CN111413642A - 一种变压器突然短路试验的冲击补偿电路 - Google Patents

一种变压器突然短路试验的冲击补偿电路 Download PDF

Info

Publication number
CN111413642A
CN111413642A CN202010285050.4A CN202010285050A CN111413642A CN 111413642 A CN111413642 A CN 111413642A CN 202010285050 A CN202010285050 A CN 202010285050A CN 111413642 A CN111413642 A CN 111413642A
Authority
CN
China
Prior art keywords
transformer
frequency
alternating current
circuit
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010285050.4A
Other languages
English (en)
Inventor
郑志曜
李志�
高一波
杨瀚鹏
余绍峰
吴钢
林建钦
劳增江
盛况
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Keliyuan Energy Technology Co ltd
State Grid Corp of China SGCC
Zhejiang Huadian Equipment Inspection Institute
State Grid Zhejiang Electric Power Co Ltd
Original Assignee
Beijing Keliyuan Energy Technology Co ltd
State Grid Corp of China SGCC
Zhejiang Huadian Equipment Inspection Institute
State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Keliyuan Energy Technology Co ltd, State Grid Corp of China SGCC, Zhejiang Huadian Equipment Inspection Institute, State Grid Zhejiang Electric Power Co Ltd filed Critical Beijing Keliyuan Energy Technology Co ltd
Priority to CN202010285050.4A priority Critical patent/CN111413642A/zh
Publication of CN111413642A publication Critical patent/CN111413642A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

本发明公开了一种变压器突然短路试验的冲击补偿电路,旨在提供一种支持大功率、复合型、宽频段的大容量变压器抗短路试验时对接入配电网影响的装置。它包括50Hz、380V的工频交流电源,拓扑相同的工频交直交整流逆变电路和高频交直交整流逆变电路,高频变压器,以及工频变压器;所述50Hz、380V工频交流电源的两端分别接至工频交直交整流逆变电路的输入端和高频交直交整流逆变电路的输入端,所述工频交直交整流逆变电路的输出端接工频输出变压器的输入端,所述高频交直交整流逆变电路的输出端接高频输出变压器的输入端,所述高频变压器的输出端和工频变压器的输出端串联后构成重组输出电压;所述重组输出电压作为一种变压器突然短路试验的冲击补偿电路的输出信号。本发明具有冲击补偿功率大、组合多、频带宽、损耗小、温升低等优点。

Description

一种变压器突然短路试验的冲击补偿电路
技术领域
本发明属于变压器抗短路试验技术领域,特别是提供了一种变压器突然短路试验的冲击补偿电路。
背景技术
在电网运行中的电力变压器发生短路故障,幅值巨大的绕组短路电流与漏磁场相互发生作用,会在绕组上形成数值很大的电动力,该电动力将对绕组和其它结构件产生影响,可能引起变压器内部绕组变形,甚至引起匝间短路导致电力变压器发生故障,使电网安全运行水平下降。
近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上,不断提升的电网安全对变压器抗短路能力提出越来越高的要求;另一方面,变压器原材料价格和行业人工成本上涨的同时,变压器市场价格却在降低,使得变压器质量受到广泛关注。根据近5 年系统变压器事故原因统计分析,抗短路能力不足是造成变压器损坏的首要原因。因此,通过变压器的突发短路试验来检验变压器短路强度显得尤为重要。
变压器突发短路试验需要具有提供冲击性短路容量的电源,目前有三种技术方案。一是采用冲击发电机作为电源。这个方案应用最广、案例最多、历史悠久,技术成熟。问题除了设备成本、占地面积、设备重量、维护工作等乏善可陈外,试验适应性方面也存在诸多约束。二是基于电力电子技术构建可编程试验电源,既能产生各类扰动电源,也可针对规定容量的变压器作为突发短路试验的电源。这种方案灵活性好,调节精度高,可输出各类预设的电源波形。但是,此方案成本高昂、过载能力低,只能承担比较小容量变压器的突发短路试验。三是采用电网作为试验电源为变压器突发短路试验提供短路容量。此方案试验容量大、试验适应性强、灵活性好、投资成本相对较低,存在的问题也很突出,大容量变压器突发短路试验会从系统汲取很大的短路电流,导致电网接入点的电能质量指标存在超过国标限值的可能,因此,需要进行试验设备接入电网的电能质量评估,并提出有效的治理方案后才允许接入。
本发明提供了一种变压器突然短路试验的冲击补偿电路,电路包括50Hz、380V的工频交流电源,两个同样拓扑的交直交整流逆变电路及两路路输出电压叠加的电压重构电路。
50Hz、380V工频交流电源1的两端分别接至工频交直交整流逆变电路2的输入端和高频交直交整流逆变电路3的输入端,工频交直交整流逆变电路2的输出端接工频输出变压器5 的输入端,高频交直交整流逆变电路3的输出端接高频输出变压器4的输入端,高频变压器 4和工频变压器5的输出端串联后构成重构输出电压u0作为一种晶闸管控制变压器特性测试电路的输出信号。
工频交直交整流逆变电路2输出功率扰动源中的大功率基波电压信号,载波频率选择范围1000-1800Hz;高频交直交整流逆变电路3输出功率扰动源中的小功率高频电压信号,载波频率选择范围5000Hz-20000Hz。两种输出适应不同的频谱范围,充分发挥各自逆变器的特长。
本发明提出了大功率基波调制逆变器和小功率高频调制逆变器共同构成一种变压器突然短路试验的冲击补偿电路,这个拓扑结构可产生所需补偿的动态无功功率的同时,还能适应补偿变压器突然短路发生时产生的谐波电流,同时设备损耗小、温升低,技术具有巨大的市场和应用前景。
一种变压器突然短路试验的冲击补偿电路,既可有效补偿试品变压器突发短路引起的巨大冲击性无功功率,又可以抑制变压器突然短路导致的铁芯饱和引起的谐波电流,可有效支撑配电网公共连接点PCC处的电能质量指标满足国标要求。
发明内容
本发明的目的在于提供一种变压器突然短路试验的冲击补偿电路,该电路既可有效补偿试品变压器突发短路引起的巨大冲击性无功功率,又可以抑制变压器突然短路导致的铁芯饱和引起的谐波电流,可有效支撑配电网公共连接点PCC处的电能质量指标满足国标要求。
本发明提供了一种变压器突然短路试验的冲击补偿电路,所用的测试电路是由50Hz、380V 的工频交流电源,两个同样拓扑的交直交整流逆变电路及两路路输出电压叠加的电压重组电路组成。
50Hz、380V工频交流电源1的两端分别接至工频交直交整流逆变电路2的输入端和高频交直交整流逆变电路3的输入端,工频交直交整流逆变电路2的输出端接工频输出变压器5 的输入端,高频交直交整流逆变电路3的输出端接高频输出变压器4的输入端,高频变压器 4和工频变压器5的输出端串联后构成重组输出电压u0作为一种变压器突然短路试验的冲击补偿电路的输出信号。
工频交直交整流逆变电路2输出功率扰动源中的大功率基波电压信号,载波频率选择范围1000-1800Hz;高频交直交整流逆变电路3输出功率扰动源中的小功率高频电压信号,载波频率选择范围5000Hz-20000Hz。两种输出适应不同的频谱范围,充分发挥各自逆变器的特长。
本发明提出的一种变压器突然短路试验的冲击补偿电路如附图1所示,由五个部分组成,分别是50Hz、380V工频交流电源1,工频交直交整流逆变电路2,高频交直交整流逆变电路 3,高频输出变压器4,工频输出变压器5。
一种变压器突然短路试验的冲击补偿电路的工作原理简述如下。
工频交直交整流逆变电路2中,由I1、I2、I3和I4构成的单相全桥PWM整流器将50Hz, 380V的工频电源1的工频交流信号通过连接电抗器L1整流为直流,为后级的由I5、I6、I7 和I8构成的单相全桥PWM逆变器提供稳定的直流母线电压。单相全桥PWM整流器保证网侧高功率因数并且输出电流谐波含量低;后级的全桥逆变器采用电压电流瞬时值双闭环控制,保证逆变器输出波形跟踪性能好并且具有良好的动态性能。全桥逆变器输出包含高频载波频率和工频调制频率的调制波形,通过Lf1和Cf1构成的高通滤波器,输出到工频输出变压器T1 原边,得到工频输出变压器5副边的工频输出电压u1。
高频交直交整流逆变电路3中,由J1、J2、J3和J4构成的单相全桥PWM整流器将50Hz, 380V的工频电源1的工频交流信号通过连接电抗器L2整流为直流,为后级的由J5、J6、J7 和J8构成的单相全桥PWM逆变器提供稳定的直流母线电压。单相全桥PWM整流器保证网侧高功率因数并且输出电流谐波含量低;后级的全桥逆变器采用电压电流瞬时值双闭环控制,保证逆变器输出波形跟踪性能好并且具有良好的动态性能。全桥逆变器输出包含高频载波频率和指定的组合高次频率的调制波形,通过Lf2和Cf2构成的高通滤波器,输出到高频输出变压器T2原边,得到高频输出变压器4副边的工频输出电压u2。
最后将u1和u2串联得到重组的补偿输出电压u0。
本发明的优点在于:提出了大功率基波调制逆变器和小功率高频调制逆变器组合构成一种变压器突然短路试验的冲击补偿电路思路,这个拓扑结构可产生变压器短路引起的冲击无功补偿基波分量的同时,还能快速补偿变压器突发短路产生的谐波电流补偿要求,同时设备损耗小、温升低,技术具有巨大的市场和应用前景。
附图说明
图1为本发明提出的一种变压器突然短路试验的冲击补偿电路。其中,50Hz、380V工频交流电源1,工频交直交整流逆变电路2,高频交直交整流逆变电路3,高频输出变压器4,工频输出变压器5。
图2为本发明提出的一种变压器突然短路试验的冲击补偿电路接入系统的接线图。其中,一种变压器突然短路试验的冲击补偿电路6,副本短路变压器7。
具体实施方式
下面结合附图对发明的具体实现方法进行说明。
本发明提出一种配电网多电能质量治理装置协调控制效果测试源电路。测试电路包括50Hz、380V工频交流电源1,工频交直交整流逆变电路2,高频交直交整流逆变电路3,高频输出变压器4和工频输出变压器5。
本发明提供了一种变压器突然短路试验的冲击补偿电路,它由50Hz、380V的工频交流电源,两个同样拓扑的交直交整流逆变电路及两路路输出电压叠加的电压重组电路组成。
50Hz、380V工频交流电源1的两端分别接至工频交直交整流逆变电路2的输入端和高频交直交整流逆变电路3的输入端,工频交直交整流逆变电路2的输出端接工频输出变压器5 的输入端,高频交直交整流逆变电路3的输出端接高频输出变压器4的输入端,高频变压器 4和工频变压器5的输出端串联后构成重组输出电压u0作为变压器突然短路试验的冲击补偿信号。
工频交直交整流逆变电路2输出功率扰动源中的大功率基波电压信号,载波频率选择范围1000-1800Hz;高频交直交整流逆变电路3输出功率扰动源中的小功率高频电压信号,载波频率选择范围5000Hz-20000Hz。两种输出适应不同的频谱范围,充分发挥各自逆变器的特长。
工频交直交整流逆变电路2中,由I1、I2、I3和I4构成的单相全桥PWM整流器将50Hz, 380V的工频电源1的工频交流信号通过连接电抗器L1整流为直流,为后级的由I5、I6、I7 和I8构成的单相全桥PWM逆变器提供稳定的直流母线电压。单相全桥PWM整流器保证网侧高功率因数并且输出电流谐波含量低;后级的全桥逆变器采用电压电流瞬时值双闭环控制,保证逆变器输出波形跟踪性能好并且具有良好的动态性能。全桥逆变器输出包含高频载波频率和工频调制频率的调制波形,通过Lf1和Cf1构成的高通滤波器,输出到工频输出变压器T1 原边,得到工频输出变压器5副边的工频输出电压u1。
高频交直交整流逆变电路3中,由J1、J2、J3和J4构成的单相全桥PWM整流器将50Hz, 380V的工频电源1的工频交流信号通过连接电抗器L2整流为直流,为后级的由J5、J6、J7 和J8构成的单相全桥PWM逆变器提供稳定的直流母线电压。单相全桥PWM整流器保证网侧高功率因数并且输出电流谐波含量低;后级的全桥逆变器采用电压电流瞬时值双闭环控制,保证逆变器输出波形跟踪性能好并且具有良好的动态性能。全桥逆变器输出包含高频载波频率和指定的组合高次频率的调制波形,通过Lf2和Cf2构成的高通滤波器,输出到高频输出变压器T2原边,得到高频输出变压器4副边的工频输出电压u2。
最后将u1和u2串联得到重组的扰动输出电压u0。
一种变压器突然短路试验的冲击补偿电路接入电网的具体实施步骤为,电网电压U0通过试验线路C接到PCC监测点,再通过变压器T1和电缆线路D接至10kV母线FB,一种变压器突然短路试验的冲击补偿电路6接入母线FB,母线FB通过试验变压器T2及短网线路E 接至试品变压器7。

Claims (4)

1.一种变压器突然短路试验的冲击补偿电路,电路中包括50Hz、380V的工频交流电源,拓扑相同的工频交直交整流逆变电路和高频交直交整流逆变电路,高频变压器,以及工频变压器;其特征在于:所述50Hz、380V工频交流电源的两端分别接至工频交直交整流逆变电路的输入端和高频交直交整流逆变电路的输入端,所述工频交直交整流逆变电路的输出端接工频输出变压器的输入端,所述高频交直交整流逆变电路的输出端接高频输出变压器的输入端,所述高频变压器的输出端和工频变压器的输出端串联后构成重组输出电压;所述重组输出电压作为一种变压器突然短路试验的冲击补偿电路的输出信号。
2.根据权利要求1所述的一种变压器突然短路试验的冲击补偿电路,其特征在于:所述测试电路中的工频交直交整流逆变电路输出功率扰动源中的大功率基波电压信号的载波频率选择范围为1000~1800Hz。
3.根据权利要求1或2所述的一种变压器突然短路试验的冲击补偿电路,其特征在于:所述测试电路中的高频交直交整流逆变电路输出功率扰动源中的小功率高频电压信号的载波频率选择范围为5000Hz~20000Hz。
4.根据权利要求1或2或3所述的一种变压器突然短路试验的冲击补偿电路,接入电网的具体实施步骤为,电网电压U0通过试验线路C接到PCC监测点,再通过变压器T1和电缆线路D接至10kV母线FB,一种变压器突然短路试验的冲击补偿电路6接入母线FB,母线FB通过试验变压器T2及短网线路E接至试品变压器7。
CN202010285050.4A 2020-04-13 2020-04-13 一种变压器突然短路试验的冲击补偿电路 Pending CN111413642A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010285050.4A CN111413642A (zh) 2020-04-13 2020-04-13 一种变压器突然短路试验的冲击补偿电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010285050.4A CN111413642A (zh) 2020-04-13 2020-04-13 一种变压器突然短路试验的冲击补偿电路

Publications (1)

Publication Number Publication Date
CN111413642A true CN111413642A (zh) 2020-07-14

Family

ID=71489866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010285050.4A Pending CN111413642A (zh) 2020-04-13 2020-04-13 一种变压器突然短路试验的冲击补偿电路

Country Status (1)

Country Link
CN (1) CN111413642A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485727A (zh) * 2020-11-30 2021-03-12 国网福建省电力有限公司电力科学研究院 利用串联谐振补偿法的变压器突发短路试验装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07210264A (ja) * 1994-01-27 1995-08-11 Nissin Electric Co Ltd 自励式無効電力補償装置
CN202110440U (zh) * 2011-05-26 2012-01-11 内蒙古自治区电力科学研究院 直驱型风力发电机变频控制器闭环试验系统
CN105680469A (zh) * 2014-11-18 2016-06-15 国家电网公司 一种风电机组低电压穿越仿真系统及其使用方法
CN206038836U (zh) * 2016-08-31 2017-03-22 中国石油化工股份有限公司 一种串联谐振耐压测试装置
CN110133404A (zh) * 2019-05-17 2019-08-16 国网浙江省电力有限公司宁波供电公司 输出信号模拟装置及二次带负荷测试系统
CN110649824A (zh) * 2019-09-06 2020-01-03 国网湖北省电力有限公司电力科学研究院 一种配电网多电能质量治理装置协调控制效果测试源电路
WO2020007743A1 (de) * 2018-07-04 2020-01-09 Gruner Ag Relais mit stosskompensierter kontaktbrücke

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07210264A (ja) * 1994-01-27 1995-08-11 Nissin Electric Co Ltd 自励式無効電力補償装置
CN202110440U (zh) * 2011-05-26 2012-01-11 内蒙古自治区电力科学研究院 直驱型风力发电机变频控制器闭环试验系统
CN105680469A (zh) * 2014-11-18 2016-06-15 国家电网公司 一种风电机组低电压穿越仿真系统及其使用方法
CN206038836U (zh) * 2016-08-31 2017-03-22 中国石油化工股份有限公司 一种串联谐振耐压测试装置
WO2020007743A1 (de) * 2018-07-04 2020-01-09 Gruner Ag Relais mit stosskompensierter kontaktbrücke
CN110133404A (zh) * 2019-05-17 2019-08-16 国网浙江省电力有限公司宁波供电公司 输出信号模拟装置及二次带负荷测试系统
CN110649824A (zh) * 2019-09-06 2020-01-03 国网湖北省电力有限公司电力科学研究院 一种配电网多电能质量治理装置协调控制效果测试源电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王丞: "电弧炉谐波注入对电力系统的影响分析", 中国优秀硕士学位论文全文数据库, 15 June 2016 (2016-06-15), pages 042 - 439 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485727A (zh) * 2020-11-30 2021-03-12 国网福建省电力有限公司电力科学研究院 利用串联谐振补偿法的变压器突发短路试验装置及方法
CN112485727B (zh) * 2020-11-30 2024-01-16 国网福建省电力有限公司电力科学研究院 利用串联谐振补偿法的变压器突发短路试验装置及方法

Similar Documents

Publication Publication Date Title
CN103187728A (zh) 一种用于治理电力系统谐波的滤波装置
CN104701868B (zh) 一种可变电压等级的电流扰动源
CN104377699B (zh) 用于风电场的混合感应型有源滤波与无功补偿系统及方法
CN110649824A (zh) 一种配电网多电能质量治理装置协调控制效果测试源电路
CN111413642A (zh) 一种变压器突然短路试验的冲击补偿电路
CN107370152A (zh) 铁路电车智能有源滤波器
CN112162161A (zh) 一种电力电子并网装置检测系统及检测方法
CN210982623U (zh) 一种晶闸管控制变压器特性测试电路
Dexin et al. Research on the method of using apf to improve the power quality of microgrid based on the control of energy storage
CN113471973A (zh) 线路谐波控制系统
CN112467756A (zh) 一种无功补偿装置及方法
CN101071946A (zh) 大容量动态无功补偿系统
CN110658370A (zh) 一种高压大容量svg测试电源
CN111600333A (zh) 一种10kV中压直挂式光伏电站系统
Jiang et al. Application and Analysis of SVG (Static Var Generator) in Harmonic Automatic Control System
Yao et al. Islanding detection for PV plant using instantaneous power theory
CN109980632A (zh) 整车厂低压配电网电能质量干扰允许值计算方法
CN103208802A (zh) 一种低电压大电流电能质量控制系统
CN216162412U (zh) 基于svg无功补偿的电能质量综合治理装置
CN203086139U (zh) 基于链式功率单元拓扑结构实现有源滤波功能的链式svg
Ziyong et al. Application of HVDC light system in offshore oil platform
CN109599860B (zh) 具有高导磁材料的即插即用有源串联型电能质量控制器
CN220357235U (zh) 一种变压器能效检测装置
Yuan et al. Research on Economic Operation Control Technology and Comprehensive Loss of Distribution Area Transformer
Lei et al. Backup Source for Yaw Control System of Wind Farms by Reverse Power Transmission

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination