CN111416662A - Signal generation and transmission system and method based on polarization multiplexing double MZM modulator - Google Patents
Signal generation and transmission system and method based on polarization multiplexing double MZM modulator Download PDFInfo
- Publication number
- CN111416662A CN111416662A CN202010247673.2A CN202010247673A CN111416662A CN 111416662 A CN111416662 A CN 111416662A CN 202010247673 A CN202010247673 A CN 202010247673A CN 111416662 A CN111416662 A CN 111416662A
- Authority
- CN
- China
- Prior art keywords
- signal
- optical
- polarization
- mzm
- modulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 104
- 230000008054 signal transmission Effects 0.000 title claims abstract description 30
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000003287 optical effect Effects 0.000 claims abstract description 117
- 230000005540 biological transmission Effects 0.000 claims abstract description 36
- 239000000835 fiber Substances 0.000 claims abstract description 23
- 230000009977 dual effect Effects 0.000 claims abstract description 22
- 239000013307 optical fiber Substances 0.000 claims description 18
- 230000003321 amplification Effects 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 230000001629 suppression Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 230000001427 coherent effect Effects 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 5
- 238000010276 construction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000035559 beat frequency Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/06—Polarisation multiplex systems
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
本发明公开了一种基于偏振复用双MZM调制器的信号生成传输系统及方法,系统包括中心机房端、有线端和移动端;中心机房端包括分布反馈激光器、本地振荡器、偏振复用调制器、第一码型变换器和第二码型变换器,偏振复用调制器集成有第一MZM调制器、第二MZM调制器、偏振光分束器和偏振光合束器,本地振荡器通过倍频器接有混频器,偏振光合束器的输出端接有光纤放大器;有线端包括光滤波器、第一光电探测器、第二光电探测器、第一功率放大器、第二功率放大器、发射天线和第一信号处理器;移动端包括接收天线、第三功率放大器和第二信号处理器。本发明系统结构合理,能够有效应用在大容量有线和无线混合传输通信中,使用效果好,便于推广使用。
The invention discloses a signal generation and transmission system and method based on polarization multiplexing dual MZM modulators. The system includes a central computer room end, a wired end and a mobile end; the central computer room end includes a distributed feedback laser, a local oscillator, a polarization multiplexing modulation The polarization multiplexing modulator integrates the first MZM modulator, the second MZM modulator, the polarization beam splitter and the polarization beam combiner, and the local oscillator passes through the The frequency multiplier is connected with a mixer, and the output end of the polarization beam combiner is connected with a fiber amplifier; the wired end includes an optical filter, a first photodetector, a second photodetector, a first power amplifier, a second power amplifier, a transmitting antenna and a first signal processor; the mobile terminal includes a receiving antenna, a third power amplifier and a second signal processor. The system of the invention has a reasonable structure, can be effectively applied in large-capacity wired and wireless mixed transmission communication, has good use effect, and is convenient for popularization and use.
Description
技术领域technical field
本发明属于通信技术领域,具体涉及一种基于偏振复用双MZM调制器的信号生成传输系统及方法。The invention belongs to the technical field of communication, and in particular relates to a signal generation and transmission system and method based on polarization multiplexing dual MZM modulators.
背景技术Background technique
随着大数据、云计算、人工智能、物联网和移动互联网的通信业务急剧增长,现有的光接入网络难以满足未来多功能、大容量有线和无线混合传输需求,发展新一代高速、宽带有线和无线混合通信接入网络技术成为了目前比较迫切的需求。光与无线融合通信技术结合了毫米波的宽带无线传输和光纤的大容量传输特点,不仅能够有效克服电子器件的带宽瓶颈问题,还能成倍地提高无线信号的传输速率。光与无线融合通信系统能够同时产生和传输有线和无线信号,在光纤到户、光纤到办公室、光纤到大楼等接入网络系统中、有着广泛的应用前景。With the rapid growth of communication services in big data, cloud computing, artificial intelligence, the Internet of Things and mobile Internet, the existing optical access network is difficult to meet the future multi-functional, large-capacity wired and wireless hybrid transmission requirements, and the development of a new generation of high-speed, broadband Wired and wireless hybrid communication access network technology has become a more urgent demand at present. The optical and wireless fusion communication technology combines the broadband wireless transmission of millimeter waves and the large-capacity transmission of optical fibers, which can not only effectively overcome the bandwidth bottleneck of electronic devices, but also double the transmission rate of wireless signals. Optical and wireless converged communication systems can generate and transmit wired and wireless signals at the same time, and have broad application prospects in access network systems such as fiber-to-the-home, fiber-to-office, and fiber-to-the-building.
现有技术中,有线信号和无线信号混合传输接入系统方案,主要存在以下两类:In the prior art, there are the following two types of solutions for the hybrid transmission and access system of wired signals and wireless signals:
1.基于波分复用器件的有线信号和无线信号混合传输方案,在发射端,不同信号种类的光发射机均可接入到光波分复用器,其中,发射机的调制方式和种类不受限制,发射机发出的、已被调制的载波信号利用光纤传输至波分复用器的输入端。光波分复用器为多输入单输出器件,每个输入端口对应一个特定波长输入,光波分复用器将所有输入的光信号复用到一根光纤进行传输。在接收端,再利用一个与光波分复用器相同的器件,反向连接使用,通常称之为光波分解复用器,光波分解复用器可将传输光纤中得不同波长信号从相应的端口输出,完成光信号解复用,接收端被光波分解复用器分离后的光信号分别进入相应的接收机,每个接收机根据对应的调制协议完成光信号得解调,从而可恢复出原始信号。这种基于光波分复用器件的多种信号混合传输系统可以实现多个或多种信号的同时传输,传输信号种类或数量仅依赖于波分复用器的输入、输出端口数,各种信号的产生和接收装置相互独立,每种信号占用一个信道(波长)。但是,每个信道或每个发射机都不能同时产生混合信号(无线信号和有线信号),此外,这种方式传输容量的增加依赖于发射和接收机的数量,信号产生数量与使用得器件数量成比例,从而系统成本较高,这种结构一般很少用于接入网系统。1. Based on the hybrid transmission scheme of wired and wireless signals based on wavelength division multiplexing devices, at the transmitting end, optical transmitters of different signal types can be connected to the optical wavelength division multiplexer. Among them, the modulation methods and types of the transmitters are different. Restricted, the modulated carrier signal sent by the transmitter is transmitted to the input end of the wavelength division multiplexer using optical fiber. The optical wavelength division multiplexer is a multi-input single-output device, each input port corresponds to a specific wavelength input, and the optical wavelength division multiplexer multiplexes all the input optical signals into one optical fiber for transmission. At the receiving end, a device that is the same as the optical wavelength division multiplexer is used, and it is used in reverse connection. Output, complete the demultiplexing of the optical signal, the optical signals separated by the optical wave demultiplexer at the receiving end enter the corresponding receivers respectively, and each receiver completes the demodulation of the optical signal according to the corresponding modulation protocol, so that the original signal can be restored. Signal. This kind of multi-signal mixed transmission system based on optical wavelength division multiplexing device can realize the simultaneous transmission of multiple or multiple signals. The type or quantity of transmitted signals only depends on the number of input and output ports of the wavelength division multiplexer. The generating and receiving devices are independent of each other, and each signal occupies one channel (wavelength). However, each channel or each transmitter cannot generate a mixed signal (wireless and wired) simultaneously. In addition, the increase in transmission capacity in this way depends on the number of transmitters and receivers, the number of signal generators and the number of devices used. Proportional, so the system cost is higher, this structure is rarely used in access network systems.
2.基于MZM的混合信号传输方案,包括基于单个MZM(Mach-Zehnder Modulator)同时产生和传输有线和无线混合系统的系统和基于双MZM同时产生和传输有线和无线混合信号的系统。单个MZM同时产生和传输有线和无线混合系统的系统中有线数据和无线数据可分别调制到MZM的两臂,也可将两种数据进行混合后调制到MZM其中的一臂,系统可以进行矢量信号传输,也可以进行非矢量信号传输;基于双MZM同时产生和传输有线和无线混合信号的系统双MZM集成到一个模块上,有线数据和无线数据可分别调制到每个MZM,也可将两种数据进行混合后调制到其中一个MZM,系统可以进行矢量信号传输,也可以进行非矢量信号传输,无论是单个MZM方案,还是两个MZM方案,一般将有线数据调制到光源发出的中心载波上,无线数据调制到MZM产生光学边带信号。在接收端,首先需要利用一个光滤波器将这两种信号进行分离,然后分别利用光接收机对相应的传输信号进行解调,从而恢复出原始信号。上述两种有线和无线混合信号产生和传输系统具有结构简单,陈本较低,非常适用于光纤到户、光纤到办公室、光纤到大楼等应用场景。但是,由于使用的调制器受限于电子学带宽限制,随着调制速率的提高,被调制的光载波信号的信噪比急剧降低,因而进一步提升传输速率的潜力有限。另外,为了降低有线数据和无线数据在产生和传输过程中的相互干扰,提高信道的信噪比,在接收端需要高性能的光滤波器,从而不利于系统成本的降低。2. MZM-based mixed-signal transmission scheme, including a system based on a single MZM (Mach-Zehnder Modulator) to simultaneously generate and transmit wired and wireless hybrid systems and a system based on dual MZMs to simultaneously generate and transmit wired and wireless hybrid signals. A single MZM generates and transmits wired and wireless hybrid systems at the same time. In the system, wired data and wireless data can be modulated to the two arms of the MZM respectively, or the two kinds of data can be mixed and then modulated to one of the arms of the MZM. The system can perform vector signal Transmission, non-vector signal transmission can also be performed; a system based on dual MZMs to generate and transmit wired and wireless mixed signals at the same time. Dual MZMs are integrated into one module, and wired data and wireless data can be modulated to each MZM separately, or both can be combined. After the data is mixed and modulated into one of the MZMs, the system can perform vector signal transmission or non-vector signal transmission. Whether it is a single MZM scheme or two MZM schemes, the wired data is generally modulated to the center carrier emitted by the light source. The wireless data is modulated to the MZM to generate an optical sideband signal. At the receiving end, an optical filter is used to separate the two kinds of signals, and then the optical receivers are used to demodulate the corresponding transmission signals, so as to restore the original signal. The above two wired and wireless mixed signal generation and transmission systems have simple structures and low cost, and are very suitable for application scenarios such as fiber-to-the-home, fiber-to-office, and fiber-to-building. However, since the modulator used is limited by the electronic bandwidth, as the modulation rate increases, the signal-to-noise ratio of the modulated optical carrier signal decreases sharply, so the potential for further improving the transmission rate is limited. In addition, in order to reduce the mutual interference of wired data and wireless data in the process of generation and transmission, and improve the signal-to-noise ratio of the channel, a high-performance optical filter is required at the receiving end, which is not conducive to the reduction of system cost.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种基于偏振复用双MZM调制器的信号生成传输系统,其系统结构设计合理,实现方便,能够有效应用在大容量有线和无线混合传输通信中,降低了信号生成传输系统的构造成本,信号传输高效稳定,使用效果好,便于推广使用。The technical problem to be solved by the present invention is to provide a signal generation and transmission system based on polarization multiplexing dual MZM modulators in view of the above-mentioned deficiencies in the prior art. In the communication with wireless hybrid transmission, the construction cost of the signal generation and transmission system is reduced, the signal transmission is efficient and stable, the use effect is good, and it is easy to popularize and use.
为解决上述技术问题,本发明采用的技术方案是:一种基于偏振复用双MZM调制器的信号生成传输系统,包括同时生成有线信号和无线信号的中心机房端和与中心机房端进行有线传输的有线端,以及与有线端进行无线传输的移动端;所述中心机房端包括分布反馈激光器、本地振荡器和偏振复用调制器,以及用于将无线数据信号变换为基带电信号的第一码型变换器和用于将有线数据信号变换为基带电信号的第二码型变换器;所述偏振复用调制器集成有第一MZM调制器、第二MZM调制器、偏振光分束器和偏振光合束器,所述第一MZM调制器和第二MZM调制器均与偏振光分束器的输出端连接,所述第一MZM调制器和第二MZM调制器均与偏振光合束器的输入端连接,所述分布反馈激光器的输出端接有偏振控制器,所述偏振光分束器与偏振控制器的输出端连接,所述本地振荡器的输出端接有倍频器,所述倍频器的输出端接有混频器,所述第一码型变换器与混频器的输入端连接,所述混频器的输出端接有第一射频放大器,所述第一MZM调制器与第一射频放大器的输出端连接,所述第二码型变换器的输出端接有第二射频放大器,所述第二MZM调制器与第二射频放大器的输出端连接,所述第一MZM调制器的输入端接有第一直流偏置电源,所述第二MZM调制器的输入端接有第二直流偏置电源,所述偏振光合束器的输出端接有光纤放大器;所述有线端包括光滤波器,所述光滤波器与光纤放大器的输出端连接,所述光滤波器的输出端接有第一光电探测器和第二光电探测器,所述第一光电探测器的输出端接有第一功率放大器,所述第一功率放大器的输出端接有发射天线,所述第二光电探测器的输出端接有第二功率放大器,所述第二功率放大器的输出端接有第一信号处理器;所述移动端包括用于接收发射天线发射的无线信号的接收天线,所述接收天线的输出端接有第三功率放大器,所述第三功率放大器的输出端接有第二信号处理器。In order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is: a signal generation and transmission system based on polarization multiplexing dual MZM modulators, including a central computer room end that simultaneously generates wired signals and wireless signals, and wired transmission with the central computer room end The wired end and the mobile end that performs wireless transmission with the wired end; the central computer room end includes a distributed feedback laser, a local oscillator and a polarization multiplexing modulator, and a first wireless data signal for converting a wireless data signal into a baseband electrical signal. A code converter and a second code converter for converting a wired data signal into a baseband electrical signal; the polarization multiplexing modulator integrates a first MZM modulator, a second MZM modulator, and a polarization beam splitter and polarization beam combiner, the first MZM modulator and the second MZM modulator are both connected with the output end of the polarization beam splitter, and the first MZM modulator and the second MZM modulator are both connected with the polarization beam combiner The output end of the distributed feedback laser is connected with a polarization controller, the polarization beam splitter is connected with the output end of the polarization controller, and the output end of the local oscillator is connected with a frequency multiplier, so The output end of the frequency multiplier is connected with a mixer, the first code type converter is connected with the input end of the mixer, the output end of the mixer is connected with a first radio frequency amplifier, the first MZM The modulator is connected to the output end of the first radio frequency amplifier, the output end of the second code-type converter is connected to the second radio frequency amplifier, the second MZM modulator is connected to the output end of the second radio frequency amplifier, the first An input end of an MZM modulator is connected with a first DC bias power supply, an input end of the second MZM modulator is connected with a second DC bias power supply, and an output end of the polarization beam combiner is connected with a fiber amplifier; The wired end includes an optical filter, the optical filter is connected to the output end of the optical fiber amplifier, the output end of the optical filter is connected with a first photodetector and a second photodetector, and the first photodetector is connected to the output end of the optical filter. The output of the detector is connected with a first power amplifier, the output of the first power amplifier is connected with a transmitting antenna, the output of the second photodetector is connected with a second power amplifier, and the output of the second power amplifier is connected A first signal processor is connected to the terminal; the mobile terminal includes a receiving antenna for receiving wireless signals transmitted by the transmitting antenna, the output terminal of the receiving antenna is connected with a third power amplifier, and the output terminal of the third power amplifier A second signal processor is connected.
上述的基于偏振复用双MZM调制器的信号生成传输系统,所述光纤放大器为保偏掺铒光纤放大器。In the above-mentioned signal generation and transmission system based on polarization multiplexing dual MZM modulators, the fiber amplifier is a polarization-maintaining erbium-doped fiber amplifier.
上述的基于偏振复用双MZM调制器的信号生成传输系统,所述偏振光分束器与第一MZM调制器之间、所述偏振光分束器与第二MZM调制器之间、所述第一MZM调制器与偏振光合束器之间和所述第二MZM调制器与偏振光合束器之间均通过保偏单模光纤连接。The above-mentioned signal generation and transmission system based on polarization multiplexing dual MZM modulators, between the polarization beam splitter and the first MZM modulator, between the polarization beam splitter and the second MZM modulator, and between the polarization beam splitter and the second MZM modulator. Both the first MZM modulator and the polarization beam combiner and the second MZM modulator and the polarization beam combiner are connected by a polarization-maintaining single-mode fiber.
上述的基于偏振复用双MZM调制器的信号生成传输系统,所述分布反馈激光器与偏振控制器之间、所述偏振控制器与偏振光分束器之间、所述偏振光合束器与光纤放大器之间和所述光纤放大器与光滤波器之间均通过单模光纤连接。The above-mentioned signal generation and transmission system based on polarization multiplexing dual MZM modulators, between the distributed feedback laser and the polarization controller, between the polarization controller and the polarization beam splitter, between the polarization beam combiner and the optical fiber The amplifiers and between the optical fiber amplifier and the optical filter are connected by single-mode optical fibers.
上述的基于偏振复用双MZM调制器的信号生成传输系统,所述发射天线和接收天线均为卡塞格伦天线。In the above signal generation and transmission system based on polarization multiplexing dual MZM modulators, both the transmitting antenna and the receiving antenna are Cassegrain antennas.
本发明还公开了一种基于偏振复用双MZM调制器的信号生成和传输的方法,该方法包括以下步骤:The invention also discloses a method for signal generation and transmission based on the polarization multiplexing dual MZM modulator, the method comprising the following steps:
步骤一、所述分布反馈激光器发射出频率为fc的相干连续的光源信号,通过偏振控制器对光信号进行偏振控制后,光信号入射到偏振复用调制器中;Step 1. The distributed feedback laser emits a coherent and continuous light source signal with a frequency of f c , and after the polarization controller is used to control the polarization of the optical signal, the optical signal is incident on the polarization multiplexing modulator;
步骤二、所述偏振复用调制器中的偏振光分束器对光信号进行偏振态分离,分离后的两路光信号分别入射到第一MZM调制器和第二MZM调制器中,所述第一直流偏置电源将第一MZM调制器直流偏置在最小传输点,所述第二直流偏置电源将第二MZM调制器直流偏置在正交点;Step 2: The polarization beam splitter in the polarization multiplexing modulator separates the polarization state of the optical signal, and the separated two-path optical signals are respectively incident on the first MZM modulator and the second MZM modulator. The first DC bias power supply DC biases the first MZM modulator at the minimum transmission point, and the second DC bias power supply DC biases the second MZM modulator at the quadrature point;
步骤三、所述第一码型变换器将待传输的无线数据信号变换为基带电信号,基带电信号经高频同轴电缆传输至混频器中;同时,所述本地振荡器产生频率为fs的正弦或余弦射频信号,射频信号通过倍频器作用,射频信号被提升整数倍,变为nfs,然后经高频同轴电缆传输至混频器中,与基带电信号进行混频,得到射频电信号;Step 3: The first code converter converts the wireless data signal to be transmitted into a baseband electrical signal, and the baseband electrical signal is transmitted to the mixer through a high-frequency coaxial cable; at the same time, the local oscillator generates a frequency of The sine or cosine radio frequency signal of f s , the radio frequency signal is acted by the frequency multiplier, the radio frequency signal is boosted by an integer multiple to become nf s , and then transmitted to the mixer through the high frequency coaxial cable, and mixed with the baseband electrical signal , get the radio frequency electrical signal;
步骤四、所述第一射频放大器对射频电信号进行放大,放大后射频电信号驱动第一MZM调制器,所述第一MZM调制器对放大后的射频电信号进行载波抑制,生成用于传输无线信号的光毫米波信号,光毫米波信号传输至偏振光合束器中;Step 4: The first radio frequency amplifier amplifies the radio frequency electrical signal, the amplified radio frequency electrical signal drives the first MZM modulator, and the first MZM modulator performs carrier suppression on the amplified radio frequency electrical signal to generate a signal for transmission. The optical millimeter wave signal of the wireless signal, the optical millimeter wave signal is transmitted to the polarization beam combiner;
步骤五、所述第二码型变换器将待传输的有线数据信号变换为基带电信号,基带电信号经高频同轴电缆传输至第二射频放大器中进行放大,放大后的基带电信号直接驱动第二MZM调制器,生成光载波信号,传输至偏振光合束器中;Step 5: The second code type converter converts the wired data signal to be transmitted into a baseband electrical signal, and the baseband electrical signal is transmitted to the second radio frequency amplifier through a high-frequency coaxial cable for amplification, and the amplified baseband electrical signal is directly Drive the second MZM modulator to generate an optical carrier signal and transmit it to the polarization beam combiner;
步骤六、所述偏振光合束器将光毫米波信号和光载波信号耦合进同一根光纤,耦合光信号经过光纤放大器放大后,通过单模光纤传输至光滤波器中;Step 6: The polarized optical beam combiner couples the optical millimeter wave signal and the optical carrier signal into the same optical fiber, and the coupled optical signal is amplified by the optical fiber amplifier, and then transmitted to the optical filter through the single-mode optical fiber;
步骤七、所述有线端的光滤波器对携带不同数据的耦合光信号进行分离,其中,分离后的光毫米波信号入射到第一光电探测器中,生成电毫米波信号,电毫米波信号通过第一功率放大器放大后,再通过发射天线转换为无线的电毫米波信号,发送到空间;同时,分离后的光载波信号依次通过第二光电探测器和第二功率放大器后,再通过第一信号处理器进行信号处理,恢复出有线数据信号;Step 7. The optical filter at the wired end separates the coupled optical signals carrying different data, wherein the separated optical millimeter-wave signal is incident on the first photodetector to generate an electrical millimeter-wave signal, and the electrical millimeter-wave signal passes through. After the first power amplifier is amplified, it is converted into a wireless electric millimeter wave signal through the transmitting antenna and sent to the space; at the same time, the separated optical carrier signal passes through the second photodetector and the second power amplifier in sequence, and then passes through the first power amplifier. The signal processor performs signal processing to recover the wired data signal;
步骤八、所述移动端的接收天线接收空间中无线的电毫米波信号,接收到的电毫米波信号通过第三功率放大器放大后,再通过第二信号处理器进行信号处理,恢复出无线数据信号。Step 8: The receiving antenna of the mobile terminal receives the wireless electric millimeter wave signal in the space. After the received electric millimeter wave signal is amplified by the third power amplifier, the signal is processed by the second signal processor to recover the wireless data signal. .
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明系统结构设计合理,实现方便。1. The system structure of the present invention is reasonable in design and convenient in implementation.
2、本发明采用偏振复用调制器代替现有单MZM调制器或双MZM调制器,利用第二MZM调制器将有线信号调制到中心光载波上,利用第一MZM调制器产生的光学毫米波信号实现无线信号的传输,由于采用了偏振复用双MZM调制器结构,两个MZM调制器产生的光信号为一对相互正交的偏振光,因此,两种信号可独立产生矢量信号或非矢量信号,并且在传输过程中不会相互干扰;此外,由于两种光信号的偏振方向彼此正交,在接收端,对分离这两种光信号的光学滤波器的性能要求不高,即使光学滤波器无法完全分开这两种信号,也不影响信号的接收,从而使得信道具有较高的信噪比,进一步降低了系统的构造成本。2. The present invention uses a polarization multiplexing modulator to replace the existing single MZM modulator or dual MZM modulator, uses the second MZM modulator to modulate the wired signal on the central optical carrier, and uses the optical millimeter wave generated by the first MZM modulator. The signal realizes the transmission of wireless signals. Due to the polarization multiplexing dual MZM modulator structure, the optical signals generated by the two MZM modulators are a pair of mutually orthogonal polarized lights. Therefore, the two signals can independently generate vector signals or non-polarized light. vector signals, and will not interfere with each other during transmission; in addition, since the polarization directions of the two optical signals are orthogonal to each other, at the receiving end, the performance of the optical filter that separates the two optical signals is not high, even if the optical The filter cannot completely separate the two signals, nor does it affect the reception of the signal, so that the channel has a higher signal-to-noise ratio and further reduces the construction cost of the system.
3、本发明能够有效应用在大容量有线和无线混合传输通信中,降低了信号生成传输系统的构造成本,信号传输高效稳定,使用效果好,便于推广使用。3. The present invention can be effectively applied in large-capacity wired and wireless hybrid transmission communication, reduces the construction cost of a signal generation and transmission system, has efficient and stable signal transmission, good use effect, and is easy to popularize and use.
综上所述,本发明系统结构设计合理,实现方便,能够有效应用在大容量有线和无线混合传输通信中,降低了信号生成传输系统的构造成本,信号传输高效稳定,使用效果好,便于推广使用。To sum up, the system of the present invention has reasonable structure design, convenient implementation, can be effectively applied in large-capacity wired and wireless mixed transmission communication, reduces the construction cost of the signal generation and transmission system, has efficient and stable signal transmission, good use effect, and is easy to popularize. use.
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be further described in detail below through the accompanying drawings and embodiments.
附图说明Description of drawings
图1为本发明的系统结构原理框图;Fig. 1 is the system structure principle block diagram of the present invention;
图2为本发明无线信号和有线信号在不同的光载波入射光功率情况下的误码率曲线。FIG. 2 is a bit error rate curve of a wireless signal and a wired signal of the present invention under the condition of different optical carrier incident optical powers.
附图标记说明:Explanation of reference numbers:
1—分布反馈激光器; 2—本地振荡器; 3—偏振复用调制器;1—distributed feedback laser; 2—local oscillator; 3—polarization multiplexing modulator;
3-1—第一MZM调制器; 3-2—第二MZM调制器; 3-3—偏振光分束器;3-1—first MZM modulator; 3-2—second MZM modulator; 3-3—polarized beam splitter;
3-4—偏振光合束器; 4—第一码型变换器; 5—第二码型变换器;3-4—polarized beam combiner; 4—first code converter; 5—second code converter;
6—偏振控制器; 7—倍频器; 8—混频器;6—polarization controller; 7—frequency multiplier; 8—mixer;
9—第一射频放大器; 10—第二射频放大器; 11—第一直流偏置电源;9—the first radio frequency amplifier; 10—the second radio frequency amplifier; 11—the first DC bias power supply;
12—第二直流偏置电源; 13—光纤放大器; 14—光滤波器;12—second DC bias power supply; 13—fiber amplifier; 14—optical filter;
15—第一光电探测器; 16—第二光电探测器; 17—第一功率放大器;15—the first photodetector; 16—the second photodetector; 17—the first power amplifier;
18—发射天线; 19—第二功率放大器; 20—第一信号处理器;18—transmitting antenna; 19—second power amplifier; 20—first signal processor;
21—接收天线; 22—第三功率放大器; 23—第二信号处理器。21—receiving antenna; 22—third power amplifier; 23—second signal processor.
具体实施方式Detailed ways
如图1所示,本发明的基于偏振复用双MZM调制器的信号生成传输系统,包括同时生成有线信号和无线信号的中心机房端和与中心机房端进行有线传输的有线端,以及与有线端进行无线传输的移动端;所述中心机房端包括分布反馈激光器1、本地振荡器2和偏振复用调制器3,以及用于将无线数据信号变换为基带电信号的第一码型变换器4和用于将有线数据信号变换为基带电信号的第二码型变换器5;所述偏振复用调制器3集成有第一MZM调制器3-1、第二MZM调制器3-2、偏振光分束器3-3和偏振光合束器3-4,所述第一MZM调制器3-1和第二MZM调制器3-2均与偏振光分束器3-3的输出端连接,所述第一MZM调制器3-1和第二MZM调制器3-2均与偏振光合束器3-4的输入端连接,所述分布反馈激光器1的输出端接有偏振控制器6,所述偏振光分束器3-3与偏振控制器6的输出端连接,所述本地振荡器2的输出端接有倍频器7,所述倍频器7的输出端接有混频器8,所述第一码型变换器4与混频器8的输入端连接,所述混频器8的输出端接有第一射频放大器9,所述第一MZM调制器3-1与第一射频放大器9的输出端连接,所述第二码型变换器5的输出端接有第二射频放大器10,所述第二MZM调制器3-2与第二射频放大器10的输出端连接,所述第一MZM调制器3-1的输入端接有第一直流偏置电源11,所述第二MZM调制器3-2的输入端接有第二直流偏置电源12,所述偏振光合束器3-4的输出端接有光纤放大器13;所述有线端包括光滤波器14,所述光滤波器14与光纤放大器13的输出端连接,所述光滤波器14的输出端接有第一光电探测器15和第二光电探测器16,所述第一光电探测器15的输出端接有第一功率放大器17,所述第一功率放大器17的输出端接有发射天线18,所述第二光电探测器16的输出端接有第二功率放大器19,所述第二功率放大器19的输出端接有第一信号处理器20;所述移动端包括用于接收发射天线18发射的无线信号的接收天线21,所述接收天线21的输出端接有第三功率放大器22,所述第三功率放大器22的输出端接有第二信号处理器23。As shown in FIG. 1, the signal generation and transmission system based on polarization multiplexing dual MZM modulators of the present invention includes a central computer room end that generates wired signals and wireless signals at the same time, a wired end that performs wired transmission with the central computer room end, and a wired end The mobile terminal for wireless transmission at the terminal; the central computer room terminal includes a distributed feedback laser 1, a local oscillator 2 and a polarization multiplexing modulator 3, and a first code type converter for converting wireless data signals into baseband electrical signals 4 and the second code type converter 5 for converting the wired data signal into a baseband electrical signal; the polarization multiplexing modulator 3 is integrated with the first MZM modulator 3-1, the second MZM modulator 3-2, The polarizing beam splitter 3-3 and the polarizing beam combiner 3-4, the first MZM modulator 3-1 and the second MZM modulator 3-2 are both connected to the output end of the polarizing beam splitter 3-3 , the first MZM modulator 3-1 and the second MZM modulator 3-2 are all connected with the input end of the polarization beam combiner 3-4, and the output end of the distributed feedback laser 1 is connected with a polarization controller 6, The polarization beam splitter 3-3 is connected with the output end of the polarization controller 6, the output end of the local oscillator 2 is connected with a frequency multiplier 7, and the output end of the frequency doubler 7 is connected with a mixer 8. The
本实施例中,所述光纤放大器13为保偏掺铒光纤放大器。In this embodiment, the
本实施例中,所述偏振光分束器3-3与第一MZM调制器3-1之间、所述偏振光分束器3-3与第二MZM调制器3-2之间、所述第一MZM调制器3-1与偏振光合束器3-4之间和所述第二MZM调制器3-2与偏振光合束器3-4之间均通过保偏单模光纤连接。In this embodiment, between the polarization beam splitter 3-3 and the first MZM modulator 3-1, between the polarization beam splitter 3-3 and the second MZM modulator 3-2, The first MZM modulator 3-1 and the polarization beam combiner 3-4 and between the second MZM modulator 3-2 and the polarization beam combiner 3-4 are connected through polarization maintaining single-mode fibers.
具体实施时,通过保偏单模光纤确保了光信号在各器件之间传输过程中偏振方向不变。During specific implementation, the polarization-maintaining single-mode fiber ensures that the polarization direction of the optical signal remains unchanged during the transmission process between the devices.
本实施例中,所述分布反馈激光器1与偏振控制器6之间、所述偏振控制器6与偏振光分束器3-3之间、所述偏振光合束器3-4与光纤放大器13之间和所述光纤放大器13与光滤波器14之间均通过单模光纤连接。In this embodiment, between the distributed feedback laser 1 and the
本实施例中,所述发射天线18和接收天线21均为卡塞格伦天线。In this embodiment, the transmitting
本发明的基于偏振复用双MZM调制器的信号生成和传输的方法,包括以下步骤:The method for signal generation and transmission based on polarization multiplexing dual MZM modulators of the present invention comprises the following steps:
步骤一、所述分布反馈激光器1发射出频率为fc的相干连续的光源信号,通过偏振控制器6对光信号进行偏振控制后,光信号入射到偏振复用调制器3中;Step 1, the distributed feedback laser 1 emits a coherent and continuous light source signal with a frequency f c , and after the
具体实施时,偏振控制器6能够调节分离后的两束偏振光的光功率。During specific implementation, the
步骤二、所述偏振复用调制器3中的偏振光分束器3-3对光信号进行偏振态分离,分离后的两路光信号分别入射到第一MZM调制器3-1和第二MZM调制器3-2中,所述第一直流偏置电源11将第一MZM调制器3-1直流偏置在最小传输点,所述第二直流偏置电源12将第二MZM调制器3-2直流偏置在正交点;Step 2: The polarization beam splitter 3-3 in the
步骤三、所述第一码型变换器4将待传输的无线数据信号变换为基带电信号,基带电信号经高频同轴电缆传输至混频器8中;同时,所述本地振荡器2产生频率为fs的正弦或余弦射频信号,射频信号通过倍频器7作用,射频信号被提升整数倍,变为nfs,然后经高频同轴电缆传输至混频器8中,与基带电信号进行混频,得到射频电信号;Step 3: The
具体实施时,第一码型变换器4将待传输的无线数据信号变换为基带电信号,电信号可以是矢量信号,也可以是非矢量信号。During specific implementation, the first
步骤四、所述第一射频放大器9对射频电信号进行放大,放大后射频电信号驱动第一MZM调制器3-1,所述第一MZM调制器3-1对放大后的射频电信号进行载波抑制,生成用于传输无线信号的光毫米波信号,光毫米波信号传输至偏振光合束器3-4中;Step 4: The first
具体实施时,由于第一MZM调制器3-1被直流偏置在最小传输点,因而工作在载波抑制模式,因此,在第一MZM调制器3-1的光输出端,中心光载波被抑制掉,在中心光载波的两侧,产生了许多光学边带信号,无线数据被调制这些光学边带信号上,其中频率间隔为2nfs的正负一阶边带信号占据了边带光信号的主要能量,利用这对光学边带信号作为光毫米波信号,用于传输无线信号。In specific implementation, since the first MZM modulator 3-1 is DC biased at the minimum transmission point, it works in the carrier suppression mode. Therefore, at the optical output end of the first MZM modulator 3-1, the central optical carrier is suppressed On both sides of the central optical carrier, many optical sideband signals are generated, and the wireless data is modulated on these optical sideband signals, and the positive and negative first-order sideband signals with a frequency interval of 2nf s occupy the sideband optical signal. The main energy, using this pair of optical sideband signals as an optical millimeter wave signal, is used to transmit wireless signals.
步骤五、所述第二码型变换器5将待传输的有线数据信号变换为基带电信号,基带电信号经高频同轴电缆传输至第二射频放大器10中进行放大,放大后的基带电信号直接驱动第二MZM调制器3-2,生成光载波信号,传输至偏振光合束器3-4中;Step 5: The second code type converter 5 converts the wired data signal to be transmitted into a baseband electrical signal, and the baseband electrical signal is transmitted to the second
具体实施时,第二码型变换器5将待传输的有线数据信号变换为基带电信号,电信号可以是矢量信号,也可以是非矢量信号;由于第二MZM调制器3-2被偏置在正交点,因此,基带电信号被直接调制在光中心载波上。During specific implementation, the second code type converter 5 converts the wired data signal to be transmitted into a baseband electrical signal, and the electrical signal may be a vector signal or a non-vector signal; since the second MZM modulator 3-2 is biased at The quadrature point, therefore, the baseband electrical signal is directly modulated on the optical center carrier.
步骤六、所述偏振光合束器3-4将光毫米波信号和光载波信号耦合进同一根光纤,耦合光信号经过光纤放大器13放大后,通过单模光纤传输至光滤波器14中;Step 6: The polarized optical beam combiner 3-4 couples the optical millimeter wave signal and the optical carrier signal into the same optical fiber, and the coupled optical signal is amplified by the
步骤七、所述有线端的光滤波器14对携带不同数据的耦合光信号进行分离,其中,分离后的光毫米波信号入射到第一光电探测器15中,生成电毫米波信号,电毫米波信号通过第一功率放大器17放大后,再通过发射天线18转换为无线的电毫米波信号,发送到空间;同时,分离后的光载波信号依次通过第二光电探测器16和第二功率放大器19后,再通过第一信号处理器20进行信号处理,恢复出有线数据信号;Step 7. The
具体实施时,分离后的光毫米波信号入射到与之带宽匹配的第一光电探测器15中,第一光电探测器15根据平方检测定律,两个一阶边带信号(光毫米波)会发生外差拍频,从而产生一个电毫米波信号,电毫米波信号的频率等于两个光毫米波信号的频率差,即2nfs。In specific implementation, the separated optical millimeter wave signal is incident on the
步骤八、所述移动端的接收天线21接收空间中无线的电毫米波信号,接收到的电毫米波信号通过第三功率放大器22放大后,再通过第二信号处理器23进行信号处理,恢复出无线数据信号。Step 8: The receiving
为了验证本发明能够产生的技术效果,对本发明的基于偏振复用双MZM调制器的信号生成传输系统进行同时产生和传输10Gbps有线信号和4Gbps无线信号的实验,分布反馈激光器1发射1551.07nm的连续光波,其线宽小于100kHz,发射功率10dBm,偏振复用调制器3在1GHz下的半波电压约为3.5v,它的3dB带宽为25GHz,插入损耗为6dB,消光比为20dB,本地振荡器2产生一个频率为19.11GHz的余弦信号,经过一个2倍的倍频器7放大至38.22GHz,然后与一个具有峰峰值电压为0.5V、速率为4Gbps的无线信号在混频器8中进行混频,经过混频后的信号被一个饱和输出功率为30dBm、频率响应范围为36~41GHz的第一射频放大器9放大,产生的载波复用信号直接驱动偏振复用调制器3内的第一MZM调制器3-1,第一MZM调制器3-1被第一直流偏置电源11直流偏置在在其最小传输点上,实现了载波抑制调制,产生了一对光学边带信号,边带信号的频率间隔为76.44GHz;另一路具有峰峰值电压为0.5V、速率为10Gbps的有线信号,被一个饱和输出功率为30dBm、频率响应范围为0~40GHz的第二射频放大器10放大,然后直接驱动偏振复用调制器3内的第二MZM调制器3-2,第二MZM调制器3-2被第二直流偏置电源12直流偏置在正交点上,因此有线信号直接调制到光载波上;产生的光学边带信号和光载波信号被偏振光合束器3-4耦合进单模光纤后,利用一个掺铒光纤放大器对其功率进行提升至11dBm,然后通过单模光纤传输至有线端。In order to verify the technical effect that the present invention can produce, an experiment of simultaneously generating and transmitting a 10Gbps wired signal and a 4Gbps wireless signal is carried out on the signal generation and transmission system based on the polarization multiplexing dual MZM modulator of the present invention. The distributed feedback laser 1 emits a 1551.07nm continuous Lightwave, its linewidth is less than 100kHz, the transmit power is 10dBm, the half-wave voltage of the
在有线端,利用一个分辨率为50/100GHz的光滤波器14对光载波和光学边带信号进行分离,分离后的光学边带信号进入一个3dB带宽为75GHz的第一光电探测器15进行外差拍频,得到一个76.44GHz的电毫米波信号,电毫米波信号随后被一个W波段(75~110GHz)的电子放大器(第一功率放大器17)进行放大,然后利用发射天线18将电毫米波信号发射至移动端;另一路被光滤波器14分离的光载波信号,直接进入一个3dB带宽为15GHz的第二光电探测器16探测,然后利用判决电路单元可以恢复出二进制电平信号,实现有线数据信号的传输。At the wired end, an
在移动终端,利用另一个与发射天线18相同的卡塞格伦天线(接收天线21)接收无线毫米波信号,接收到的毫米波信号再次被一个频率为0~30GHz、功率为20dB的第三功率放大器22进行放大,接下来,利用第二信号处理器23完成包络检测,通过判决电路单元即可以恢复出二进制电平信号,实现无线数据信号的传输。In the mobile terminal, another Cassegrain antenna (receiving antenna 21 ) identical to the transmitting
从图2中能够看出,有线信号和无线信号通过增加发射光功率,均能够实现无误码率传输。It can be seen from FIG. 2 that both wired signals and wireless signals can realize bit error rate-free transmission by increasing the transmit optical power.
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。The above are only preferred embodiments of the present invention and do not limit the present invention. Any simple modifications, changes and equivalent structural changes made to the above embodiments according to the technical essence of the present invention still belong to the technology of the present invention. within the scope of the program.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010247673.2A CN111416662B (en) | 2020-03-31 | 2020-03-31 | Signal Generation and Transmission Method Based on Polarization Multiplexing Dual MZM Modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010247673.2A CN111416662B (en) | 2020-03-31 | 2020-03-31 | Signal Generation and Transmission Method Based on Polarization Multiplexing Dual MZM Modulator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111416662A true CN111416662A (en) | 2020-07-14 |
CN111416662B CN111416662B (en) | 2021-06-25 |
Family
ID=71494726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010247673.2A Active CN111416662B (en) | 2020-03-31 | 2020-03-31 | Signal Generation and Transmission Method Based on Polarization Multiplexing Dual MZM Modulator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111416662B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112039597A (en) * | 2020-08-19 | 2020-12-04 | 西安电子科技大学 | Optical generation method and device for 16-frequency millimeter wave signal |
CN113098614A (en) * | 2021-03-12 | 2021-07-09 | 西安邮电大学 | Polarization multiplexing single sideband signal generating and receiving system and method |
CN113890629A (en) * | 2021-10-20 | 2022-01-04 | 网络通信与安全紫金山实验室 | Terahertz signal receiving device, method and signal transmission system |
CN114793306A (en) * | 2022-04-06 | 2022-07-26 | 上海穹窿科技有限公司 | Optical switching device based on high-speed space optical communication without beacon |
CN117254859A (en) * | 2023-11-17 | 2023-12-19 | 鹏城实验室 | Coherent light transmission method and coherent light transmission system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102629887A (en) * | 2012-05-09 | 2012-08-08 | 电子科技大学 | Full-duplex radio-over-fiber (RoF) access device |
US20140064102A1 (en) * | 2012-09-05 | 2014-03-06 | Ciena Corporation | Systems and methods for noise tolerant signal processing in pilot assisted data receivers |
CN104935385A (en) * | 2014-03-19 | 2015-09-23 | 中兴通讯股份有限公司 | Techniques for blind equalization of high-order quadrature amplitude modulation signals |
CN105721060A (en) * | 2016-01-13 | 2016-06-29 | 北京邮电大学 | Bidirectional multi-service access ROF transmission system and method for realizing carrier wave reuse by applying polarization multiplexing |
CN107171732A (en) * | 2017-04-17 | 2017-09-15 | 西安电子科技大学 | A kind of microwave photon zero intermediate frequency reception device and method |
CN208369590U (en) * | 2018-07-23 | 2019-01-11 | 华北水利水电大学 | Full duplex wire and wireless hybrid optical access system based on palarization multiplexing |
-
2020
- 2020-03-31 CN CN202010247673.2A patent/CN111416662B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102629887A (en) * | 2012-05-09 | 2012-08-08 | 电子科技大学 | Full-duplex radio-over-fiber (RoF) access device |
US20140064102A1 (en) * | 2012-09-05 | 2014-03-06 | Ciena Corporation | Systems and methods for noise tolerant signal processing in pilot assisted data receivers |
CN104935385A (en) * | 2014-03-19 | 2015-09-23 | 中兴通讯股份有限公司 | Techniques for blind equalization of high-order quadrature amplitude modulation signals |
CN105721060A (en) * | 2016-01-13 | 2016-06-29 | 北京邮电大学 | Bidirectional multi-service access ROF transmission system and method for realizing carrier wave reuse by applying polarization multiplexing |
CN107171732A (en) * | 2017-04-17 | 2017-09-15 | 西安电子科技大学 | A kind of microwave photon zero intermediate frequency reception device and method |
CN208369590U (en) * | 2018-07-23 | 2019-01-11 | 华北水利水电大学 | Full duplex wire and wireless hybrid optical access system based on palarization multiplexing |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112039597A (en) * | 2020-08-19 | 2020-12-04 | 西安电子科技大学 | Optical generation method and device for 16-frequency millimeter wave signal |
CN112039597B (en) * | 2020-08-19 | 2021-05-28 | 西安电子科技大学 | Optical generation method and device for 16-frequency millimeter wave signal |
CN113098614A (en) * | 2021-03-12 | 2021-07-09 | 西安邮电大学 | Polarization multiplexing single sideband signal generating and receiving system and method |
WO2022188241A1 (en) * | 2021-03-12 | 2022-09-15 | 西安邮电大学 | Polarization multiplexing single sideband signal generation and receiving system and method |
CN113890629A (en) * | 2021-10-20 | 2022-01-04 | 网络通信与安全紫金山实验室 | Terahertz signal receiving device, method and signal transmission system |
CN113890629B (en) * | 2021-10-20 | 2023-03-24 | 网络通信与安全紫金山实验室 | Terahertz signal receiving device and method and signal transmission system |
CN114793306A (en) * | 2022-04-06 | 2022-07-26 | 上海穹窿科技有限公司 | Optical switching device based on high-speed space optical communication without beacon |
CN117254859A (en) * | 2023-11-17 | 2023-12-19 | 鹏城实验室 | Coherent light transmission method and coherent light transmission system |
Also Published As
Publication number | Publication date |
---|---|
CN111416662B (en) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111416662B (en) | Signal Generation and Transmission Method Based on Polarization Multiplexing Dual MZM Modulator | |
CN112532325B (en) | Multi-dimensional multiplexing photon terahertz communication system | |
US10009138B2 (en) | Radio-over-fibre transmission in communications networks | |
CN113765589B (en) | A terahertz wireless optical fiber extension device and its real-time transmission system | |
CN111464240B (en) | Vector radio frequency signal generation system based on polarization multiplexing intensity modulator | |
CN108631870A (en) | A kind of microwave homogenous frequency signal AF panel and down coversion reception device and method | |
CN110798268B (en) | Microwave signal optical fiber transmission method with high spectral efficiency and optimized power fading | |
US11984931B2 (en) | System for generating and receiving polarization multiplexed single sideband signal and method therefor | |
WO2022089268A1 (en) | Signal receiving apparatus and signal receiving method | |
CN107340666A (en) | A kind of vector signal means of upconversion based on optical-electronic oscillator | |
US20240022333A1 (en) | Photonics-aided vector terahertz signal communication system | |
CN115913371A (en) | Photon-assisted terahertz optical fiber wireless communication real-time transmission system | |
CN113740833A (en) | Microwave photon radar communication integrated system and method | |
CN105680949A (en) | In-band full-duplex radio over fiber communication system based on wavelength division multiplexing | |
CN111327364B (en) | System and method for generating vector signal by cascading intensity modulator and IQ modulator | |
CN101001114A (en) | Full duplex fibre-optical radio communication system of simple structure | |
CN111585660A (en) | Terahertz wave signal generator based on dual-polarization MZM modulator and communication system | |
Wang et al. | Seamless integration of a fiber-THz wireless-fiber 2X2 MIMO broadband network | |
CN106877934B (en) | Carrier suppression mode radio-on-fiber vector wave system based on phase factor optimization | |
CN107819524A (en) | The light-operated transmission method of Multiple Superposition state radio frequency orbital angular momentum signal, system | |
CN114465669B (en) | Intermediate frequency signal and millimeter wave signal mixed transmission system and method | |
CN115276803B (en) | A full-duplex optical wireless communication method and system | |
CN108631881B (en) | Coherent light device | |
CN111555812B (en) | Device and system for simultaneously generating wired and wireless signals by adopting dual-polarization MZM modulator | |
CN116232462A (en) | An optical domain self-interference cancellation and anti-dispersion transmission device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20200714 Assignee: Xi'an Weiqin Network Technology Co.,Ltd. Assignor: XI'AN University OF POSTS & TELECOMMUNICATIONS Contract record no.: X2022980017945 Denomination of invention: Signal Generation and Transmission Method Based on Polarization Multiplexing Dual MZM Modulator Granted publication date: 20210625 License type: Common License Record date: 20221011 |