CN111415324A - Classification and identification method of spatial distribution characteristics of brain lesions based on magnetic resonance imaging - Google Patents

Classification and identification method of spatial distribution characteristics of brain lesions based on magnetic resonance imaging Download PDF

Info

Publication number
CN111415324A
CN111415324A CN201910737818.4A CN201910737818A CN111415324A CN 111415324 A CN111415324 A CN 111415324A CN 201910737818 A CN201910737818 A CN 201910737818A CN 111415324 A CN111415324 A CN 111415324A
Authority
CN
China
Prior art keywords
brain
lesion
image
template
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910737818.4A
Other languages
Chinese (zh)
Other versions
CN111415324B (en
Inventor
杨丽琴
夏威
李郁欣
耿道颖
李海庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huashan Hospital of Fudan University
Original Assignee
Huashan Hospital of Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huashan Hospital of Fudan University filed Critical Huashan Hospital of Fudan University
Priority to CN201910737818.4A priority Critical patent/CN111415324B/en
Publication of CN111415324A publication Critical patent/CN111415324A/en
Application granted granted Critical
Publication of CN111415324B publication Critical patent/CN111415324B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20104Interactive definition of region of interest [ROI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明属图像处理及应用技术领域,具体涉及一种基于磁共振成像的脑病灶图像空间分布特征的分类鉴别方法。本发明方法主要包括病灶分割、个体图像配准、空间标准化、标准空间模板个体化、病灶空间分布特征提取、特征筛选及建模等步骤,核心是通过在个体空间和标准空间的病灶的多种特征分析,构建一套脑病灶图像空间分布特征集的分析方法、并在此基础上使用机器学习进行特征筛选和建模。本方法可用于使用脑磁共振影像进行不同抗体、不同基因等原因导致的不同脑疾病或脑状态的脑病灶图像分类鉴别,为临床及科研提供有效的指导。The invention belongs to the technical field of image processing and application, and in particular relates to a method for classifying and identifying the spatial distribution characteristics of brain lesion images based on magnetic resonance imaging. The method of the present invention mainly includes the steps of lesion segmentation, individual image registration, spatial standardization, individualization of standard spatial template, feature extraction of spatial distribution of lesions, feature screening and modeling. Feature analysis, build a set of analysis methods for the spatial distribution of brain lesion images, and use machine learning to perform feature screening and modeling on this basis. This method can be used to classify and identify brain lesions of different brain diseases or brain states caused by different antibodies, different genes and other reasons using brain magnetic resonance imaging, and provide effective guidance for clinical and scientific research.

Description

基于磁共振成像的脑病灶图像空间分布特征的分类鉴别方法Classification and identification method of spatial distribution characteristics of brain lesions based on magnetic resonance imaging

技术领域technical field

本发明属图像处理及应用领域,具体涉及一种基于磁共振成像的脑病灶图像空间分布特征的分类鉴别方法。The invention belongs to the field of image processing and application, in particular to a method for classifying and identifying the spatial distribution characteristics of brain lesion images based on magnetic resonance imaging.

背景技术Background technique

现有技术中,在不同脑疾病或脑状态图像的分类鉴别方法中,脑磁共振成像技术由于其无创性、时效性、以及对脑部病灶优良的显示效果发挥着重要的作用。临床实践中,医生往往通过长期的临床经验,总结概括不同疾病的病灶在图像上表现出的不同特点,进行肉眼分类鉴别和报告。然而,该种基于经验的分类鉴别,存在效率低、难以发现病灶新特征、难以自动组合多个特征等缺点,在面对临床表现相似但基因或抗体等不同的疾病、不同症状或状态、缺少经验的新型疾病亚型或临床少见病来说,所述的脑病灶图像分类鉴别准确性和效率均出现大幅降低。In the prior art, in the classification and identification methods of different brain diseases or brain state images, brain magnetic resonance imaging technology plays an important role due to its non-invasiveness, timeliness, and excellent display effect on brain lesions. In clinical practice, doctors often summarize and summarize the different characteristics of lesions of different diseases on images through long-term clinical experience, and carry out visual classification, identification and reporting. However, this kind of experience-based classification and identification has shortcomings such as low efficiency, difficulty in discovering new features of lesions, and difficulty in automatically combining multiple features. For experienced new disease subtypes or clinically rare diseases, the accuracy and efficiency of the brain lesion image classification and identification are greatly reduced.

近年来发展的影像组学和深度学习方法提供了从数据分析角度进行脑病灶图像分类鉴别的思路。通常,深度学习方法[1]一般需要大量的数据,同时其结果往往不具有可解释性,因此不适用于相似疾病、少见病、新亚型等分类问题的小样本量和探索研究阶段;影像组学方法[2]基于影像病灶灰度信息,进行量化特征提取,包括统计特征、纹理特征、滤波特征等,然后采用机器学习方法进行模型构建;由于特征是人为定义和提取的,其结果具有可解释性;然而,传统影像组学往往只关注病灶本身的特征,而非其在脑部的空间分布特征。而事实上,根据临床和研究经验,不同基因型或抗体等导致的疾病,其病灶在脑部所处的空间位置和分布特征往往具有重要的差别,因此在分类鉴别中具有重要的意义。The radiomics and deep learning methods developed in recent years provide an idea for the classification and identification of brain lesions from the perspective of data analysis. Generally, deep learning methods [1] generally require a large amount of data, and the results are often not interpretable, so they are not suitable for small sample sizes and exploratory research stages of classification problems such as similar diseases, rare diseases, and new subtypes; The omics method [2] extracts quantitative features based on the grayscale information of image lesions, including statistical features, texture features, filtering features, etc., and then uses machine learning methods to build models; since features are artificially defined and extracted, the results have Interpretability; however, traditional radiomics often only focus on the characteristics of the lesions themselves, rather than their spatial distribution in the brain. In fact, according to clinical and research experience, diseases caused by different genotypes or antibodies often have important differences in the spatial location and distribution characteristics of the lesions in the brain, so they are of great significance in classification and identification.

目前尚未有系统的基于磁共振成像的脑病灶空间分布特征的分类鉴别方法。有研究报道关注到了部分空间分布特征,但是一般是通过医生或研究人员肉眼识别(如脑室旁有无病灶),然后进行标定和归纳计数[3]。这种依靠医生定性识别和计数的方式,一方面,提取的特征极为有限,而且不够客观,不同医生或研究人员判别结果之间存在差异;另一方面,未实现自动化,效率低。At present, there is no systematic method to classify and identify the spatial distribution characteristics of brain lesions based on magnetic resonance imaging. Some research reports have paid attention to some spatial distribution characteristics, but they are generally identified by doctors or researchers with the naked eye (such as the presence or absence of lesions next to the ventricles), and then calibrated and counted [3]. This method of relying on qualitative identification and counting of doctors, on the one hand, extracts very limited features and is not objective enough, and there are differences between the results of different doctors or researchers; on the other hand, it does not realize automation and is inefficient.

基于现有分类鉴别技术在病灶空间分布特征方面的不足,本申请的发明人拟提供一种基于磁共振成像的脑病灶图像的空间分布特征的分类鉴别方法,拟通过对磁共振成像脑病灶图像的多种类别空间分布特征进行计算和分析,获得适用于分类鉴别的模型和判别方法,尤其在不同基因或抗体等导致的不同疾病分类方面,为临床及科研提供有效的指导。Based on the shortcomings of the existing classification and identification technologies in terms of the spatial distribution characteristics of lesions, the inventor of the present application intends to provide a classification and identification method for the spatial distribution characteristics of brain lesion images based on magnetic resonance imaging. Calculate and analyze the spatial distribution characteristics of various categories, and obtain models and discrimination methods suitable for classification and identification, especially in the classification of different diseases caused by different genes or antibodies, which provides effective guidance for clinical and scientific research.

与本发明相关的现有技术有:The prior art related to the present invention includes:

[1]Najafabadi M M,Villanustre F,Khoshgoftaar T M,et al.Deep learningapplications and challenges in big data analytics[J].Journal of Big Data,2015,2(1):1.[1] Najafabadi M M, Villanustre F, Khoshgoftaar T M, et al. Deep learning applications and challenges in big data analytics [J]. Journal of Big Data, 2015, 2(1): 1.

[2]Ma X,Zhang L,Huang D,et al.Quantitative radiomic biomarkers fordiscrimination between neuromyelitis optica spectrum disorder and multiplesclerosis[J].Journal of Magnetic Resonance Imaging,2018.[2] Ma X, Zhang L, Huang D, et al.Quantitative radiomic biomarkers fordiscrimination between neuromyelitis optica spectrum disorder and multiplesclerosis[J].Journal of Magnetic Resonance Imaging, 2018.

[3]Jurynczyk M,Geraldes R,Probert F,et al.Distinct brain imagingcharacteristics of autoantibody-mediated CNS conditions and multiplesclerosis[J].Brain,2017,140(3):617-627.[3] Jurynczyk M, Geraldes R, Probert F, et al. Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiplesclerosis[J]. Brain, 2017, 140(3): 617-627.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于,基于现有分类鉴别技术在病灶空间分布特征方面的不足,提供一种基于磁共振成像的脑病灶图像空间分布特征的分类鉴别方法,本方法主要包括病灶分割、个体图像配准、空间标准化、标准空间模板个体化、病灶空间分布特征提取、特征筛选及建模等步骤(如图1所示)。本发明方法通过对磁共振成像脑病灶图像的多种类别空间分布特征进行计算和分析,获得适用于分类鉴别的模型和判别方法,尤其在不同基因或抗体等导致的不同疾病分类方面,为临床及科研提供有效的指导。The purpose of the present invention is to provide a method for classifying and identifying the spatial distribution characteristics of brain lesions based on magnetic resonance imaging based on the deficiencies of the existing classification and identification technologies in terms of the spatial distribution characteristics of lesions. The method mainly includes lesion segmentation, individual image matching Standardization, spatial standardization, individualization of standard spatial template, feature extraction of spatial distribution of lesions, feature screening and modeling (as shown in Figure 1). The method of the present invention obtains a model and a discrimination method suitable for classification and identification by calculating and analyzing the spatial distribution characteristics of various categories of brain lesion images in magnetic resonance imaging, especially in the classification of different diseases caused by different genes or antibodies. and scientific research to provide effective guidance.

具体地,本发明的基于磁共振成像的脑病灶图像空间分布特征的分类鉴别方法包括如下步骤:Specifically, the magnetic resonance imaging-based method for classifying and identifying the spatial distribution characteristics of brain lesion images of the present invention includes the following steps:

1)、病灶图像分割:1), lesion image segmentation:

1)-1,脑影像数据的准备和选择:至少G1、G2两组被试图像;对于每个被试个体,准备两种图像,图像一为“病灶显示图像”,从患者临床脑磁共振影像(包括但不限于T1加权像、T2加权像、FLAIR、DWI、ADC、SWI等)中,选择一种模态作为后续病灶分割的图像;图像二为“脑结构像”,一般选择T1加权图像;两种图像可以相同;1)-1, preparation and selection of brain imaging data: at least two groups of G1 and G2 test images; for each individual subject, two images are prepared, the first image is a "lesion display image", which is obtained from the patient's clinical brain magnetic resonance imaging. Among the images (including but not limited to T1-weighted images, T2-weighted images, FLAIR, DWI, ADC, SWI, etc.), one modality is selected as the image for subsequent lesion segmentation; the second image is "brain structure image", and T1-weighted image is generally selected image; both images can be the same;

1)-2,病灶分割:对“病灶显示图像”,使用图像分割软件、工具包和分割算法,包括但不限于MRI厂商提供的工作站和分割软件、MRIcro、MRIcron、MIPAV、ITK-SNAP、MITK、区域增长算法等,对全脑病灶进行分割,并保存为二值图像或数据,生成“病灶图像”;1)-2, Lesion segmentation: For the "lesion display image", use image segmentation software, toolkits and segmentation algorithms, including but not limited to workstations and segmentation software provided by MRI manufacturers, MRIcro, MRIcron, MIPAV, ITK-SNAP, MITK , regional growth algorithm, etc., to segment the whole brain lesion, and save it as a binary image or data to generate a "lesion image";

2)、个体图像配准:将个体的“脑结构像”与“病灶显示图像”进行刚性配准,可用的软件和方法包括但不限于SPM、FSL等;2) Individual image registration: Rigid registration of individual "brain structure image" and "lesion display image", available software and methods include but are not limited to SPM, FSL, etc.;

3)、空间标准化:将个体“脑结构像”配准到标准空间(如MNI标准空间、Talairach标准空间等),使用的软件和方法包括但不限于SPM、FSL、AFNI、ANTs、基于变形场的配准方法等;将此过程中产生的变换参数应用于“病灶图像”,并通过选择阈值(默认0.5,可选0~1),得到二值化的“标准空间病灶图像”;使用同样的软件和方法,将个体“脑结构像”与标准对称脑模板(左右脑空间完全对称的模板)进行配准,得到二值化的“对称空间病灶图像”;3) Space standardization: register the individual "brain structure image" to a standard space (such as MNI standard space, Talairach standard space, etc.), using software and methods including but not limited to SPM, FSL, AFNI, ANTs, based on deformation field registration method, etc.; the transformation parameters generated in this process are applied to the "lesion image", and the binarized "standard spatial lesion image" is obtained by selecting a threshold (0.5 by default, 0-1 optional); using the same The software and method of the individual "brain structure image" are registered with the standard symmetric brain template (the template with completely symmetrical left and right brain space), and the binarized "symmetric spatial lesion image" is obtained;

4)、标准空间模板个体化:该步骤适用于在后续5)-4-6步骤中,需要在个体空间计算分区特征的情况,如果在标准空间进行可省略;针对标准空间的分区模板(包括但不限于灰质模板、白质模板、脑脊液模板、大脑脑叶分区模板、幕下结构分区模板、AAL分区模板、Brodmann分区模板、HarvardOxford分区模板、胼胝体等白质分区、脑室模板、及中脑导水管等自制分区等),提取模板中每个分区为独立二值模板,利用步骤3中个体到标准空间的逆变换过程,将所有分区模板分别配准到个体空间,并通过选择阈值(默认0.5,可选0~1),得到每个分区对应的二值化的“个体空间分区图像”;4) Individualization of standard space template: This step is applicable to the situation that in the subsequent steps 5)-4-6, the partition feature needs to be calculated in the individual space, if it is carried out in the standard space, it can be omitted; for the partition template of the standard space (including But not limited to gray matter template, white matter template, cerebrospinal fluid template, cerebral lobe segmentation template, subtentorial structure segmentation template, AAL segmentation template, Brodmann segmentation template, HarvardOxford segmentation template, white matter segmentation such as corpus callosum, ventricle template, and midbrain aqueduct, etc. Partition, etc.), extract each partition in the template as an independent binary template, use the inverse transformation process of the individual to the standard space in step 3, register all the partition templates to the individual space, and select the threshold (default 0.5, optional) 0 to 1) to obtain the binarized "individual spatial partition image" corresponding to each partition;

5)、病灶空间分布特征提取:其中,建立如下几个类别的病灶空间分布特征集及其提取方法:5) Feature extraction of spatial distribution of lesions: Among them, the following categories of spatial distribution feature sets of lesions and their extraction methods are established:

5)-1,分布大小特征:使用个体空间“病灶图像”,根据体素间连通原则,提取单个2D或3D病灶,计算单个病灶的体积、最长径等大小特征;在此基础上,获得每个被试所有单个病灶的以上特征的最大值、平均值、总和、中位数、病灶个数、大病灶(如超过200mm3)的个数等统计特征,作为该被试的病灶分布大小特征集;5)-1, distribution size features: using the individual space "lesion image", according to the principle of inter-voxel connectivity, extract a single 2D or 3D lesion, and calculate the size features such as the volume and longest diameter of a single lesion; on this basis, obtain The maximum, mean, sum, median, number of lesions, and the number of large lesions (such as more than 200mm 3 ) of all the above characteristics of each subject for each individual lesion were taken as the distribution size of the subjects. feature set;

5)-2,对称性特征:使用“对称空间病灶图像”及相应的分区模板,在全脑及每组对称脑分区内部,分别计算病灶在左右半脑的对称性特征,包括单侧/双侧性(左/双/右侧分别标记为-1/0/1)、病灶在左右半脑的体素个数的差值或比值、度量分布相似性的Dice系数等;其中,某个病灶i的Dice系数定义为,对称病灶的左侧病灶(VL)或右侧病灶(VR)图像进行左右翻转后,二者病灶交集内体素个数与并集内体素个数之比的两倍,即5)-2, Symmetrical features: Using the "symmetric spatial lesion image" and the corresponding partition template, in the whole brain and within each group of symmetrical brain partitions, calculate the symmetrical features of the lesions in the left and right hemispheres, including unilateral/bilateral Laterality (marked as -1/0/1 on the left/double/right side respectively), the difference or ratio of the number of voxels in the left and right hemispheres of the lesion, the Dice coefficient to measure the similarity of distribution, etc.; The Dice coefficient of i is defined as the ratio of the ratio of the number of voxels in the intersection of the two lesions to the number of voxels in the union after the left-side (VL) or right-side (VR) images of symmetrical lesions are flipped left and right. times, that is

D(i)=2×|VL∩VR|/|VL∪VR|D(i)=2×|VL∩VR|/|VL∪VR|

5)-3,概率分布图特征:对每组被试,使用组内全部个体二值化的“标准空间病灶图像”,计算每个体素在组内非零值个数,除以组内个体总数,得到该组病灶空间概率分布图(体素值范围0~1,越靠近1代表该体素病灶存在概率越高),并通过选择阈值(默认0.2,可选0~1),得到该组的高概率分布图;定义某个被试i的病灶在M个组中的第g组的概率分布图特征值为,i的病灶区与第g组高概率分布病灶区交集中体素的个数与该病灶与其他组高概率分布病灶区交集个数之和的差值:5)-3, Probability distribution map features: For each group of subjects, use the binarized "standard spatial lesion image" of all individuals in the group, calculate the number of non-zero values in each voxel in the group, and divide by the individuals in the group The total number of lesions is obtained to obtain the spatial probability distribution map of the group of lesions (the voxel value ranges from 0 to 1, the closer to 1, the higher the probability of the voxel lesion exists), and the threshold value (default 0.2, optional 0 to 1) is obtained. The high probability distribution map of the group; defining the characteristic value of the probability distribution map of the gth group of the lesions of a subject i in the M groups, the value of the voxels in the intersection of the lesion area of i and the high probability distribution lesion area of the gth group The difference between the number and the sum of the number of intersections of this lesion and other groups with high probability distribution lesions:

Figure BSA0000187746030000041
Figure BSA0000187746030000041

以下步骤5)-4-6,可以使用“病灶图像”和“个体空间分区图像”在个体空间进行分析,也可以使用“标准空间病灶图像”和标准空间的分区模板在标准空间进行分析,或二者兼有;Following steps 5)-4-6, the analysis can be performed in the individual space using the "lesion image" and the "individual space partition image", or in the standard space using the "standard space lesion image" and the partition template of the standard space, or both;

5)-4,单个脑分区分布特征:针对每个单独的脑分区,计算被试的脑病灶在该分区内的分布特征:病灶在分区存在与否(存在为1,不存在为0)、病灶在分区的体积、病灶在分区体积占整个分区体积的比例等;5)-4, distribution characteristics of a single brain region: for each individual brain region, calculate the distribution characteristics of the subject's brain lesions in the region: whether the lesions exist in the region (1 for existence, 0 for non-existence), The volume of the lesion in the partition, the proportion of the volume of the lesion in the partition to the volume of the entire partition, etc.;

5)-5,脑区旁分布特征:针对感兴趣的标志性脑分区(如脑室、中脑导水管、胼胝体、白质区等),进行较小的区域膨胀操作(一般不超过5mm),生成脑区旁区域,并计算被试病灶针对相应脑区的脑区旁分布特征(如脑室旁、中脑导水管周围、近胼胝体、近白质区等),包括是否存在脑区旁病灶(存在为1,不存在为0)、脑区旁病灶体积等;5)-5, distribution characteristics of brain regions: For the landmark brain regions of interest (such as ventricle, midbrain aqueduct, corpus callosum, white matter area, etc.), small regional expansion operations (generally no more than 5mm) are performed to generate The para-brain area, and calculate the para-brain distribution characteristics of the tested lesions for the corresponding brain area (such as paraventricular, midbrain periaqueduct, near the corpus callosum, near the white matter, etc.), including the existence of para-brain lesions (the existence of 1, if it does not exist, it is 0), the volume of the lesions next to the brain region, etc.;

5)-6,跨脑区分布特征:根据上述步骤5)-4的结果,计算被试的脑病灶的跨脑区分布特征,包括所覆盖脑组织类别(灰质/白质/脑脊液)的个数和两两比例、覆盖脑分区个数等;5)-6, cross-brain distribution characteristics: According to the results of the above steps 5)-4, calculate the cross-brain distribution characteristics of the tested brain lesions, including the number of covered brain tissue types (gray matter/white matter/cerebrospinal fluid) and pairwise ratio, the number of brain regions covered, etc.;

6)、特征筛选及建模:6), feature screening and modeling:

6)-1,特征筛选:在步骤5)提取的病灶空间分布特征集基础上,采用机器学习中各类特征筛选方法进行特征的筛选;可使用的特征筛选方法包括方差选择、卡方检验、U检验、互信息、递归消除法、基于L1惩罚项/L2惩罚项/L1结合L2惩罚项的逻辑回归模型的特征选择方法(如LASSO方法)、穷举法等;其中一些方法(如LASSO方法),可同时进行特征筛选和生成分类鉴别模型,从而可合并6-(2)步骤;6)-1, feature screening: on the basis of the feature set of spatial distribution of lesions extracted in step 5), various feature screening methods in machine learning are used to screen features; available feature screening methods include variance selection, chi-square test, U test, mutual information, recursive elimination method, feature selection method of logistic regression model based on L1 penalty term/L2 penalty term/L1 combined with L2 penalty term (such as LASSO method), exhaustive method, etc.; some of these methods (such as LASSO method) ), can carry out feature screening and generate classification discrimination model at the same time, thus can combine 6-(2) steps;

6)-2,建立分类鉴别模型:将筛选后的被试病灶特征作为输入,将实际被试分组类别作为标签,对分类器进行训练,生成线性或非线性的分类鉴别模型;可使用的分类器包括逻辑回归、随机森林、支持向量机、人工神经网络等;在建立模型后,通过ROC曲线的AUC值、accuracy、sensitivity、specificity等值评估模型的分类鉴别效果。6)-2, establish a classification and identification model: take the characteristics of the subject lesions after screening as input, and use the actual subject grouping category as a label, train the classifier, and generate a linear or nonlinear classification and identification model; available classification The tools include logistic regression, random forest, support vector machine, artificial neural network, etc. After the model is established, the classification and discrimination effect of the model is evaluated by the AUC value, accuracy, sensitivity, specificity and other values of the ROC curve.

本发明提供了基于磁共振成像的脑病灶图像的空间分布特征的分类鉴别方法,通过对磁共振成像脑病灶图像的多种类别空间分布特征进行计算和分析,获得适用于分类鉴别的模型和判别方法,尤其在不同基因或抗体等导致的不同疾病分类方面,能为临床及科研提供有效的指导。The invention provides a method for classifying and discriminating the spatial distribution characteristics of brain lesion images based on magnetic resonance imaging. By calculating and analyzing the spatial distribution characteristics of various categories of brain lesion images in magnetic resonance imaging, a model and discriminant suitable for classification and discrimination are obtained. The method, especially in the classification of different diseases caused by different genes or antibodies, can provide effective guidance for clinical and scientific research.

附图说明Description of drawings

图1是基于磁共振成像脑病灶图像空间分布特征的分类鉴别方法流程图。Fig. 1 is a flowchart of a classification and identification method based on the spatial distribution characteristics of MRI brain lesion images.

图2显示了实施例1中MOG和AQP4组病灶分割和提取结果图。FIG. 2 shows the results of segmentation and extraction of lesions in the MOG and AQP4 groups in Example 1. FIG.

图3显示了实施例1的特征选择结果。Figure 3 shows the feature selection results of Example 1.

图4显示了实施例1的模型分类鉴别效果ROC曲线。FIG. 4 shows the ROC curve of the model classification discrimination effect of Example 1.

具体实施方式Detailed ways

实施例1 MOG抗体阳性和AQP4抗体阳性NMOSD患者的脑病灶图像空间分布特征的分类鉴别Example 1 Classification and identification of the spatial distribution characteristics of brain lesions in patients with MOG antibody positive and AQP4 antibody positive NMOSD patients

分类鉴别:Classification identification:

1)选择MOG抗体阳性和AQP4抗体阳性NMOSD两组病人的临床MRI图像,分别为28例和57例图像,每例含FLAIR图像作为“病灶显示图像”,和T1加权像作为“脑结构像”;1) The clinical MRI images of the two groups of patients with MOG antibody positive and AQP4 antibody positive NMOSD were selected, 28 cases and 57 cases, respectively, each containing FLAIR images as "lesion display images", and T1-weighted images as "brain structure images" ;

2)对FLAIR图像,使用MRIcron对全脑病灶进行分割,并保存为二值图像,作为“病灶图像”;2) For the FLAIR image, use MRIcron to segment the whole brain lesion, and save it as a binary image as a "lesion image";

3)使用SPM将个体的T1加权像与FLAIR像进行刚性配准;3) Rigid registration of individual T1-weighted images with FLAIR images using SPM;

4)使用SPM将个体T1加权像配准到MNI标准空间;将变换参数应用于FLAIR像,选择阈值0.5,得到二值化的“标准空间病灶图像”;4) Use SPM to register individual T1-weighted images to MNI standard space; apply transformation parameters to FLAIR images, and select a threshold of 0.5 to obtain a binarized "standard space lesion image";

5)使用个体空间“病灶图像”,提取单个3D病灶(如图2所示),计算单个病灶的体积;获得每个被试所有单个3D病灶的体积的最大值、平均值、总和、病灶个数、大病灶(超过200mm3)的个数;5) Using the individual space "lesion image", extract a single 3D lesion (as shown in Figure 2), and calculate the volume of a single lesion; obtain the maximum value, average value, sum, and number of lesions of all individual 3D lesions for each subject. number, the number of large lesions (over 200mm 3 );

6)针对每个单独的脑分区,计算被试的脑病灶在该分区内存在与否(存在为1,不存在为0)、病灶在分区的体积;6) For each individual brain partition, calculate whether the subject's brain lesion exists in the partition (1 for presence, 0 for non-existence), and the volume of the lesion in the partition;

7)计算被试的脑病灶所覆盖灰质和白质的比例、覆盖脑分区个数;7) Calculate the proportion of gray matter and white matter covered by the tested brain lesions and the number of brain regions covered;

8)特征筛选及建模:将步骤5所提取的特征作为输入,将实际被试分组类别作为标签(MOG组为1,AQP4组为0),使用LASSO方法,其中使用5-fold交叉验证,进行特征筛选和建模;最终模型包含9个参数,其中1个为常数,其余8个为空间分布特征(如图3所示)。8) Feature screening and modeling: The features extracted in step 5 are used as input, and the actual subject grouping category is used as a label (MOG group is 1, AQP4 group is 0), using the LASSO method, which uses 5-fold cross-validation, Perform feature screening and modeling; the final model contains 9 parameters, 1 of which is constant, and the remaining 8 are spatially distributed features (as shown in Figure 3).

结果显示,所建立的模型的ROC曲线的AUC=0.959,accuracy=0.959,sensitivity=1,specificity=0.86,具有很好的分类鉴别效果(如图4所示)。The results show that the ROC curve of the established model has AUC=0.959, accuracy=0.959, sensitivity=1, specificity=0.86, which has a good classification and discrimination effect (as shown in Figure 4).

Claims (7)

1.基于磁共振成像的脑病灶图像空间分布特征的分类鉴别方法,其特征在于,其包括步骤:1. a method for classifying and discriminating based on the spatial distribution feature of a brain lesion image of magnetic resonance imaging, it is characterized in that, it comprises the steps: 1)、病灶图像分割:1), lesion image segmentation: 2)、个体图像配准:采用SPM、FSL软件和方法,将个体的“脑结构像”与“病灶显示图像”进行刚性配准;2), individual image registration: using SPM, FSL software and methods, rigid registration of individual "brain structure image" and "lesion display image"; 3)、空间标准化:采用软件和方法SPM、FSL、AFNI、ANTs、基于变形场的配准方法,将个体“脑结构像”配准到标准空间将此过程中产生的变换参数应用于“病灶图像”,并通过选择阈值,得到二值化的“标准空间病灶图像”;使用同样的软件和方法,将个体“脑结构像”与标准对称脑模板进行配准,得到二值化的“对称空间病灶图像”;3) Spatial standardization: Using software and methods SPM, FSL, AFNI, ANTs, and deformation field-based registration methods, the individual "brain structure images" are registered to the standard space. image", and by selecting the threshold value, the binarized "standard spatial lesion image" was obtained; using the same software and method, the individual "brain structure image" was registered with the standard symmetric brain template, and the binarized "symmetrical image" was obtained. Spatial Lesion Image"; 4)、标准空间模板个体化:针对标准空间的分区模板,提取模板中每个分区为独立二值模板,利用步骤3中个体到标准空间的逆变换过程,将所有分区模板分别配准到个体空间,并通过选择阈值(默认0.5,可选0~1),得到每个分区对应的二值化的“个体空间分区图像”;4), standard space template individualization: for the partition template of the standard space, extract each partition in the template as an independent binary template, and use the inverse transformation process of the individual to the standard space in step 3 to register all the partition templates to the individual respectively. space, and by selecting the threshold (default 0.5, optional 0 to 1), the binarized "individual spatial partition image" corresponding to each partition is obtained; 5)、病灶空间分布特征提取:建立几个类别的病灶空间分布特征集及其提取方法:5) Feature extraction of spatial distribution of lesions: Establish several categories of spatial distribution feature sets of lesions and their extraction methods: 6)、特征筛选及建模。6), feature screening and modeling. 2.按权利要求1所述的方法,其特征在于,所述的步骤3)中,2. by the described method of claim 1, it is characterised in that in described step 3), 将个体“脑结构像”配准到MNI标准空间或Talairach标准空间;所述阈值默认0.5,为0~1;所述的标准对称脑模板为左右脑空间完全对称的模板。The individual "brain structure image" is registered to the MNI standard space or the Talairach standard space; the threshold is 0.5 by default, ranging from 0 to 1; the standard symmetrical brain template is a template that is completely symmetrical in the left and right brain spaces. 3.按权利要求1所述的方法,其特征在于,所述的步骤4)适用于后续5)-4-6步骤中需要在个体空间计算分区特征的情况;3. by the described method of claim 1, it is characterized in that, described step 4) is applicable to the situation that needs to calculate partition feature in individual space in follow-up 5)-4-6 steps; 所述的标准空间的分区模板包括但不限于灰质模板、白质模板、脑脊液模板、大脑脑叶分区模板、幕下结构分区模板、AAL分区模板、Brodmann分区模板、HarvardOxford分区模板、胼胝体白质分区、脑室模板、及中脑导水管自制分区。The partition templates of the standard space include but are not limited to gray matter template, white matter template, cerebrospinal fluid template, cerebral lobe partition template, subtentorial structure partition template, AAL partition template, Brodmann partition template, HarvardOxford partition template, corpus callosum partition template, ventricle template , and the self-made partition of the midbrain aqueduct. 4.按权利要求1所述的方法,其特征在于,所述步骤1)包含分步骤:4. by the described method of claim 1, it is characterized in that, described step 1) comprises sub-step: 1)-1,脑影像数据的准备和选择:至少G1、G2两组被试图像;对于每个被试个体,准备两种图像,图像一为“病灶显示图像”,从获得的患者临床脑磁共振影像包括但不限于T1加权像、T2加权像、FLAIR、DWI、ADC、SWI中,选择一种模态作为后续病灶分割的图像;图像二为“脑结构像”,选自T1加权图像;两种图像可以相同;1)-1, preparation and selection of brain imaging data: at least two groups of G1 and G2 test images; for each individual subject, two images are prepared. Magnetic resonance images include but are not limited to T1-weighted images, T2-weighted images, FLAIR, DWI, ADC, and SWI, and one modality is selected as the image for subsequent lesion segmentation; the second image is "brain structure image", which is selected from T1-weighted images ; Both images can be the same; 1)-2,病灶分割:对“病灶显示图像”,使用图像分割软件、工具包和分割算法,包括但不限于MRI厂商提供的工作站和分割软件、MRIcro、MRIcron、MIPAV、ITK-SNAP、MITK或区域增长算法,对全脑病灶图像进行分割,并保存为二值图像或数据,生成“病灶图像”。1)-2, Lesion segmentation: For the "lesion display image", use image segmentation software, toolkits and segmentation algorithms, including but not limited to workstations and segmentation software provided by MRI manufacturers, MRIcro, MRIcron, MIPAV, ITK-SNAP, MITK Or the regional growth algorithm, segment the whole brain lesion image, and save it as a binary image or data to generate a "lesion image". 5.按权利要求1所述的方法,其特征在于,所述步骤5)包含以下特征集的提取方法:5. by the described method of claim 1, it is characterized in that, described step 5) comprises the extraction method of following feature set: 5)-1,分布大小特征:使用个体空间“病灶图像”,根据体素间连通原则,提取单个2D或3D病灶,计算单个病灶图像的体积、最长径大小特征;获得每个被试所有单个病灶图像的以上特征的最大值、平均值、总和、中位数、病灶个数、超过200mm3的大病灶的个数统计特征,作为该被试的病灶图像分布大小特征集;5)-1, distribution size features: using individual space "lesion images", according to the principle of inter-voxel connectivity, extract a single 2D or 3D lesion, and calculate the volume and longest diameter size features of a single lesion image; obtain all The maximum value, average value, sum, median, number of lesions, and statistical features of the number of large lesions exceeding 200 mm 3 of the above features of a single lesion image are used as the feature set of the distribution size of the lesion image for the subject; 5)-2,对称性特征:使用“对称空间病灶图像”及相应的分区模板,在全脑及每组对称脑分区内部,分别计算病灶图像在左右半脑的对称性特征,包括单侧/双侧性,左/双/右侧分别标记为-1/0/1,病灶图像在左右半脑的体素个数的差值或比值、度量分布相似性的Dice系数;其中,某个病灶i的Dice系数定义为,对称病灶的左侧病灶(VL)或右侧病灶(VR)图像进行左右翻转后,二者病灶交集内体素个数与并集内体素个数之比的两倍,即5)-2, Symmetrical features: Using the "symmetrical spatial lesion image" and the corresponding partition template, in the whole brain and within each group of symmetrical brain partitions, respectively calculate the symmetrical features of the lesion image in the left and right hemispheres, including unilateral/ Bilateral, left/bilateral/right are marked as -1/0/1 respectively, the difference or ratio of the number of voxels of the lesion image in the left and right hemispheres, and the Dice coefficient to measure the similarity of distribution; The Dice coefficient of i is defined as the ratio of the ratio of the number of voxels in the intersection of the two lesions to the number of voxels in the union after the left-side (VL) or right-side (VR) images of symmetrical lesions are flipped left and right. times, that is D(i)=2×|VL∩VR|/|VL∪VR|D(i)=2×|VL∩VR|/|VL∪VR| 5)-3,概率分布图特征:对每组被试,使用组内全部个体二值化的“标准空间病灶图像”,计算每个体素在组内非零值个数,除以组内个体总数,得到该组病灶空间概率分布图,其中体素值范围0~1,越靠近1代表该体素病灶存在概率越高,并通过选择阈值,默认0.2,可选0~1,得到该组的高概率分布图;定义某个被试i的病灶在M个组中的第g组的概率分布图特征值为,i的病灶区与第g组高概率分布病灶区交集中体素的个数与该病灶与其他组高概率分布病灶区交集个数之和的差值:5)-3, Probability distribution map features: For each group of subjects, use the binarized "standard spatial lesion image" of all individuals in the group, calculate the number of non-zero values in each voxel in the group, and divide by the individuals in the group The total number of lesions is obtained to obtain the spatial probability distribution map of the group of lesions, in which the voxel value ranges from 0 to 1, and the closer to 1, the higher the probability of the voxel lesion exists. The characteristic value of the probability distribution map of the group g of the lesion of a subject i in the M groups is defined as the number of voxels in the intersection of the lesion area of i and the high probability distribution lesion area of the group g. The difference between the number and the sum of the number of intersections of this lesion and other groups with high probability distribution lesions:
Figure FSA0000187746020000021
Figure FSA0000187746020000021
以下步骤5)-4-6,可以使用“病灶图像”和“个体空间分区图像”在个体空间进行分析,或使用“标准空间病灶图像”和标准空间的分区模板在标准空间进行分析,或二者兼有;Following steps 5)-4-6, you can use "lesion image" and "individual space partition image" to analyze in individual space, or use "standard space lesion image" and partition template of standard space to analyze in standard space, or two both; 5)-4,单个脑分区分布特征:针对每个单独的脑分区,计算被试的脑病灶图像在该分区内的分布特征:病灶在分区存在与否,存在为1,不存在为0、病灶在分区的体积、病灶在分区体积占整个分区体积的比例;5)-4, distribution characteristics of a single brain region: for each individual brain region, calculate the distribution features of the subject's brain lesion image in the region: whether the lesion exists in the region, the presence is 1, the absence is 0, The volume of the lesion in the partition, the proportion of the volume of the lesion in the partition to the volume of the entire partition; 5)-5,脑区旁分布特征:针对感兴趣的标志性脑分区,如脑室、中脑导水管、胼胝体、白质区,进行较小的区域膨胀操作,不超过5mm,生成脑区旁区域,并计算被试病灶针对相应脑区的脑区旁分布特征,包括脑室旁、中脑导水管周围、近胼胝体和近白质区,包括是否存在脑区旁病灶,存在为1,不存在为0,和脑区旁病灶体积;5)-5, distribution characteristics of parabrain areas: for the landmark brain areas of interest, such as ventricle, midbrain aqueduct, corpus callosum, and white matter area, perform small regional expansion operations, no more than 5mm, to generate parabrain areas , and calculate the para-brain distribution characteristics of the tested lesions for the corresponding brain regions, including the paraventricular, midbrain aqueduct, near the corpus callosum, and near the white matter area, including the presence of para-brain lesions, with the presence of 1 and the absence of 0 , and the volume of adjacent lesions in the brain region; 5)-6,跨脑区分布特征:根据步骤5)-4的结果,计算被试的脑病灶图像的跨脑区分布特征,包括所覆盖脑组织类别:灰质/白质/脑脊液的个数和两两比例、覆盖脑分区个数。5)-6, cross-brain distribution characteristics: According to the results of steps 5)-4, calculate the cross-brain distribution characteristics of the brain lesion images of the subjects, including the types of brain tissue covered: the number of gray matter/white matter/cerebrospinal fluid and Pairwise ratio, covering the number of brain regions.
6.按权利要求1所述的方法,其特征在于,所述步骤6)包含以下分步骤:6. by the described method of claim 1, it is characterized in that, described step 6) comprises following substep: 6)-1,特征筛选:在步骤5)提取的病灶图像空间分布特征集基础上,采用机器学习中各类特征筛选方法进行特征的筛选;使用的特征筛选方法包括方差选择、卡方检验、U检验、互信息、递归消除法、基于L1惩罚项/L2惩罚项/L1结合L2惩罚项的逻辑回归模型的特征选择方法或穷举法;其中的LASSO方法可同时进行特征筛选和生成分类鉴别模型,从而可合并6-(2)步骤;6)-1, feature screening: on the basis of the feature set of the spatial distribution of the lesion image extracted in step 5), various feature screening methods in machine learning are used to screen features; the feature screening methods used include variance selection, chi-square test, U test, mutual information, recursive elimination method, feature selection method or exhaustive method of logistic regression model based on L1 penalty term/L2 penalty term/L1 combined with L2 penalty term; the LASSO method can simultaneously perform feature screening and generate classification identification model so that steps 6-(2) can be incorporated; 6)-2,建立分类鉴别模型:将筛选后的被试病灶图像特征作为输入,将实际被试分组类别作为标签,对分类器进行训练,生成线性或非线性的分类鉴别模型;所使用的分类器包括逻辑回归、随机森林、支持向量机或人工神经网络;6)-2, establish a classification and identification model: take the screened image features of the tested lesions as input, and use the actual subject grouping categories as labels to train the classifier to generate a linear or non-linear classification and identification model; Classifiers include logistic regression, random forests, support vector machines or artificial neural networks; 在建立模型后,通过ROC曲线的AUC值、accuracy、sensitivity、specificity值评估模型的分类鉴别效果。After the model is established, the classification and discrimination effect of the model is evaluated by the AUC value, accuracy, sensitivity, and specificity value of the ROC curve. 7.按权利要求6所述的方法,其特征在于,所述步骤6)-1中的逻辑回归模型的特征选择方法为LASSO方法。7. The method according to claim 6, wherein the feature selection method of the logistic regression model in the step 6)-1 is the LASSO method.
CN201910737818.4A 2019-08-09 2019-08-09 Classification and identification method for brain disease focus image space distribution characteristics based on magnetic resonance imaging Active CN111415324B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910737818.4A CN111415324B (en) 2019-08-09 2019-08-09 Classification and identification method for brain disease focus image space distribution characteristics based on magnetic resonance imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910737818.4A CN111415324B (en) 2019-08-09 2019-08-09 Classification and identification method for brain disease focus image space distribution characteristics based on magnetic resonance imaging

Publications (2)

Publication Number Publication Date
CN111415324A true CN111415324A (en) 2020-07-14
CN111415324B CN111415324B (en) 2024-03-08

Family

ID=71494186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910737818.4A Active CN111415324B (en) 2019-08-09 2019-08-09 Classification and identification method for brain disease focus image space distribution characteristics based on magnetic resonance imaging

Country Status (1)

Country Link
CN (1) CN111415324B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112075927A (en) * 2020-10-15 2020-12-15 首都医科大学附属北京天坛医院 Method and device for classifying causes of cerebral apoplexy
CN112651976A (en) * 2020-10-13 2021-04-13 首都医科大学附属北京天坛医院 Focal region brain network determination method and system based on low-resolution nuclear magnetic data
CN113066113A (en) * 2021-04-27 2021-07-02 河北医科大学第二医院 Method and equipment for constructing spontaneous hypertensive rat brain template and map set
CN113192014A (en) * 2021-04-16 2021-07-30 深圳市第二人民医院(深圳市转化医学研究院) Training method, device, electronic equipment and medium for improving ventricle segmentation model
CN113283465A (en) * 2021-04-02 2021-08-20 电子科技大学 Diffusion tensor imaging data analysis method and device
CN113842210A (en) * 2021-08-02 2021-12-28 应葵 Vertebral tumor microwave ablation operation simulation method and device
CN118097245A (en) * 2024-02-20 2024-05-28 深圳市儿童医院 Brain nodule load generation method based on MRI and related equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106156484A (en) * 2016-06-08 2016-11-23 中国科学院自动化研究所 Disease of brain individuation Forecasting Methodology based on nuclear magnetic resonance image and system
WO2017210873A1 (en) * 2016-06-08 2017-12-14 中国科学院自动化研究所 Individualized brain disease prediction method and system based on magnetic resonance imaging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106156484A (en) * 2016-06-08 2016-11-23 中国科学院自动化研究所 Disease of brain individuation Forecasting Methodology based on nuclear magnetic resonance image and system
WO2017210873A1 (en) * 2016-06-08 2017-12-14 中国科学院自动化研究所 Individualized brain disease prediction method and system based on magnetic resonance imaging

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
庞清华等: "基于VBM-DARTEL的局灶性皮质发育不良脑灰质体积异常检测方法", 《中国医学物理学杂志》 *
张衡等: "纹理分析在甲状腺结节影像学中的研究进展", 《中国医学计算机成像杂志》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112651976A (en) * 2020-10-13 2021-04-13 首都医科大学附属北京天坛医院 Focal region brain network determination method and system based on low-resolution nuclear magnetic data
CN112651976B (en) * 2020-10-13 2022-07-19 首都医科大学附属北京天坛医院 Method and system for determination of brain network in lesion area based on low-resolution MRI data
CN112075927B (en) * 2020-10-15 2024-05-14 首都医科大学附属北京天坛医院 Etiology classification method and device for cerebral apoplexy
CN112075927A (en) * 2020-10-15 2020-12-15 首都医科大学附属北京天坛医院 Method and device for classifying causes of cerebral apoplexy
CN113283465B (en) * 2021-04-02 2022-04-29 电子科技大学 Diffusion tensor imaging data analysis method and device
CN113283465A (en) * 2021-04-02 2021-08-20 电子科技大学 Diffusion tensor imaging data analysis method and device
CN113192014B (en) * 2021-04-16 2024-01-30 深圳市第二人民医院(深圳市转化医学研究院) Training method and device for improving ventricle segmentation model, electronic equipment and medium
CN113192014A (en) * 2021-04-16 2021-07-30 深圳市第二人民医院(深圳市转化医学研究院) Training method, device, electronic equipment and medium for improving ventricle segmentation model
CN113066113B (en) * 2021-04-27 2022-01-11 河北医科大学第二医院 Construction method and equipment of brain template and atlas of spontaneously hypertensive rats
CN113066113A (en) * 2021-04-27 2021-07-02 河北医科大学第二医院 Method and equipment for constructing spontaneous hypertensive rat brain template and map set
CN113842210A (en) * 2021-08-02 2021-12-28 应葵 Vertebral tumor microwave ablation operation simulation method and device
CN118097245A (en) * 2024-02-20 2024-05-28 深圳市儿童医院 Brain nodule load generation method based on MRI and related equipment
CN118097245B (en) * 2024-02-20 2025-01-14 深圳市儿童医院 Brain nodule load generation method based on MRI and related equipment

Also Published As

Publication number Publication date
CN111415324B (en) 2024-03-08

Similar Documents

Publication Publication Date Title
CN111415324A (en) Classification and identification method of spatial distribution characteristics of brain lesions based on magnetic resonance imaging
Naser et al. Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images
Tong et al. Multi-modal classification of Alzheimer's disease using nonlinear graph fusion
Chaddad et al. Deep radiomic analysis of MRI related to Alzheimer’s disease
CN111047589B (en) Attention-enhanced brain tumor auxiliary intelligent detection and identification method
Zou et al. Three validation metrics for automated probabilistic image segmentation of brain tumours
CN102855491B (en) A kind of central brain functional magnetic resonance image classification Network Based
Ahirwar Study of techniques used for medical image segmentation and computation of statistical test for region classification of brain MRI
US8831327B2 (en) Systems and methods for tissue classification using attributes of a biomarker enhanced tissue network (BETN)
CN102509123B (en) Brain function magnetic resonance image classification method based on complex network
CN109697718A (en) A kind of self-closing disease detection method and device based on graph theory
CN103020653B (en) Structure and function magnetic resonance image united classification method based on network analysis
CN113177943B (en) A CT image segmentation method for stroke
CN105726026A (en) Mild cognitive impairment disease classifying method based on brain network and brain structure information
CN110097128B (en) Medical image classification device and system
CN108510507A (en) A kind of 3D vertebra CT image active profile dividing methods of diffusion-weighted random forest
CN106485707B (en) Multidimensional characteristic classification method based on brain magnetic resonance imaging image
Nigro et al. Fully automated segmentation of the pons and midbrain using human T1 MR brain images
CN106127263A (en) The human brain magnetic resonance image (MRI) classifying identification method extracted based on three-dimensional feature and system
US20190080146A1 (en) Systems and methods for automatic generation of training sets for machine interpretation of images
Xue et al. Knowledge-based segmentation and labeling of brain structures from MRI images
Pallast et al. Atlas-based imaging data analysis tool for quantitative mouse brain histology (AIDAhisto)
CN110136840B (en) A medical image classification method, device and computer-readable storage medium based on self-weighted hierarchical biometric features
Kumar et al. E-fuzzy feature fusion and thresholding for morphology segmentation of brain MRI modalities
Hu et al. A GLCM embedded CNN strategy for computer-aided diagnosis in intracerebral hemorrhage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant