CN111408772B - 一种碳纤维增强镁基复合材料的加工方法 - Google Patents

一种碳纤维增强镁基复合材料的加工方法 Download PDF

Info

Publication number
CN111408772B
CN111408772B CN202010183743.2A CN202010183743A CN111408772B CN 111408772 B CN111408772 B CN 111408772B CN 202010183743 A CN202010183743 A CN 202010183743A CN 111408772 B CN111408772 B CN 111408772B
Authority
CN
China
Prior art keywords
carbon fiber
fiber reinforced
composite material
based composite
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010183743.2A
Other languages
English (en)
Other versions
CN111408772A (zh
Inventor
袁松梅
蒋振邦
宋肖珺
李燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Beijing Aerospace Xinfeng Machinery Equipment Co Ltd
Original Assignee
Beihang University
Beijing Aerospace Xinfeng Machinery Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University, Beijing Aerospace Xinfeng Machinery Equipment Co Ltd filed Critical Beihang University
Priority to CN202010183743.2A priority Critical patent/CN111408772B/zh
Publication of CN111408772A publication Critical patent/CN111408772A/zh
Application granted granted Critical
Publication of CN111408772B publication Critical patent/CN111408772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P25/00Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及超声加工领域,尤其涉及一种碳纤维增强镁基复合材料的加工方法;所述的加工方法包括超声切削所述碳纤维增强镁基复合材料的步骤;其中,所述超声切削的振动频率为18~22KHz,刀具的振幅为5~7μm,主轴转速不超过6000r/min,每齿进给量为0.01~0.02mm。本发明所述的加工方法可有效避免碳纤维增强镁基复合材料的损伤;最大限度的减少了其在切削过程中以产生基体开裂、分层、纤维拔出等缺陷。

Description

一种碳纤维增强镁基复合材料的加工方法
技术领域
本发明涉及超声加工领域,尤其涉及一种碳纤维增强镁基复合材料的加工方法。
背景技术
碳纤维增强镁基复合材料(Cf/Mg)由于其尺寸稳定性好、轻质高强、抗振抗磁等诸多优异性能,在航空航天、船舶、汽车等领域有着广泛的应用前景;但是,此类材料具有各向异性、层间强度低等特点,属于典型的难加工材料,在切削过程中易产生基体开裂、分层、纤维拔出等加工缺陷,直接影响到碳纤维增强镁基复合材料结构件的使役性能,严重限制了高性能材料在先进装备领域的推广应用。
目前,针对金属基复合材料的低损伤加工机理及工艺的研究大多缺少对复合材料切削表面三维粗糙度值进行评价,较难对加工过程中的切削力、加工损伤等实现有效控制;尤其是针对目前研究较少的碳纤维增强镁基复合材料,其基体和增强相结合界面的损伤形成及扩展机制较为复杂,并直接影响到结构件加工精度和力学性能。
有鉴于此,特提出本发明。
发明内容
本发明的目的在于克服现有技术的缺陷,提出一种碳纤维增强镁基复合材料的加工方法;所述的加工方法可以有效避免碳纤维增强镁基复合材料在加工过程中出现基体开裂、分层、纤维拔出等问题。
具体而言,本发明所述的加工方法包括超声切削所述碳纤维增强镁基复合材料的步骤;
其中,所述超声切削的振动频率为18~22KHz,刀具的振幅为5~7μm,主轴转速不超过6000r/min,每齿进给量为0.01~0.02mm。
本发明经过大量的试验研究发现,在特定的工艺参数下超声切削碳纤维增强镁基复合材料可有效避免复合材料的损伤。
为了最大限度的降低碳纤维增强镁基复合材料在切削工程中的损伤,本发明对加工方法进一步优化(将所有优化参数组合起来即得本发明的较佳技术方案),具体如下:
作为优选,所述超声切削为干式切削。
作为优选,所述超声切削的振动频率为19~21KHz;
作为本发明的较佳技术方案,所述超声切削的振动频率为20KHz。
作为优选,所述刀具的振幅为5.5~6.5μm。
作为本发明的较佳技术方案,所述刀具的振幅为6μm。
作为优选,所述主轴转速为4000~6000r/min。
作为优选,所述每齿进给量为0.015mm。
作为本发明的较佳技术方案,所述加工方法包括超声切削所述碳纤维增强镁基复合材料的步骤;
其中,所述超声切削的振动频率为20KHz,刀具的振幅为6μm,主轴转速为6000r/min,每齿进给量为0.015mm。
本发明的有益效果:
本发明所述的加工方法可有效避免碳纤维增强镁基复合材料的损伤;最大限度的减少了其在切削过程中以产生基体开裂、分层、纤维拔出等缺陷。
附图说明
图1为实施例1碳纤维增强镁基复合材料切削区的表面SEM图。
图2为实施例1碳纤维增强镁基复合材料的二维切削形貌图。
图3为对比例1碳纤维增强镁基复合材料的铣削区域的微观三维形貌图。
图4为对比例1碳纤维增强镁基复合材料的切削区的表面SEM图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例提供一种碳纤维增强镁基复合材料的加工方法,包括如下步骤:
(1)选用Cf/Mg复合材料圆盘层压板,试件尺寸为直径140mm,厚7mm;使用专用圆盘型夹具实现试件与测力仪的定位与夹紧;
(2)采用干式切削,超声发生器频率(即超声切削的振动频率)为20KHz,刀具的振幅为6μm,机床主轴转速为6000r/min,刀具每齿进给量为0.015mm;
(3)进行超声辅助铣削试验,采用显微镜和扫描电镜观测铣削表面微观三维形貌。
超声切削后的碳纤维增强镁基复合材料的表面电镜图如图1所示;采用Dino-lite数码显微镜观测二维切削形貌(如图2所示);采用白光干涉仪测量碳纤维增强镁基复合材料切削区域的平均表面三维粗糙度Sa值为0.82μm。
对比例1
本对比例提供一种碳纤维增强镁基复合材料的加工方法,与实施例1的区别仅在于:超声发生器频率为17KHz,刀具振幅为4μm,每齿进给量为0.025mm。
经过三维轮廓仪与扫描电镜检测,铣削区域的微观形貌如图3所示,扫面电镜形貌图如图4所示,铣削表面Sa值为0.99。
由结果可知,根据显微镜下微观形貌与扫描电镜形貌图,结合Sa值对比,实施例1的加工方法明显优于对比例1。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (1)

1.一种碳纤维增强镁基复合材料的加工方法,其特征在于,包括超声切削所述碳纤维增强镁基复合材料的步骤;
其中,所述超声切削的振动频率为20KHz,刀具的振幅为6μm,主轴转速为6000r/min,每齿进给量为0.015mm;所述超声切削为干式切削。
CN202010183743.2A 2020-03-16 2020-03-16 一种碳纤维增强镁基复合材料的加工方法 Active CN111408772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010183743.2A CN111408772B (zh) 2020-03-16 2020-03-16 一种碳纤维增强镁基复合材料的加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010183743.2A CN111408772B (zh) 2020-03-16 2020-03-16 一种碳纤维增强镁基复合材料的加工方法

Publications (2)

Publication Number Publication Date
CN111408772A CN111408772A (zh) 2020-07-14
CN111408772B true CN111408772B (zh) 2022-01-07

Family

ID=71487678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010183743.2A Active CN111408772B (zh) 2020-03-16 2020-03-16 一种碳纤维增强镁基复合材料的加工方法

Country Status (1)

Country Link
CN (1) CN111408772B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112388250A (zh) * 2020-09-21 2021-02-23 北京卫星制造厂有限公司 一种高体积分数铝基碳化硅材料的加工方法
CN114571195A (zh) * 2021-12-29 2022-06-03 上海航天控制技术研究所 一种共固化结构飞轮轮体及其制造加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253597A (ja) * 2009-04-23 2010-11-11 Kanazawa Univ 正面フライス加工方法及び正面フライス加工用被削材
DE102011121688A1 (de) * 2011-12-14 2013-06-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur spanenden Bearbeitung offenporiger Metallkörper
CN104086924A (zh) * 2014-07-18 2014-10-08 上海交通大学 一种碳纤维增强热塑性树脂复合材料及其制备方法
CN207402562U (zh) * 2017-09-29 2018-05-25 深圳大宇精雕科技有限公司 一种超声波振动磨削装置
CN108132196A (zh) * 2018-01-10 2018-06-08 南京理工大学 一种三尖钻旋转超声钻削碳纤维复合材料轴向力预测方法
CN109227704A (zh) * 2018-09-30 2019-01-18 四川明日宇航工业有限责任公司 一种碳纤维复合材料的超声辅助复合加工方法
CN109396871A (zh) * 2018-11-12 2019-03-01 昆明理工大学 一种三维超声振动切削加工工作头
CN110497529A (zh) * 2019-09-10 2019-11-26 杭州电子科技大学 一种附件式旋转超声振动刀柄

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253597A (ja) * 2009-04-23 2010-11-11 Kanazawa Univ 正面フライス加工方法及び正面フライス加工用被削材
DE102011121688A1 (de) * 2011-12-14 2013-06-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur spanenden Bearbeitung offenporiger Metallkörper
CN104086924A (zh) * 2014-07-18 2014-10-08 上海交通大学 一种碳纤维增强热塑性树脂复合材料及其制备方法
CN207402562U (zh) * 2017-09-29 2018-05-25 深圳大宇精雕科技有限公司 一种超声波振动磨削装置
CN108132196A (zh) * 2018-01-10 2018-06-08 南京理工大学 一种三尖钻旋转超声钻削碳纤维复合材料轴向力预测方法
CN109227704A (zh) * 2018-09-30 2019-01-18 四川明日宇航工业有限责任公司 一种碳纤维复合材料的超声辅助复合加工方法
CN109396871A (zh) * 2018-11-12 2019-03-01 昆明理工大学 一种三维超声振动切削加工工作头
CN110497529A (zh) * 2019-09-10 2019-11-26 杭州电子科技大学 一种附件式旋转超声振动刀柄

Also Published As

Publication number Publication date
CN111408772A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN111408772B (zh) 一种碳纤维增强镁基复合材料的加工方法
CN107253148B (zh) 一种在金属工件表层形成梯度纳米结构的组合方法
Zhou et al. Surface integrity of titanium part by ultrasonic magnetic abrasive finishing
Chen et al. Investigation on machined surface quality in ultrasonic-assisted grinding of C f/SiC composites based on fracture mechanism of carbon fibers
CN103769959A (zh) 一种超声微磨削加工设备及工艺
Krishnamurthy et al. Study on machining parameters of TiB2 reinforced aluminium 6063 composites
CN108693061A (zh) 一种基于次摆线进给轨迹的硬脆材料划痕实验方法
CN114150203B (zh) 一种激光熔覆原位自生高熵合金梯度涂层及其制备方法
CN104005019A (zh) 一种铝合金表面复合涂层的制备方法
Dong et al. Investigation on grinding force and machining quality during rotary ultrasonic grinding deep-small hole of fluorophlogopite ceramics
CN105479097B (zh) 一种CuCr触头表面光整加工设备及其加工方法
CN111151773B (zh) 超声辅助切削力控制方法
CN114643462B (zh) 一种钛合金/不锈钢复合板材及其制备方法
CN110340748A (zh) 一种旋转超声法加工微半球凹模阵列的方法及装置
CN103849756A (zh) 一种金属材料表面处理方法
CN1788931A (zh) 工程陶瓷材料高效深磨磨削工艺
CN112893942B (zh) 一种高体分碳化硅颗粒增强铝基复合材料精密微铣削方法
Park et al. Understanding of ultrasonic assisted machining with diamond grinding tool
Kaliappan et al. Mechanical Characterization of Friction-Stir-Welded Aluminum AA7010 Alloy with TiC Nanofiber
CN113105810A (zh) 一种硬脆材料表面增韧剂及其应用
Long et al. Machining properties evaluation of copper and graphite electrodes in PMEDM of SKD61 steel in rough machining
CN203843604U (zh) 一种超声微磨削加工设备
CN112454021B (zh) 一种超声辅助摩擦增材制造方法
Jian et al. Surface Roughness Analysis of 3D Printed Microchannels and Processing Characteristics of Abrasive Flow Finishing
CN112719376A (zh) 一种硅铝合金tr组件封装壳体切削方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant