504。通过控制驱动信号电路92和/或极性切换电路94以产生位之间的零相移或产生位之间的相移来编码位值。无相移可对应于位流中的数字“0”,并且相移可对应于位流中的数字“1”。
出于示出的目的,第一位505可以是数字“0”,并且之后跟随着导致下一位506的相移510。在该示例中,相移为正180度,但是±360度之间的其他相移也可被使用。被锁定到载波信号501的频率中的接收设备的TCC信号检测器175被配置为检测相移510。响应于检测到相移510,TCC信号检测器在数字输出信号524中输出数字“1”,该数字输出信号524被传递至接收设备的控制电路以供解码。根据从数字“1”变至数字“0”的数字输入信号520,位506之后跟随着无相移512。接收设备的TCC信号检测器175检测到无相移,并且响应于检测到位506的八个周期之后无相移而针对位507产生数字“0”。
根据输入数字信号520中从数字“0”至数字“1”的变化,下一位507之后跟随着180度正相移514。相移514由TCC信号检测器175检测到,并且输出数字信号524中的位值针对位508从“0”变为“1”。根据输入信号524中从“1”至“0”的变化,位508的八个周期之后跟随着无相移516。响应于检测到无相移,TCC信号检测器175产生在输出数字信号524中与最后一位509对应的数字“0”。在图12中表示了数据字节500的最后五位,然而所认识到的是,数据字节500可包括2、4、8、16个位或其他预先确定的数量的位。最后四位506-509可表示字节500的半字节(四位),该字节500在十六进制编码方案中包括至少8位(八位字节)。如可在图12中看到的,通过在不中断的情况下连续地发射载波信号同时控制驱动信号电路92和极性切换电路94来使得载波信号的相移位,经编码的数据在数据包期间被发射。
再次参考图11,在一些示例中,前置码字段492可包括一个到四个字节,以提供各种报头信息,诸如被发射的数据的类型、寻址信息、被包括在数据包430中的数据字段494的数量、或由例如每一到两个字节表示的其他信息。每一个数据字段494可包括由八个数字值的流表示的一个字节,并且每一个数据包430可包括1到256个数据字段或字节。在一些示例中,数据包430可以以循环冗余校验(CRC)终止以使得接收设备能够执行误差校验。虽然在图11中示出了数据包430(或数据报)的特定示例,但是可根据特定临床应用以及如本文描述的在唤醒模式期间利用经FSK调制的信标信号并且在数据发射模式期间利用经BPSK调制的数据包的IMD系统而构想包括各种字段的众多数据帧结构。
图13是根据一个示例的可由IMD系统执行的用于发射和接收TCC信号的方法的流程图600。由发射设备执行的操作在竖直虚线的左侧示出,并且由接收设备执行的操作在水平虚线的右侧示出。发射设备的控制电路(例如,ICD 14或ICD 214的控制电路80)在框601处确定待定的数据已准备好以供TCC发射。如上文描述的,发射设备可以是作为发起TCC会话的控制设备操作的ICD 14或ICD 214,并且接收设备可以是作为应答器操作的起搏器100或压力传感器50。接收设备可以是具有较小供电设备(power supply)的简化功能设备。例如,接收设备可被配置为以轮询模式操作,以待由另一设备唤醒,但是可不配置为以用于发起TCC会话的唤醒模式操作。然而,要理解的是,IMD可被配置为在一些时间中作为发射设备操作,并且在一些时间中作为接收设备操作,并且可因此被配置为当没有以唤醒模式或发射模式操作时以轮询模式操作。出于图示的目的,发射设备是包括发射器90的ICD 14或ICD214,并且接收设备是具有TCC信号检测器175的起搏器100或压力传感器50,例如,如图3B中所示。
控制电路80在框602处为发射器90通电,以将发射器90从睡眠模式切换至唤醒模式,在睡眠模式中供应至发射器90的电路系统的电力被减少。控制器91可控制时钟电路93以根据实现生成经FSK调制的信标信号的高频率和低频率的低时钟频率操作。发射器90的控制器91可被配置为检验是否在框603处启用了允许的发射窗口。在一些示例中,控制电路80可响应于检测到心脏事件而启用允许的发射窗口信号。心脏事件可被检测为由患者的心脏生成的感知到的心脏电信号并且由感测电路86感知。额外地或替代地,检测到的心脏事件可以是起搏脉冲,或者是由治疗电路83生成的其他电刺激脉冲。在下文结合图14描述了允许的发射窗口。如果允许的发射窗口没有被启用,则TCC发射器可在唤醒模式中等待,直至允许的发射窗口在发射信标信号之前被启用。
在框604处,信标信号根据上文描述的示例中的任一个被发射。信标信号可作为具有高频率和低频率的交替的时间间期的经FSK调制的信号被发射,该高频率和低频率可以以载波信号频率为中心。信标信号可包括不同的信标结束特征,该不同的信标结束特征包括与信标结束特征之前使用的频率模式不同的高频率和/或低频率的一个或多个时间间期的模式。如上文结合图10描述的,信标信号之后可跟随着“打开”命令。发射设备在框605处在接收窗口期间等待来自接收设备的确收信号。
如果确收信号在接收窗口超时之前未被接收到,如结合图10描述的,则通过返回至框604来重新发射信标信号。替代地,发射设备可在发射信标信号之后等待确收信号,随后响应于接收到确收信号而发射“打开”命令。在另其他示例中,可不在信标信号之后发射“打开”命令。发射器90可被控制以发射信标信号、等待来自接收设备的确收信号并且切换至数据发射模式。
响应于在框605处接收到确收信号,控制器91在框606处将发射器90的操作从唤醒模式切换至数据发射模式。在其他示例中,发射器90可发射信标信号,并且在没有检测到确收信号的情况下切换至数据发射模式。发射器90可在延迟间期之后切换至数据发射模式,该延迟间期用于给接收设备留出用于检测信标信号并且在不发送确收信号的情况下从轮询模式切换至接收模式的时间。在一些情况下,发射设备可以基于接收设备的行为“知道”发射的数据是否被接收设备成功地接收。例如,发射设备可预期接收从接收设备返回的TCC信号数据,例如,数据已被接收到的确认信号或由发射设备请求的生理信号数据。在其他示例中,发射设备可请求由接收设备递送治疗,例如,由起搏器100递送起搏脉冲。发射设备可由感测电路86检测递送的起搏脉冲或相关联的诱发的响应。如果由接收设备作出的预期响应没有被发射设备检测到,则发射器90可被控制以重新发送一个或多个数据包直至检测到了由接收设备作出的相应响应,这可包括在每一组一个或多个数据包之前重新发送信标信号。
发射器在框608处被控制以使用载波信号的BPSK调制发射每一个数据包。可在单个发射会话中发射多个数据包。虽然在图13中没有明确示出,但是所理解的是,在数据包之间,发射设备在控制电路80的控制下在数据发射和接收窗口之间交替。在接收窗口期间,例如,在图7中示出的窗口350,TCC接收器87被启用以检测并且解调制从接收设备请求并且由接收设备发射的TCC信号。在一些情况下,发射设备不请求来自接收设备的返回信号,由此使得可不需要接收窗口。如框610处确定的,在TCC发射会话的所有待定的数据包已被发射之后(每一个之后均按需跟随着接收窗口),在框612处完成发射会话。发射器90可在框612处被切换回至低功率的睡眠状态,直至下一待定的TCC发射会话。
接收设备在框650处以轮询模式操作。接收设备可以根据轮询间期安排连续地以轮询模式操作,直至检测到了信标信号。在一些示例中,可在在不同的相应时间段期间应用具有不同的平均轮询频率的两个或更多个不同的轮询间期安排可被,例如,日间轮询间期安排和夜间轮询安排。在另其他示例中,接收设备可在指定的TCC时间段期间根据轮询模式操作,并且TCC信号检测器可在其他时间段期间断电处于睡眠状态。例如,接收设备可以每小时一次、每四个小时一次、每八个小时一次、每十二个小时一次、每24个小时一次或根据另一预先确定的安排以轮询模式操作达预先确定的时间间期。
在轮询模式期间,TCC信号检测器175被控制以根据轮询间期安排在框652处开始信标搜索期。TCC信号检测器175可被配置为检测信标信号的FSK调制,并且跟踪信标信号以搜索信标结束特征,以便于肯定地检测到信标信号,如上文结合图10描述的。响应于检测到信标信号,TCC信号检测器175在框654处等待“打开”命令。如果没有检测到信标信号或者没有接收到“打开”命令,则接收设备通过在框656处等待下一轮询间期期满来保持在轮询模式中。在框652处开始下一信标搜索期。
响应于检测到信标信号并且接收到“打开”命令(如果被发送),接收设备可被配置为在框658处将确收信号发射回发射设备。在检测到信标信号(并且确收“打开”命令(如果被发送))之后,接收设备在框660处将TCC信号检测器175切换至接收模式,以供检测并且解调制由发射器90发射的BPSK信号。
接收设备可在框662处确定是否所有数据包均已被接收到,这可基于与发射的数据包一同被发送的前置码信息。在其他示例中,如果在最大超时间期中没有检测到TCC信号,则接收模式可在框662处超时。接收设备可切换回至在框650处的轮询模式,与在接收模式期间相比较,在轮询模式期间TCC信号检测器以更低的功率状态操作。虽然未在图13中明确示出,但是要理解的是,接收设备可按需在每一个数据包之后以发射模式操作,以便于将请求的确认或其他数据发射回至发射设备。发射回至发射设备的数据可根据如结合图11和图12描述的由发射设备使用的相同或相似的数据帧和BPSK调制而被格式化。在其他示例中,可使用不包括对载波信号的调制的预先确定的数量的载波信号周期,来将简化的确认信号从接收设备发射回至发射设备。
图14是根据一个示例的可由发射IMD执行的TCC信号发射控制的时序图700。由发射设备(TRN)执行的操作在水平虚线的上方被示出,并且由接收设备(RCV)执行的操作在水平虚线的下方被示出。发射设备的控制电路80可被配置为基于心脏事件702的计时来设置允许的发射窗口710。心脏事件702可以是由治疗电路83以起搏间期706生成的心脏起搏脉冲或其他电刺激脉冲。在其他示例中,心脏事件702可以是由心脏事件检测器85以固有心脏事件间期706检测到的感知到的固有心脏事件(例如,R波或P波)。在另其他示例中,心脏事件702可以是由另一共同植入的设备(诸如,起搏器100)递送的起搏脉冲,该起搏脉冲由ICD14或ICD 214的心脏事件检测器85检测到。
控制电路80可响应于第一检测到的心脏事件702而启用允许的发射窗口710,并且响应于下一第二检测到的心脏事件702而禁用允许的发射窗口710。在一些示例中,允许的发射窗口710被终止或禁用以避免在递送电刺激脉冲期间发射TCC信号。由此,心脏事件702可以全部是由治疗电路83递送的心脏起搏脉冲。如果允许的发射窗口710没有被启用,则待定或正在进行的TCC信号可被延迟或停止。在一些示例中,如果在允许的发射窗口710期间感知到固有心脏事件,则允许的发射窗口710可保持启用。在该情况下,只有由治疗电路83递送的电刺激脉冲会导致允许的发射窗口710被禁用。
如果控制电路80检测到待定的TCC信号发射,则响应于来自控制电路80的控制信号,TCC发射器90可由控制器91从睡眠状态切换至唤醒模式。如果允许的发射窗口710没有被启用,则控制器91控制TCC发射器90等待直至允许的发射窗口710在发射第一信标信号712之前被设置(或被启用)。在允许的发射窗口710内,TCC发射器90可被控制以发射多个信标信号712,每一个信标信号712之后均跟随着“打开”命令715和确收接收期714。允许的发射窗口710可具有可变的持续时间,因为心脏事件时间间期706可以改变。由此,当允许的发射窗口710被终止时,TCC发射器90可处在正在发射信标信号712的过程中。响应于允许的发射窗口710被禁用,信标信号712可在713处被停止。失败的发射标志可被设置,由此使得可在下一允许的发射窗口710期间重新开始任何停止的发射。
TCC发射器90由控制器91控制以等待下一允许的发射窗口710,以开始新的信标信号712,之后跟随着“打开”命令715。在图14中示出的第二允许的发射窗口710期间,接收设备TCC信号检测器715的轮询间期722期满,并且信标搜索期720开始。接收设备检测到信标信号712,并且通过返回确收信号744并且从轮询模式切换至接收模式780来对“打开”命令715作出响应。
响应于接收到确收信号744,发射设备从唤醒模式切换至数据发射模式。如果允许的发射窗口710仍被启用,则TCC发射器90的控制器91控制驱动信号电路92和/或极性切换电路94生成并且发射第一数据包730a。如果数据包在允许的发射窗口710期间在没有被停止的情况下完成,则TCC发射器90可开始发射下一数据包730b。第二允许的发射窗口710由于下一心脏事件702而被禁用。响应于允许的发射窗口710被禁用,在731处停止下一数据包730b。接收设备可保持在接收模式780中,但是可基于没有接收到完整的数据包而生成误差标志,并且忽略被过早停止的接收到的位流。在一些示例中,接收设备保持在接收模式780中,直至接收超时窗口期满而没有接收到任何TCC信号。发射器90的控制器91等待接收来自控制电路80的允许的发射窗口信号,随后重新开始发射数据包730b。通过控制发射器90仅在允许的发射窗口710期间发射,可以继续以数据包之间的可变的间期发射数据包。
在一些示例中,TCC发射器90被控制以在消隐期704期间开始发射第一信标信号712,该消隐期704可以是起搏后消隐期或感测后消隐期。允许的发射窗口710可在递送心脏起搏脉冲之后开始。如果控制电路80确定在允许的发射窗口710期间但是在消隐期704之外需要TCC信号发射,则控制电路80可控制TCC发射器90等待并且在下一自动的感测后或起搏后消隐期704期间开始发射第一信标信号712。在一些示例下,只有由治疗电路83递送的心脏起搏脉冲或其他电刺激脉冲会导致允许的发射窗口710被禁用。固有心脏事件可在允许的发射窗口710期间被感知而不会导致窗口710被禁用。响应于在允许的发射窗口710被启用时检测到固有心脏事件,TCC发射器90可在应用至感测电路86的下一消隐期期间开始发射信标信号712。
因此,已经在前述描述中参考特定实施例呈现了由医疗设备系统执行的用于TCC的方法和装置的各种示例。将理解的是,可作出对所引用的实施例的各种修改,包括以与本文描述的特定组合不同的组合来组合TCC信号发射和检测方法的各种方面,而不偏离本公开和随附权利要求书的范围。应当理解,取决于示例,本文描述的方法中的任一个中的某些动作或事件可以以不同的顺序被执行,可以被添加、合并、或完全省略(例如,并非所有描述的动作或事件都是实践该方法所必需的)。此外,在某些示例中,可同时地而不是顺序地执行动作或事件,例如,通过多线程处理、中断处理或多个处理器。另外,尽管为了清楚起见,本公开的某些方面被描述为由单个模块或电路执行,但是应当理解,本公开的技术可以由与例如医疗设备相关联的电路或部件的组合来执行并且/或者单个电路或部件可执行在随附附图中被表示为分开的电路或部件的多个功能。
在一个或多个示例中,可以在硬件、软件、固件或它们的任何组合中实现所描述的功能。如果在软件中实现,则这些功能可作为一个或多个指令或代码被存储在计算机可读介质上并且由基于硬件的处理单元来执行。计算机可读介质可包括计算机可读存储介质,其对应于有形介质,诸如数据存储介质(例如,RAM、ROM、EEPROM、闪存、或可用于存储以指令或数据结构的形式的期望程序代码并且可由计算机访问的任何其他非瞬态计算机可读介质)。
指令可由一个或多个处理器执行,诸如一个或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其他等效的集成或分立逻辑电路系统。相应地,如本文中所使用的术语“处理器”可以指的是任何上述结构或适合于实现本文中所描述的技术的任何其他结构。而且,可以在一个或多个电路或逻辑元件中完全地实现这些技术。
因此,在前面的描述中已经参考特定示例呈现了能够执行TCC的IMD系统。将理解的是,本文所公开的各种方面可以以与附图中呈现的特定组合不同的组合来被组合。可理解到,可对参考示例做出各种修改而不背离本公开以及所附权利要求和示例的范围。
示例12一种方法,包括生成组织传导通信(TCC)载波信号;通过根据第一类型的调制来调制TCC载波信号的第一属性,来生成至少一个TCC信标信号;以及通过根据不同于第一类型的调制的第二类型的调制来调制TCC载波信号的不同于第一属性的第二属性,来在TCC信标信号之后生成TCC数据信号。
示例13根据示例12的方法,其中,调制TCC载波信号的第一属性包括根据频移键控(FSK)调制来调制TCC载波信号的频率,并且调制TCC载波信号的第二属性包括根据相移键控(PSK)调制来调制TCC载波信号的相位。
示例14根据示例12-13中任一个的方法,其中,生成TCC信标信号包括:在发射达第一数量的周期的第一频率与发射达第二数量的周期的第二频率之间调制TCC载波信号的频率,该第一频率大于TCC信号的频率,并且该第二频率小于TCC载波信号的频率;以及以信标结束特征终止TCC信标信号,该信标结束特征包括发射达不同于第一数量的周期的第三数量的周期的第一频率和/或发射达不同于第二数量的周期的第四数量的周期的第二频率中的至少一者。
示例15根据示例12-14中任一项的方法,进一步包括:在心脏电信号内检测第一心脏事件;响应于检测到第一心脏事件,由控制电路开始允许的发射窗口;以及控制TCC发射器在允许的发射窗口期间生成TCC信标信号。
示例16根据示例12-15中任一个的方法,进一步包括:由控制电路在第一心脏事件之后的心脏电信号内检测第二心脏事件;响应于检测到第二心脏事件,终止允许的发射窗口;以及终止在允许的发射窗口终止时被发射TCC信标信号和TCC数据信号中的一者。
示例17根据示例12-16中任一个的方法,进一步包括:递送电刺激脉冲;以及响应于生成的电刺激脉冲,检测到第二心脏事件。
示例18根据示例12-17中任一个的方法,进一步包括:将消隐期应用至被配置为接收心脏电信号的感测电路,该消隐期响应于检测到第一心脏事件而被应用;以及在消隐期期间开始生成TCC信标信号。
示例19根据示例12-18中任一个的方法,进一步包括:在生成TCC信标信号之后,启用TCC接收器达接收期;响应于接收期期满而TCC接收器没有接收到确收信号,调整TCC信标信号持续时间、接收期和/或信标控制间期中的至少一个;以及响应于TCC接收器在接收期期间没有接收到确收信号,控制TCC发射器在信标控制间期之后生成下一TCC信标信号。
示例20根据示例12-19中任一个的方法,进一步包括:基于一天中的时间调整TCC信标信号持续时间、确收接收期和/或信标控制间期中的至少一个。
示例21根据示例12-20中任一个的方法,进一步包括,其中,生成TCC信标信号包括:生成在TCC信标信号期间没有被调制的具有第一峰到峰幅度的TCC信标信号以及生成在TCC数据信号期间被调制的具有第二峰到峰幅度的TCC数据信号,该第一峰到峰幅度大于该第二峰到峰幅度。
示例22根据示例12-21中任一个的方法,其中,生成TCC信标信号包括控制时钟电路生成具有第一时钟频率的第一时钟信号,以用于以载波频率生成TCC载波信号;并且生成TCC数据信号包括控制时钟电路生成具有第二时钟频率的第二时钟信号,以用于以载波频率生成TCC载波信号,该第二时钟频率大于该第一时钟频率。
示例23一种设备,该设备包括壳体;以及由壳体封围的TCC信号检测器,该TCC信号检测器被配置为通过检测TCC载波信号的第一属性的第一类型的调制来检测从发射设备发射的TCC信标信号;并且通过检测TCC载波信号的不同于该第一属性的第二属性的第二类型的调制来检测由发射设备在TCC信标信号之后发射的TCC数据信号,该第二类型的调整不同于该第一类型的调制。
示例24根据示例23的IMD,其中,TCC信号检测器被配置为:通过检测TCC载波信号的频移键控(FSK)调制来检测TCC信标信号,并且通过检测TCC载波信号的相移键控(PSK)调制来检测TCC数据信号。
示例25根据示例23-24中任一个的IMD,其中,TCC信号检测器被配置为通过如下方式来检测TCC信标信号:检测发射达第一数量的周期的第一频率和发射达第二数量的周期的第二频率,该第一频率大于该第二频率;并且检测信标结束特征,该信标结束特征包括发射达不同于第一数量的周期的第三数量的周期的第一频率和/或发射达不同于第二数量的周期的第四数量的周期的第二频率中的至少一者。
示例26根据示例23-25中任一个的IMD,其中,TCC接收器被配置为:将轮询间期随机地设置为多个轮询间期持续时间中的一个;在轮询间期期满时,设置信标搜索期;在信标搜索期期间检测TCC信标信号;并且响应于检测到TCC信标信号,从轮询模式切换至数据接收模式,该TCC数据信号在数据接收模式期间被检测到。
示例27根据示例23-26中任一个的IMD,其中,TCC接收器被配置为:在第一时间段期间将第一多个轮询间期中的每一个设置为第一多个轮询间期持续时间中的随机选择的一个,该第一多个轮询间期持续时间具有第一平均持续时间;并且在第二时间段期间将第二多个轮询间期中的每一个设置为第二多个轮询间期持续时间中的随机选择的一个,该第二多个轮询间期持续时间具有第二平均持续时间;在第一多个轮询间期中的每一个以及第二多个轮询间期中的每一个期满时,开始信标搜索期;在信标搜索期期间检测TCC信标信号;并且响应于检测到TCC信标信号,从轮询模式切换至数据接收模式,TCC数据信号在数据接收模式期间被检测到。
示例28根据示例23-27中任一个的IMD,进一步包括TCC发射器以及耦合至TCC发射器以及TCC接收器的控制电路,该控制电路被配置为:响应于TCC接收器检测到TCC信标信号,控制TCC发射器生成确收信号;并且在检测到TCC信标信号之后控制TCC接收器从轮询模式切换至数据接收模式,该轮询模式被配置为检测并且解调制经频移键控调制的TCC信标信号,该数据接收模式被配置为检测并且解调制经二进制相移键控调制的TCC数据信号。

Claims (12)

1.一种能够发射组织传导通信信号的医疗设备,包括:
壳体;
组织传导通信TCC发射器,所述TCC发射器由所述壳体封围并且被配置为:
生成TCC载波信号;
通过根据第一类型的调制来调制所述TCC载波信号的第一属性,来生成至少一个TCC信标信号;
通过根据不同于所述第一类型的调制的第二类型的调制来调制所述TCC载波信号的不同于所述第一属性的第二属性,来在所述至少一个TCC信标信号之后生成至少一个TCC数据信号;并且
发射所述至少一个TCC信标信号以及所述至少一个TCC数据信号。
2.根据权利要求1所述的医疗设备,其特征在于,所述TCC发射器被配置为:
通过根据频移键控FSK调制来调制所述TCC载波信号的频率,来调制所述TCC载波信号的所述第一属性,并且
通过根据相移键控PSK调制来调制所述TCC载波信号的相位,来调制所述TCC载波信号的所述第二属性。
3.根据权利要求1-2中任一项所述的医疗设备,其特征在于,所述TCC发射器被配置为通过以下各项生成所述TCC信标信号:
在发射达第一数量的周期的第一频率与发射达第二数量的周期的第二频率之间调制所述TCC载波信号的频率,所述第一频率大于所述TCC载波信号的所述频率,并且所述第二频率小于所述TCC载波信号的所述频率,并且
以信标结束特征终止所述TCC信标信号,所述信标结束特征包括发射达不同于所述第一数量的周期的第三数量的周期的所述第一频率和/或发射达不同于所述第二数量的周期的第四数量的周期的所述第二频率中的至少一者。
4.根据权利要求1-2中任一项所述的医疗设备,其特征在于,进一步包括:
感测电路,所述感测电路被配置为获得经由感测电极向量获得的心脏电信号;以及
控制电路,所述控制电路被耦合至所述感测电路以及所述TCC发射器,并且被配置为:
在所述心脏电信号内检测第一心脏事件,
响应于检测到所述第一心脏事件,开始允许的发射窗口;并且
在所述允许的发射窗口期间控制所述TCC发射器生成所述TCC信标信号。
5.根据权利要求4所述的医疗设备,其特征在于:
所述控制电路被配置为:
在所述第一心脏事件之后的所述心脏电信号内检测第二心脏事件,并且
响应于检测到所述第二心脏事件,终止所述允许的发射窗口;并且
所述TCC发射器被配置为:
终止在所述允许的发射窗口的所述终止时正被发射的所述TCC信标信号和所述TCC数据信号中的一个。
6.根据权利要求5所述的医疗设备,其特征在于,进一步包括治疗电路,所述治疗电路被配置为生成并且递送心脏电刺激脉冲;
其中,所述控制电路被配置为响应于生成的电刺激脉冲,检测到所述第二心脏事件。
7.根据权利要求4所述的医疗设备,其特征在于,所述控制电路被配置为响应于检测到所述第一心脏事件,将消隐期应用至所述感测电路;
其中,TCC发射器被配置为在所述消隐期期间开始生成所述TCC信标信号。
8.根据权利要求1-2中任一项所述的医疗设备,其特征在于,进一步包括TCC接收器,所述TCC接收器被配置为在所述TCC信标信号之后在接收期期间接收确收信号;
所述TCC发射器被进一步配置为:
响应于所述接收期期满而所述TCC接收器没有接收到所述确收信号,而调整TCC信标信号持续时间、所述接收期、和/或信标控制间期中的至少一者;并且
响应于所述TCC接收器在所述接收期期间没有接收到所述确收信号,而控制所述TCC发射器在所述信标控制间期之后生成下一TCC信标信号。
9.根据权利要求1-2中的任一项所述的医疗设备,其特征在于,所述TCC发射器被进一步配置为:
基于一天中的时间来调整TCC信标信号持续时间、确收接收期、和/或信标控制间期中的至少一者。
10.根据权利要求1-2中任一项所述的医疗设备,其特征在于,所述TCC发射器被进一步配置为:生成在所述TCC信标信号期间没有被调制的具有第一峰到峰幅度的所述TCC信标信号并且生成在所述TCC数据信号期间没有被调制的具有第二峰到峰幅度的所述TCC数据信号,所述第一峰到峰幅度大于所述第二峰到峰幅度。
11.一种发射组织传导通信信号的方法,包括:
生成组织传导通信TCC载波信号;
通过根据第一类型的调制来调制所述TCC载波信号的第一属性,来生成至少一个TCC信标信号;以及
通过根据不同于所述第一类型的调制的第二类型的调制来调制所述TCC载波信号的不同于所述第一属性的第二属性,来在所述TCC信标信号之后生成至少一个TCC数据信号,
发射所述至少一个TCC信标信号以及所述至少一个TCC数据信号。
12.一种能够发射组织传导通信信号的医疗设备,包括:
壳体;以及
TCC信号检测器,所述TCC信号检测器由所述壳体封围并且被配置为:
通过检测TCC载波信号的第一属性的第一类型的调制,来检测从发射设备发射的TCC信标信号;并且
通过检测所述TCC载波信号的不同于所述第一属性的第二属性的第二类型的调制,来检测由所述发射设备在所述TCC信标信号之后发射的TCC数据信号,所述第二类型的调制不同于所述第一类型的调制。
CN201880077540.6A 2017-11-29 2018-11-29 设备之间的组织传导通信 Active CN111417430B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762591810P 2017-11-29 2017-11-29
US62/591,810 2017-11-29
PCT/US2018/063057 WO2019108787A1 (en) 2017-11-29 2018-11-29 Tissue conduction communication between devices

Publications (2)

Publication Number Publication Date
CN111417430A CN111417430A (zh) 2020-07-14
CN111417430B true CN111417430B (zh) 2024-03-08

Family

ID=64755726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880077540.6A Active CN111417430B (zh) 2017-11-29 2018-11-29 设备之间的组织传导通信

Country Status (4)

Country Link
US (1) US11235162B2 (zh)
EP (1) EP3717062B1 (zh)
CN (1) CN111417430B (zh)
WO (1) WO2019108787A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3717061B1 (en) 2017-11-29 2021-12-29 Medtronic, Inc. Tissue conduction communication using ramped drive signal
CN111465428A (zh) * 2017-12-15 2020-07-28 美敦力公司 用于组织传导通信发射的具有自适应计时的设备、系统和方法
EP3672350A1 (en) * 2018-12-18 2020-06-24 BIOTRONIK SE & Co. KG Body area network communication collision avoidance concept for medical systems
WO2024089511A1 (en) 2022-10-26 2024-05-02 Medtronic, Inc. System and method for detecting hemodynamically unstable cardiac rhythms

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255527A (zh) * 2014-05-06 2016-12-21 美敦力公司 用于治疗递送的光学触发
CN107073272A (zh) * 2014-10-24 2017-08-18 美敦力公司 心内起搏器中的感测和心房同步心室起搏

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987897A (en) 1989-09-18 1991-01-29 Medtronic, Inc. Body bus medical device communication system
US6076016A (en) 1995-10-19 2000-06-13 Feierbach; Gary F. Galvanic transdermal conduction communication system and method
US5591214A (en) 1995-11-20 1997-01-07 Telectronics Pacing Systems, Inc. Pacemaker with automatic blanking period function
US6164284A (en) 1997-02-26 2000-12-26 Schulman; Joseph H. System of implantable devices for monitoring and/or affecting body parameters
US6115636A (en) 1998-12-22 2000-09-05 Medtronic, Inc. Telemetry for implantable devices using the body as an antenna
US7660620B2 (en) 2003-09-29 2010-02-09 Medtronic, Inc. Timing techniques for magnetic resonance imaging
US7623930B2 (en) 2003-09-30 2009-11-24 Medtronic, Inc. Controlling telemetry during magnetic resonance imaging
DE602005026054D1 (de) 2004-12-17 2011-03-03 Medtronic Inc System zur überwachung oder behandlung von erkrankungen des nervensystems
US7542800B2 (en) 2005-04-05 2009-06-02 Cardiac Pacemakers, Inc. Method and apparatus for synchronizing neural stimulation to cardiac cycles
EP1948296B2 (en) 2005-10-14 2017-10-11 Pacesetter, Inc. Leadless cardiac pacemaker and system
US9168383B2 (en) 2005-10-14 2015-10-27 Pacesetter, Inc. Leadless cardiac pacemaker with conducted communication
US7769452B2 (en) * 2006-03-29 2010-08-03 Medtronic, Inc. Method and apparatus for detecting arrhythmias in a medical device
EP3363495A1 (en) 2006-03-29 2018-08-22 Dignity Health Microburst electrical stimulation of cranial nerves for the treatment of medical conditions
US7912537B2 (en) 2006-04-27 2011-03-22 Medtronic, Inc. Telemetry-synchronized physiological monitoring and therapy delivery systems
US8187161B2 (en) * 2007-08-31 2012-05-29 Proteus Biomedical, Inc. Self-referencing communication in implantable devices
ES2661739T3 (es) * 2007-11-27 2018-04-03 Proteus Digital Health, Inc. Sistemas de comunicación transcorporal que emplean canales de comunicación
US8315525B2 (en) 2010-05-07 2012-11-20 Exelis Inc. Amplification of interleaved optical signals
US9867990B2 (en) 2010-10-29 2018-01-16 Medtronic, Inc. Determination of dipole for tissue conductance communication
JP5146624B2 (ja) 2011-01-20 2013-02-20 株式会社湯山製作所 薬剤供給装置および薬剤供給装置を用いた薬剤計数装置
US8412352B2 (en) 2011-01-28 2013-04-02 Medtronic, Inc. Communication dipole for implantable medical device
US8720276B2 (en) 2011-03-24 2014-05-13 Medtronic, Inc. Moment fraction computation for sensors
US8996115B2 (en) 2011-04-07 2015-03-31 Greatbatch, Ltd. Charge balancing for arbitrary waveform generator and neural stimulation application
US20120323099A1 (en) 2011-04-20 2012-12-20 Medtronic, Inc. Implantable medical device electrode assembly
US9314205B2 (en) 2011-04-28 2016-04-19 Medtronic, Inc. Measurement of cardiac cycle length and pressure metrics from pulmonary arterial pressure
EP2811908A4 (en) 2012-02-11 2015-10-28 Sensifree Ltd CONTACT-FREE CARDIAC FREQUENCY SENSOR
US9717421B2 (en) 2012-03-26 2017-08-01 Medtronic, Inc. Implantable medical device delivery catheter with tether
US20130324825A1 (en) 2012-06-05 2013-12-05 Alan Ostroff Leadless Pacemaker with Multiple Electrodes
US9591466B2 (en) 2012-07-06 2017-03-07 Blackberry Limited Method and apparatus for activating an emergency beacon signal
US8954008B2 (en) 2013-01-29 2015-02-10 Medtronic, Inc. Medical device communication system and method
US8744572B1 (en) 2013-01-31 2014-06-03 Medronic, Inc. Systems and methods for leadless pacing and shock therapy
US9687659B2 (en) 2013-06-25 2017-06-27 Biotronik Se & Co. Kg Conductive intra-body communication for implantable medical devices
WO2015026486A1 (en) 2013-08-23 2015-02-26 Cardiac Pacemakers, Inc. Leadless pacemaker with improved conducted communication
US20150306375A1 (en) 2014-04-25 2015-10-29 Medtronic, Inc. Implantable extravascular electrical stimulation lead having improved sensing and pacing capability
WO2016089952A1 (en) * 2014-12-02 2016-06-09 Ossia Inc. Techniques for encoding beacon signals in wireless power delivery environments
US9636511B2 (en) * 2015-01-23 2017-05-02 Medtronic, Inc. Tissue conduction communication (TCC) transmission
US9808632B2 (en) 2015-01-23 2017-11-07 Medtronic, Inc. Implantable medical device with dual-use communication module
US9855435B2 (en) 2015-04-08 2018-01-02 Pacesetter, Inc. Systems and methods for leadless pacemaker electronics assemblies
US10143424B2 (en) * 2015-08-14 2018-12-04 Medtronic, Inc. Detection of medical electrical lead issues
EP3389775B1 (en) 2015-12-17 2019-09-25 Cardiac Pacemakers, Inc. Conducted communication in a medical device system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255527A (zh) * 2014-05-06 2016-12-21 美敦力公司 用于治疗递送的光学触发
CN107073272A (zh) * 2014-10-24 2017-08-18 美敦力公司 心内起搏器中的感测和心房同步心室起搏

Also Published As

Publication number Publication date
WO2019108787A1 (en) 2019-06-06
EP3717062B1 (en) 2022-10-12
US11235162B2 (en) 2022-02-01
US20190160293A1 (en) 2019-05-30
EP3717062A1 (en) 2020-10-07
CN111417430A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
US11660455B2 (en) Tissue conduction communication using ramped drive signal
US11033743B2 (en) Systems and methods for leadless pacing and shock therapy
US10561850B2 (en) Implantable medical device with dual-use communication module
US11213684B2 (en) Device and method to reduce artifact from tissue conduction communication transmission
CN111417430B (zh) 设备之间的组织传导通信
US11110279B2 (en) Signal transmission optimization for tissue conduction communication
EP3723848B1 (en) Device and method with adaptive timing for tissue conduction communication transmission
US20240165414A1 (en) Methods, systems, and devices for improving communication between external devices and implantable medical devices
US10549105B2 (en) Apparatuses and methods that improve conductive communication between external programmers and implantable medical devices
CN111770724B (zh) 无引线心脏起搏设备中的夺获管理
US11484719B2 (en) Electrical stimulation rate modulation for communication of data values in a medical device system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant