CN111416155A - Oxide solid electrolyte material and preparation method and application thereof - Google Patents
Oxide solid electrolyte material and preparation method and application thereof Download PDFInfo
- Publication number
- CN111416155A CN111416155A CN202010157145.8A CN202010157145A CN111416155A CN 111416155 A CN111416155 A CN 111416155A CN 202010157145 A CN202010157145 A CN 202010157145A CN 111416155 A CN111416155 A CN 111416155A
- Authority
- CN
- China
- Prior art keywords
- electrolyte material
- solid electrolyte
- oxide
- oxide solid
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 65
- 239000000463 material Substances 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title claims abstract description 28
- 229920000642 polymer Polymers 0.000 claims abstract description 32
- 238000000498 ball milling Methods 0.000 claims abstract description 27
- 238000001035 drying Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 18
- 239000002001 electrolyte material Substances 0.000 claims abstract description 17
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000010304 firing Methods 0.000 claims abstract description 8
- 230000008569 process Effects 0.000 claims abstract description 8
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001195 gallium oxide Inorganic materials 0.000 claims abstract description 7
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims abstract description 7
- 229910052808 lithium carbonate Inorganic materials 0.000 claims abstract description 7
- 239000003960 organic solvent Substances 0.000 claims abstract description 5
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 18
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical group CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 13
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 claims description 10
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 10
- 239000003792 electrolyte Substances 0.000 claims description 9
- 238000005119 centrifugation Methods 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 7
- 239000000945 filler Substances 0.000 claims description 6
- 238000000227 grinding Methods 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 abstract description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052733 gallium Inorganic materials 0.000 abstract description 4
- 239000001301 oxygen Substances 0.000 abstract description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052746 lanthanum Inorganic materials 0.000 abstract description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 239000000470 constituent Substances 0.000 abstract description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 28
- 238000010586 diagram Methods 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 2
- -1 Lithium imide Chemical class 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910021525 ceramic electrolyte Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000703 high-speed centrifugation Methods 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
本发明涉及一种氧化物固态电解质材料及其制备方法与应用,氧化物固态电解质材料的制备方法为:1)将碳酸锂、氧化镧及氧化镓溶解在有机溶剂中,球磨后离心、干燥;2)在870‑930℃进行一次空烧,之后收集粉末并研磨压片;3)在950‑1050℃进行二次空烧,得到Li19La36Ga7O74氧化物固态电解质材料。与现有技术相比,本发明以锂、镧、镓和氧作为组成元素,通过在低温下的固相合成反应,制备得到一种氧化物固态电解质材料,其形貌特征均匀规则,La、Ga和O元素有效地分散在电解质材料中,具有较高的离子电导率,将其应用于聚合物固态电解质并组装成电池,能够有效提升电池的电化学性能,且制备工艺温度低,合成过程简单。
The invention relates to an oxide solid electrolyte material and a preparation method and application thereof. The preparation method of the oxide solid electrolyte material is as follows: 1) dissolving lithium carbonate, lanthanum oxide and gallium oxide in an organic solvent, centrifuging and drying after ball milling; 2) carry out an air-fired at 870-930 ℃, then collect the powder and grind and press it into tablets; 3) carry out a second air-firing at 950-1050 ℃ to obtain Li 19 La 36 Ga 7 O 74 oxide solid electrolyte material. Compared with the prior art, the present invention uses lithium, lanthanum, gallium and oxygen as constituent elements to prepare an oxide solid-state electrolyte material through solid-phase synthesis reaction at low temperature, and its morphology and characteristics are uniform and regular. Ga and O elements are effectively dispersed in the electrolyte material and have high ionic conductivity. Applying them to polymer solid electrolytes and assembling them into batteries can effectively improve the electrochemical performance of batteries, and the preparation process temperature is low, and the synthesis process Simple.
Description
技术领域technical field
本发明属于固态电解质材料技术领域,涉及一种氧化物固态电解质材料及其制备方法与应用。The invention belongs to the technical field of solid electrolyte materials, and relates to an oxide solid electrolyte material and a preparation method and application thereof.
背景技术Background technique
目前,商业锂离子电池主要采用有机电解液,其在非常规环境下存在漏液、燃烧、爆炸等安全隐患。基于无机固体陶瓷电解质的固态电池对解决传统液态电池存在的安全问题具有重要意义。一般来说,固态电解质应具备高锂离子电导率、宽化学窗口和对电极材料良好的化学稳定性。At present, commercial lithium-ion batteries mainly use organic electrolytes, which have potential safety hazards such as liquid leakage, combustion, and explosion in unconventional environments. Solid-state batteries based on inorganic solid ceramic electrolytes are of great significance to solve the safety problems of traditional liquid batteries. In general, solid-state electrolytes should possess high Li-ion conductivity, wide chemical window, and good chemical stability against electrode materials.
研究较多的石榴石结构锂离子固体电解质(Li7La3Zr2O12,LLZO)具备高电导率(近10-4S cm-1)、对金属锂稳定、电化学窗口宽(0-4V)等优点,是下一代高安全性固态锂电池的候选电解质材料之一。但其烧结温度较高,通常为1100℃以上,并且目前基于LLZO陶瓷的固态电池的研究工作较少,电池性能表现不好,仍然需要大量的探索和改进。The garnet-structured lithium ion solid electrolyte (Li 7 La 3 Zr 2 O 12 , LLZO), which has been widely studied, has high electrical conductivity (nearly 10 -4 S cm -1 ), is stable to metallic lithium, and has a wide electrochemical window (0- 4V) and other advantages, it is one of the candidate electrolyte materials for the next generation of high-safety solid-state lithium batteries. However, its sintering temperature is relatively high, usually above 1100 °C, and the current research work on solid-state batteries based on LLZO ceramics is less, and the battery performance is not good, and still needs a lot of exploration and improvement.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种氧化物固态电解质材料及其制备方法与应用,本发明氧化物固态电解质材料的离子电导率高,烧结温度低,将其作为活性填料加入至聚合物固态电解质中,最终组装成电池,能够有效提升电池的电化学性能。The purpose of the present invention is to provide an oxide solid state electrolyte material and its preparation method and application in order to overcome the above-mentioned defects in the prior art. The oxide solid state electrolyte material of the present invention has high ionic conductivity and low sintering temperature. The active filler is added to the polymer solid electrolyte, and finally assembled into a battery, which can effectively improve the electrochemical performance of the battery.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
一种氧化物固态电解质材料的制备方法,该方法包括以下步骤:A preparation method of an oxide solid state electrolyte material, the method comprises the following steps:
1)将碳酸锂、氧化镧及氧化镓溶解在有机溶剂中,球磨后离心、干燥;1) Dissolving lithium carbonate, lanthanum oxide and gallium oxide in an organic solvent, centrifuging and drying after ball milling;
2)在870-930℃进行一次空烧,之后收集粉末并研磨压片;2) Carry out an air-fire at 870-930 ° C, then collect the powder and grind it into tablets;
3)在950-1050℃进行二次空烧,得到Li19La36Ga7O74氧化物固态电解质材料。3) Perform secondary air firing at 950-1050° C. to obtain Li 19 La 36 Ga 7 O 74 oxide solid electrolyte material.
进一步地,步骤1)中,所述的有机溶剂为异丙醇。Further, in step 1), the organic solvent is isopropanol.
进一步地,步骤1)中,所述的球磨为湿法球磨,球磨过程中,球磨转速为500-800r/min,球磨时间为24-48h。Further, in step 1), the ball milling is wet ball milling, and in the ball milling process, the ball milling speed is 500-800 r/min, and the ball milling time is 24-48 h.
进一步地,步骤1)中,离心过程中,离心转速为7000-9000r/min。Further, in step 1), in the centrifugation process, the centrifugation speed is 7000-9000 r/min.
进一步地,步骤1)中,干燥过程中,干燥温度为50-70℃,干燥时间为8-16h。Further, in step 1), in the drying process, the drying temperature is 50-70° C., and the drying time is 8-16 h.
进一步地,步骤2)中,所述的一次空烧的时间为4-6h;步骤3)中,所述的二次空烧的时间为4-6h。Further, in step 2), the time of the first empty burning is 4-6h; in step 3), the time of the second empty burning is 4-6h.
一种氧化物固态电解质材料,该材料采用所述的方法制备而成。An oxide solid state electrolyte material prepared by the method.
一种氧化物固态电解质材料的应用,所述的材料作为活性填料,用于制备聚合物固态电解质。An application of an oxide solid electrolyte material, the material is used as an active filler to prepare a polymer solid electrolyte.
一种PEO基聚合物固态电解质的制备方法,该方法为:将所述的氧化物固态电解质材料研磨成粉末状,并与PEO(聚氧化乙烯)、LiTFSI(二(三氟甲基磺酰)亚胺锂)一起加入至乙腈中,之后采用溶液浇筑法拉膜,即得到所述的PEO基聚合物固态电解质。PEO、LiTFSI与氧化物固态电解质材料的重量比为8:1:1-5。A preparation method of PEO-based polymer solid electrolyte, the method comprises: grinding the oxide solid electrolyte material into powder, and mixing PEO (polyethylene oxide), LiTFSI (bis(trifluoromethylsulfonyl) Lithium imide) was added to acetonitrile together, and then the solution was used to cast a Faradic membrane to obtain the PEO-based polymer solid electrolyte. The weight ratio of PEO, LiTFSI and oxide solid electrolyte material is 8:1:1-5.
一种PEO基聚合物固态电解质,该电解质采用所述的方法制备而成。A PEO-based polymer solid electrolyte is prepared by the method.
本发明中,一次空烧为在稍低高温下烧结,形成具有高锂离子电导率的立方相固态电解质,随之经过压片后更高温烧结,使电解质片具有更高致密度,从而更好地传输锂离子。In the present invention, the one-time air firing is sintering at a slightly lower temperature to form a cubic phase solid electrolyte with high lithium ion conductivity, and then sintering at a higher temperature after pressing, so that the electrolyte sheet has a higher density, thereby better transport lithium ions.
与现有技术相比,本发明以锂、镧、镓和氧作为组成元素,该四种元素形成的固态电解质可以具有更多的氧空位与锂离子传输通道,与目前的LLZO电解质相比,在制备工艺上可以通过在较低温下的固相合成反应,制备得到一种氧化物固态电解质材料,从而更易规模化,其形貌特征均匀规则,La、Ga和O元素有效地分散在电解质材料中,具有较高的离子电导率(10-4S/cm),将其应用于聚合物固态电解质并组装成电池,能够有效提升电池的电化学性能,且制备工艺温度低,合成过程简单。Compared with the prior art, the present invention uses lithium, lanthanum, gallium and oxygen as constituent elements, and the solid electrolyte formed by these four elements can have more oxygen vacancies and lithium ion transport channels. Compared with the current LLZO electrolyte, In the preparation process, an oxide solid-state electrolyte material can be prepared by a solid-phase synthesis reaction at a lower temperature, so that it is easier to scale, its morphology is uniform and regular, and La, Ga and O elements are effectively dispersed in the electrolyte material. It has high ionic conductivity (10 -4 S/cm) and is applied to polymer solid electrolytes and assembled into batteries, which can effectively improve the electrochemical performance of batteries, and the preparation process temperature is low, and the synthesis process is simple.
附图说明Description of drawings
图1为实施例1中制得的氧化物固态电解质材料的TEM图;1 is a TEM image of the oxide solid electrolyte material prepared in Example 1;
图2为实施例1中制得的氧化物固态电解质材料的EDS图;2 is an EDS diagram of the oxide solid state electrolyte material prepared in Example 1;
图3为实施例1中制得的氧化物固态电解质材料的XRD图;Fig. 3 is the XRD pattern of the oxide solid state electrolyte material obtained in Example 1;
图4为实施例1中制得的PEO基聚合物固态电解质的横截面与断面SEM图;4 is a cross-section and a cross-sectional SEM image of the PEO-based polymer solid electrolyte prepared in Example 1;
图5为实施例1中制得的氧化物固态电解质材料的阻抗图;5 is an impedance diagram of the oxide solid electrolyte material prepared in Example 1;
图6为实施例1中制得的PEO基聚合物固态电解质在60℃时的阻抗图;6 is an impedance diagram of the PEO-based polymer solid electrolyte prepared in Example 1 at 60°C;
图7为实施例1中制得的PEO基聚合物固态电解质组装而成的Li/PEO-LiTFSI-Li19/LiFePO4聚合物固态电池在70℃的倍率循环图。7 is a rate cycling diagram at 70°C of a Li/PEO-LiTFSI-Li19/LiFePO 4 polymer solid-state battery assembled with the PEO-based polymer solid-state electrolyte prepared in Example 1.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. This embodiment is implemented on the premise of the technical solution of the present invention, and provides a detailed implementation manner and a specific operation process, but the protection scope of the present invention is not limited to the following embodiments.
实施例1:Example 1:
一种氧化物固态电解质材料的制备方法为:将碳酸锂、氧化镧、氧化镓溶解在异丙醇中,用异丙醇湿法球磨24-48小时,球磨转速500-800r/min,在经过8000r/min高速离心后,60℃干燥12小时,然后900℃空烧5h,收集粉末研磨压片;然后950℃-1050℃空烧5h,得到Li19La36Ga7O74氧化物固态电解质材料。A preparation method of an oxide solid electrolyte material is as follows: dissolving lithium carbonate, lanthanum oxide and gallium oxide in isopropanol, wet ball milling with isopropanol for 24-48 hours, the ball milling speed is 500-800r/min, After high-speed centrifugation at 8000 r/min, drying at 60 °C for 12 hours, then air-fired at 900 °C for 5 h, the powder was collected and ground into tablets; then air-fired at 950 °C-1050 °C for 5 h to obtain Li 19 La 36 Ga 7 O 74 oxide solid electrolyte material .
一种掺杂Li19La36Ga7O74的PEO基聚合物固态电解质的制备方法为:将PEO、LiTFSI及Li19La36Ga7O74氧化物固态电解质材料粉末溶于乙腈,其重量比为8:1:1~5,之后采用溶液浇筑法拉膜,得到PEO基聚合物固态电解质。A preparation method of a PEO-based polymer solid electrolyte doped with Li 19 La 36 Ga 7 O 74 is as follows: PEO, LiTFSI and Li 19 La 36 Ga 7 O 74 oxide solid electrolyte material powder are dissolved in acetonitrile, and the weight ratio of the The ratio is 8:1:1 to 5, and then the Farad membrane is cast with a solution to obtain a PEO-based polymer solid electrolyte.
将得到的膜状PEO基聚合物固态电解质切片,并与磷酸铁锂材料、锂片组装成全电池。其中,磷酸铁锂材料的制备方法为:将磷酸铁锂、乙炔黑和粘结剂(聚偏二氟乙烯或聚四氟乙烯等)按质量比8:1:1研磨成浆,之后将浆液拉磨在铝箔上,并在80℃真空干燥一夜。将干燥后的磷酸铁锂材料材料裁剪成片,选用2032电池壳在手套箱中进行全电池组装。组装好的电池晾置一夜后,用蓝点进行电化学性能测试。The obtained film-like PEO-based polymer solid-state electrolyte is sliced and assembled with lithium iron phosphate material and lithium slices to form a full battery. Among them, the preparation method of the lithium iron phosphate material is: grinding lithium iron phosphate, acetylene black and a binder (polyvinylidene fluoride or polytetrafluoroethylene, etc.) into a slurry in a mass ratio of 8:1:1, and then grinding the slurry Pull mill on aluminum foil and vacuum dry overnight at 80 °C. The dried lithium iron phosphate material was cut into pieces, and a 2032 battery case was selected for full battery assembly in a glove box. After the assembled battery was left to dry overnight, the electrochemical performance was tested with blue dots.
图1为制得的氧化物固态电解质材料的TEM图。由图1可以看出,固态电解质粉末粒径为800×400nm,该粒径很小,在压片后更有利于固相中离子的传输。FIG. 1 is a TEM image of the prepared oxide solid electrolyte material. It can be seen from Figure 1 that the particle size of the solid electrolyte powder is 800 × 400 nm, which is very small and is more conducive to the transport of ions in the solid phase after tableting.
图2为制得的氧化物固态电解质材料的EDS图,可以看出,镧、镓、氧分布较为均匀。FIG. 2 is the EDS diagram of the prepared oxide solid electrolyte material. It can be seen that the distribution of lanthanum, gallium and oxygen is relatively uniform.
图3为制得的氧化物固态电解质材料的XRD图。由图3可以看出,所测物质的XRD峰与标准比对卡的主要峰基本吻合,说明成功合成Li19La36Ga7O74物质。FIG. 3 is an XRD pattern of the prepared oxide solid electrolyte material. It can be seen from Figure 3 that the XRD peaks of the measured substances are basically consistent with the main peaks of the standard comparison card, indicating that the Li 19 La 36 Ga 7 O 74 substance was successfully synthesized.
图4为制得的PEO基聚合物固态电解质的横截面与断面SEM图。由图4可以看出,横截面平整,Li19La36Ga7O74粉末均匀地分布在聚合物电解质膜中,由断面可以得出聚合物膜的厚度在120μm左右。FIG. 4 is a cross-section and a cross-sectional SEM image of the prepared PEO-based polymer solid electrolyte. It can be seen from Figure 4 that the cross section is flat, and the Li 19 La 36 Ga 7 O 74 powder is uniformly distributed in the polymer electrolyte membrane. From the cross section, it can be concluded that the thickness of the polymer membrane is about 120 μm.
图5为制得的氧化物固态电解质材料的阻抗图。由图5可以看出,由Li19La36Ga7O74压片后通过阻塞电极法所测得电解质片的阻抗值为830Ω,进而计算可得出电解质片的阻抗值在为8×10-4S/cm,大于目前应用广泛的LLZO型固态电解质。FIG. 5 is an impedance diagram of the prepared oxide solid electrolyte material. It can be seen from Figure 5 that the impedance value of the electrolyte sheet measured by the blocking electrode method after pressing Li 19 La 36 Ga 7 O 74 into a sheet is 830Ω, and then the impedance value of the electrolyte sheet can be calculated to be 8×10 − 4 S/cm, which is larger than the currently widely used LLZO-type solid electrolyte.
图6为制得的PEO基聚合物固态电解质在60℃时的阻抗图。由图6可以看出,图谱中左侧阻抗值为加入Li19La36Ga7O74粉末所测,小于右侧未加粉末的阻抗。说明加入Li19La36Ga7O74粉末后,体系的阻抗值变小,更有利于锂离子的传导。Figure 6 is an impedance diagram of the prepared PEO-based polymer solid electrolyte at 60°C. It can be seen from Figure 6 that the impedance value on the left side of the spectrum is measured by adding Li 19 La 36 Ga 7 O 74 powder, which is smaller than the impedance value on the right side without adding powder. It shows that after adding Li 19 La 36 Ga 7 O 74 powder, the impedance value of the system becomes smaller, which is more conducive to the conduction of lithium ions.
图7为制得的PEO基聚合物固态电解质组装而成的Li/PEO-LiTFSI-Li9/LiFePO4聚合物固态电池在70℃的倍率循环图。由图7可以看出,所组装聚合物固态电池具有很好的循环稳定性,在0.5C时也能保持较高的比容量,且每圈的容量损失较低,具有良好的倍率性能。Figure 7 is a rate cycling diagram of the Li/PEO-LiTFSI-Li9/LiFePO 4 polymer solid-state battery assembled with the prepared PEO-based polymer solid-state electrolyte at 70°C. It can be seen from Figure 7 that the assembled polymer solid-state battery has good cycle stability, can maintain a high specific capacity at 0.5C, and has a low capacity loss per cycle, and has good rate performance.
实施例2:Example 2:
一种氧化物固态电解质材料,其制备方法包括以下步骤:A kind of oxide solid state electrolyte material, its preparation method comprises the following steps:
1)将碳酸锂、氧化镧及氧化镓溶解在异丙醇中,湿法球磨后离心、干燥。球磨过程中,球磨转速为500r/min,球磨时间为48h;离心过程中,离心转速为7000r/min;干燥过程中,干燥温度为70℃,干燥时间为8h。1) Dissolve lithium carbonate, lanthanum oxide and gallium oxide in isopropanol, centrifuge and dry after wet ball milling. In the ball milling process, the ball milling speed is 500r/min, and the ball milling time is 48h; in the centrifugation process, the centrifugal speed is 7000r/min; in the drying process, the drying temperature is 70 ℃, and the drying time is 8h.
2)在930℃进行一次空烧4h,之后收集粉末并研磨压片;2) Carry out an air sintering at 930°C for 4 hours, then collect the powder and grind it into tablets;
3)在1050℃进行二次空烧4h,得到Li19La36Ga7O74氧化物固态电解质材料。3) Carry out secondary air firing at 1050° C. for 4 hours to obtain Li 19 La 36 Ga 7 O 74 oxide solid electrolyte material.
该材料作为活性填料,用于制备聚合物固态电解质。PEO基聚合物固态电解质的制备方法为:将氧化物固态电解质材料研磨成粉末状,并与PEO、LiTFSI一起加入至乙腈中,PEO、LiTFSI与氧化物固态电解质材料的重量比为8:1:5,之后采用溶液浇筑法拉膜,即得到PEO基聚合物固态电解质。The material is used as an active filler for the preparation of polymer solid electrolytes. The preparation method of the PEO-based polymer solid electrolyte is as follows: the oxide solid electrolyte material is ground into powder, and added to acetonitrile together with PEO and LiTFSI, and the weight ratio of PEO, LiTFSI and the oxide solid electrolyte material is 8:1: 5. After that, the Farad membrane is cast with the solution to obtain the PEO-based polymer solid electrolyte.
实施例3:Example 3:
一种氧化物固态电解质材料,其制备方法包括以下步骤:A kind of oxide solid state electrolyte material, its preparation method comprises the following steps:
1)将碳酸锂、氧化镧及氧化镓溶解在异丙醇中,湿法球磨后离心、干燥。球磨过程中,球磨转速为800r/min,球磨时间为24h;离心过程中,离心转速为9000r/min;干燥过程中,干燥温度为50℃,干燥时间为16h。1) Dissolve lithium carbonate, lanthanum oxide and gallium oxide in isopropanol, centrifuge and dry after wet ball milling. In the ball milling process, the ball milling speed is 800r/min, and the ball milling time is 24h; in the centrifugation process, the centrifugal speed is 9000r/min; in the drying process, the drying temperature is 50 ℃, and the drying time is 16h.
2)在870℃进行一次空烧6h,之后收集粉末并研磨压片;2) Carry out an air calcination at 870°C for 6h, then collect the powder and grind it into tablets;
3)在950℃进行二次空烧6h,得到Li19La36Ga7O74氧化物固态电解质材料。3) Perform secondary air firing at 950° C. for 6 hours to obtain Li 19 La 36 Ga 7 O 74 oxide solid electrolyte material.
该材料作为活性填料,用于制备聚合物固态电解质。PEO基聚合物固态电解质的制备方法为:将氧化物固态电解质材料研磨成粉末状,并与PEO、LiTFSI一起加入至乙腈中,PEO、LiTFSI与氧化物固态电解质材料的重量比为8:1:1,之后采用溶液浇筑法拉膜,即得到PEO基聚合物固态电解质。The material is used as an active filler for the preparation of polymer solid electrolytes. The preparation method of PEO-based polymer solid electrolyte is as follows: the oxide solid electrolyte material is ground into powder, and added to acetonitrile together with PEO and LiTFSI, and the weight ratio of PEO, LiTFSI and oxide solid electrolyte material is 8:1: 1. After that, the Farad membrane is cast with a solution to obtain a PEO-based polymer solid electrolyte.
实施例4:Example 4:
一种氧化物固态电解质材料,其制备方法包括以下步骤:A kind of oxide solid state electrolyte material, its preparation method comprises the following steps:
1)将碳酸锂、氧化镧及氧化镓溶解在异丙醇中,湿法球磨后离心、干燥。球磨过程中,球磨转速为600r/min,球磨时间为36h;离心过程中,离心转速为8000r/min;干燥过程中,干燥温度为60℃,干燥时间为12h。1) Dissolve lithium carbonate, lanthanum oxide and gallium oxide in isopropanol, centrifuge and dry after wet ball milling. In the ball milling process, the ball milling speed is 600r/min, and the ball milling time is 36h; in the centrifugation process, the centrifugal speed is 8000r/min; in the drying process, the drying temperature is 60 ℃, and the drying time is 12h.
2)在900℃进行一次空烧5h,之后收集粉末并研磨压片;2) Carry out an air sintering at 900°C for 5h, then collect the powder and grind it into tablets;
3)在1000℃进行二次空烧5h,得到Li19La36Ga7O74氧化物固态电解质材料。3) Carry out secondary air firing at 1000° C. for 5 hours to obtain Li 19 La 36 Ga 7 O 74 oxide solid electrolyte material.
该材料作为活性填料,用于制备聚合物固态电解质。PEO基聚合物固态电解质的制备方法为:将氧化物固态电解质材料研磨成粉末状,并与PEO、LiTFSI一起加入至乙腈中,PEO、LiTFSI与氧化物固态电解质材料的重量比为8:1:3,之后采用溶液浇筑法拉膜,即得到PEO基聚合物固态电解质。The material is used as an active filler for the preparation of polymer solid electrolytes. The preparation method of the PEO-based polymer solid electrolyte is as follows: the oxide solid electrolyte material is ground into powder, and added to acetonitrile together with PEO and LiTFSI, and the weight ratio of PEO, LiTFSI and the oxide solid electrolyte material is 8:1: 3. After that, the Farad membrane is cast with a solution to obtain a PEO-based polymer solid electrolyte.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The foregoing description of the embodiments is provided to facilitate understanding and use of the invention by those of ordinary skill in the art. It will be apparent to those skilled in the art that various modifications to these embodiments can be readily made, and the generic principles described herein can be applied to other embodiments without inventive step. Therefore, the present invention is not limited to the above-mentioned embodiments, and improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should all fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010157145.8A CN111416155B (en) | 2020-03-09 | 2020-03-09 | A kind of oxide solid electrolyte material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010157145.8A CN111416155B (en) | 2020-03-09 | 2020-03-09 | A kind of oxide solid electrolyte material and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111416155A true CN111416155A (en) | 2020-07-14 |
CN111416155B CN111416155B (en) | 2021-10-08 |
Family
ID=71492854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010157145.8A Active CN111416155B (en) | 2020-03-09 | 2020-03-09 | A kind of oxide solid electrolyte material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111416155B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112563575A (en) * | 2020-12-08 | 2021-03-26 | 上海电力大学 | Composite solid electrolyte with transition molybdenum trioxide as filler, preparation method and application |
CN112573563A (en) * | 2020-12-08 | 2021-03-30 | 上海电力大学 | Lithium ion negative electrode material, battery negative electrode sheet, preparation method and battery |
CN113161607A (en) * | 2021-02-04 | 2021-07-23 | 广西科技大学 | Preparation method of high-conductivity solid-state battery electrolyte for battery of energy storage charging system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108780920A (en) * | 2016-03-11 | 2018-11-09 | 休斯敦大学系统 | High ion conductivity Rechargeable solid state batteries with organic electrode |
CN109148948A (en) * | 2018-09-30 | 2019-01-04 | 武汉理工大学 | A kind of solid electrolyte and preparation method thereof of high-lithium ion conductivity |
CN109888374A (en) * | 2019-01-22 | 2019-06-14 | 华南理工大学 | A kind of multi-doped garnet-type solid electrolyte material and preparation method thereof |
CN110518280A (en) * | 2019-08-30 | 2019-11-29 | 山东大学 | The preparation method of coralliform LALZO a kind of and its application in all-solid-state battery |
US20200058933A1 (en) * | 2018-08-17 | 2020-02-20 | Apple Inc. | Coatings for cathode active materials |
-
2020
- 2020-03-09 CN CN202010157145.8A patent/CN111416155B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108780920A (en) * | 2016-03-11 | 2018-11-09 | 休斯敦大学系统 | High ion conductivity Rechargeable solid state batteries with organic electrode |
US20200058933A1 (en) * | 2018-08-17 | 2020-02-20 | Apple Inc. | Coatings for cathode active materials |
CN109148948A (en) * | 2018-09-30 | 2019-01-04 | 武汉理工大学 | A kind of solid electrolyte and preparation method thereof of high-lithium ion conductivity |
CN109888374A (en) * | 2019-01-22 | 2019-06-14 | 华南理工大学 | A kind of multi-doped garnet-type solid electrolyte material and preparation method thereof |
CN110518280A (en) * | 2019-08-30 | 2019-11-29 | 山东大学 | The preparation method of coralliform LALZO a kind of and its application in all-solid-state battery |
Non-Patent Citations (1)
Title |
---|
D.MAZZA, M.VALLINO,G.IVALDI: "STRUCTURE OF A NEW CUBIC PHASE IN THE La-Th-Li-0 SYSTEM", 《MATERIALS CHEMISTRY AND PHYSICS》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112563575A (en) * | 2020-12-08 | 2021-03-26 | 上海电力大学 | Composite solid electrolyte with transition molybdenum trioxide as filler, preparation method and application |
CN112573563A (en) * | 2020-12-08 | 2021-03-30 | 上海电力大学 | Lithium ion negative electrode material, battery negative electrode sheet, preparation method and battery |
CN113161607A (en) * | 2021-02-04 | 2021-07-23 | 广西科技大学 | Preparation method of high-conductivity solid-state battery electrolyte for battery of energy storage charging system |
Also Published As
Publication number | Publication date |
---|---|
CN111416155B (en) | 2021-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109830740B (en) | Solid electrolyte and all-solid-state battery | |
He et al. | Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery | |
CN111916822B (en) | A kind of co-sintering modified solid electrolyte ceramic sheet and preparation method thereof | |
TW202206375A (en) | Preparation method of composite solid-state electrolyte membrane, and all-solid-state lithium battery using the composite solid-state electrolyte membrane Preparing LaZrGa(OH)x metal hydroxide precursor by co-precipitation method using a continuous Taylor flow reactor | |
CN109742489B (en) | A kind of lithium-oxygen/air battery and preparation method thereof | |
CN109860958B (en) | Lithium-carbon dioxide battery and preparation method thereof | |
CN111416155A (en) | Oxide solid electrolyte material and preparation method and application thereof | |
CN103474723A (en) | Lithium-air battery and preparation method thereof | |
CN108365153A (en) | A kind of graphene-based porous carbon sheet material, preparation method and applications | |
CN111883725A (en) | Lithium ion battery lithium supplement ceramic diaphragm and preparation method thereof | |
CN110048170A (en) | A kind of preparation method of all solid lithium sulphur button cell | |
CN114388760A (en) | A kind of metal oxide nanosheet material and preparation method thereof and lithium ion battery | |
CN112467194B (en) | Organic-inorganic composite quasi-solid electrolyte and quasi-solid lithium battery | |
CN109286002B (en) | A kind of Melaleuca bark biomass carbon-loaded red phosphorus sodium ion battery anode material and preparation method thereof | |
CN111799502A (en) | Garnet-type solid-state composite electrolyte, preparation method and application | |
CN115991466A (en) | MOFs derived carbon aerogel, preparation method thereof and application thereof in lithium ion battery | |
CN113363490B (en) | Lithium secondary battery based on Li2O-containing positive electrode and active material-free negative electrode and preparation method thereof | |
CN107564736B (en) | The preparation method of all solid state asymmetric capacitor | |
CN103367721B (en) | A kind of preparation method of cobalt stannum carbon compound cathode materials | |
CN110620221A (en) | Sulfur-doped lithium titanate/graphene oxide composite material, and preparation method and application thereof | |
CN116845339A (en) | Solid electrolyte material, solid electrolyte, positive electrode material and preparation method thereof and sodium ion battery | |
CN110165196B (en) | NCM333ZIF-8 composite anode material and preparation method thereof | |
CN110556570A (en) | Lithium titanate lanthanum composite electrolyte material and preparation method thereof, composite pole piece and solid-state lithium ion battery | |
CN114864916A (en) | A kind of niobium pentoxide-coated graphite composite negative electrode material and preparation method thereof | |
CN109728345B (en) | Porous aromatic polymer with strong lithium storage ability and high proton transport efficiency, and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |