CN111408386A - 一种MoS2量子点负载纳米TiO2的制备方法 - Google Patents
一种MoS2量子点负载纳米TiO2的制备方法 Download PDFInfo
- Publication number
- CN111408386A CN111408386A CN202010251171.7A CN202010251171A CN111408386A CN 111408386 A CN111408386 A CN 111408386A CN 202010251171 A CN202010251171 A CN 202010251171A CN 111408386 A CN111408386 A CN 111408386A
- Authority
- CN
- China
- Prior art keywords
- mos
- titanium dioxide
- tio
- nano
- quantum dot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 84
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims abstract description 42
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052961 molybdenite Inorganic materials 0.000 claims abstract description 25
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000002096 quantum dot Substances 0.000 claims abstract description 18
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 18
- 238000002360 preparation method Methods 0.000 claims abstract description 14
- 229920001661 Chitosan Polymers 0.000 claims abstract description 13
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract description 12
- 239000011259 mixed solution Substances 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000011812 mixed powder Substances 0.000 claims description 8
- 238000000227 grinding Methods 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000002086 nanomaterial Substances 0.000 abstract description 14
- 230000003197 catalytic effect Effects 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 5
- 239000006185 dispersion Substances 0.000 abstract description 3
- 238000011065 in-situ storage Methods 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract description 2
- 150000003384 small molecules Chemical class 0.000 abstract description 2
- 230000001699 photocatalysis Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000007146 photocatalysis Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 101100069231 Caenorhabditis elegans gkow-1 gene Proteins 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000009824 changtong Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
- B01J27/051—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/306—Pesticides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种MoS2量子点负载纳米TiO2的制备方法,其将壳聚糖应用于纳米二氧化钛和二硫化钼反应之中,使得制备的MoS2@TiO2纳米材料保持良好的原位分散特性,提高二氧化钛在自然光中的催化效率。本发明使用高频高能量的超声波处理打开MoS2片层,同时在110~140℃下可使MoS2破碎,如此可使断层破碎的MoS2小分子掺杂到纳米二氧化钛晶体内。本发明MoS2量子点负载纳米TiO2的制备方法操作简单、方便,易于实现,耗时短,消耗低,成本低,产率高,可重复性好,适合大规模生产或者对环境无二次污染。
Description
技术领域
本发明涉及光催化材料技术领域,特别是涉及一种二氧化钛与半导体纳米材料制备异质结构的制备方法。
背景技术
光催化技术是一种非常有效的解决环境污染和能源危机的技术。二氧化钛(TiO2)是一种重要的无机光催化材料,二氧化钛具有高光催化性、高稳定性、低毒性等优势,TiO2能在紫外线的照射下发生光催化反应,将有机物分解为二氧化碳和水,可用于清除有机物、杀菌、消毒、处理污水等。同时,由TiO2构成的薄膜具有光催化致超亲水特性,使其具有自洁去污、易清洗、防水雾等功能,引起了广泛的关注。然而,由于太阳光中紫外光能量占比不超过5%,而普通的二氧化钛需要相对高强度的紫外线光才能发挥优异的催化作用,因而普通的二氧化钛利用自然光的催化率并不高,不能达到理想的消毒杀菌及自清洁等作用。理论上,通过对TiO2进行金属/非金属离子掺杂、贵金属负载、构造异质结等改性手段能够使其更好的利用太阳光,提高二氧化钛在自然光下的催化效率,二硫化钼(MoS2)是一种类石墨烯的二维半导体纳米材料,二硫化钼和二氧化钛的结合是本领域研究的重点之一,然而现有技术中尚未有一种操作简单、适合大规模生产同时又能获得二氧化钛与二氧化钼异质结构,且该异质结构在自然光下具有优异催化效果性能的方法。
因此,针对现有技术中的存在问题,亟需提供一种操作简单、消耗低产率高、适合大规模生产、对环境无二次污染且具有光响应高效性的MoS2量子点负载纳米TiO2显得尤为重要。
发明内容
本发明的目的在于避免现有技术中的不足之处而提供一种操作简单、消耗低产率高、适合大规模生产、对环境无二次污染且具有光响应高效性的MoS2量子点负载纳米TiO2(MoS2量子点负载纳米TiO2记载为“MoS2@TiO2”)。
本发明的目的通过以下技术方案实现:
提供一种MoS2量子点负载纳米TiO2的制备方法,其包括以下步骤:
(1)将纳米二氧化钛、二硫化钼和壳聚糖按照75:1:2混合研磨10~30min获得混合粉末;
(2)往混合粉末加入N-甲基吡咯烷酮搅拌混合获得混合液,其中纳米二氧化钛与N-甲基吡咯烷酮的质量比为1:10~1:1000;
(3)将混合液放入超声波清洗机中处理0.5~2小时;
(4)将超声处理后的混合液加热至110~140℃,反应2~4小时;
(5)将经热处理后的混合液控制在80~100℃下蒸干至变成粉末。
其中,步骤(3)和步骤(4)可重复操作。
优选的,超声处理的功率为200-300W。
优选的,纳米二氧化钛为商P25型二氧化钛,晶粒度为20nm;二硫化钼的粒径为2-10μm。
优选的,纳米二氧化钛与N-甲基吡咯烷酮质量比为1:100。
本发明的有益效果:
本发明创造性将壳聚糖应用于纳米二氧化钛和二硫化钼反应之中,对于制备解决技术问题的纳米二氧化钛和二硫化钼异质结构,壳聚糖主要有以下作用:(1)壳聚糖利用壳聚糖强正电性及空间阻位,不仅能够抑制MoS2量子点的团聚,而且还能够极大地提高TiO2分散性,使得制备的MoS2@TiO2纳米材料保持良好的原位分散特性,具有极大的比表面积从而大大提高了催化效率;(2)壳聚糖中富含的氨基和羟基有利于提高TiO2的可见光活性,形成非金属元素掺杂使二氧化钛吸收光谱红移至可见光区,提高二氧化钛在自然光中的催化效率。(3)壳聚糖可提高TiO2的晶化程度以有利于TiO2与MoS2掺杂结合;(4)由于壳聚糖的存在,可使制得的MoS2@TiO2可直接干燥制成粉体材料,粉体材料重新分散后粒径不增大,重新分散的MoS2@TiO2直接或者加入其它辅助剂使用。本发明制备的MoS2@TiO2重新分散后可以在室温下存放1年以上不会出现沉淀现象。
本发明使用高频高能量的超声波处理可打开MoS2片层,同时在110~140℃下可使MoS2破碎,如此可使断层破碎的MoS2小分子掺杂到纳米二氧化钛晶体内。本发明制备的MoS2@TiO2中的二硫化钼(MoS2)具有独特的带隙结构,对可见光具有强烈的吸收作用,因其强烈的量子限域效应,MoS2量子点能够高效的将电子转移至TiO2,使得整体的MoS2@TiO2具有优异的光催化效果。在太阳光照射下,光生电子从MoS2上传递到TiO2上,实现可见光响应的光催化;同时,MoS2量子点的负载有利于电子空穴的分离,提高了光催化的量子产率。
本发明MoS2量子点负载纳米TiO2的制备方法操作简单、方便,易于实现,耗时短,消耗低,成本低,产率高,可重复性好,适合大规模生产或者对环境无二次污染。基于本发明的制备方法,可以实现对商业化的纳米二氧化钛进行改性得到具备可见光催化能力的二氧化钛,并具备大规模产业化的能力,拓展了纳米二氧化钛在空气净化、杀菌、水处理等方面的应用。
附图说明
利用附图对本发明做进一步说明,但附图中的内容不构成对本发明的任何限制。
图1为本发明实施例1制得的MoS2@TiO2纳米材料的低倍透射电子显微镜成像图(TEM)与高倍透射电子显微镜成像图(HRTEM)。
图2为本发明实施例1制得的MoS2@TiO2纳米材料的x射线衍射谱(XRD)。
图3为本发明实施例1制得的不同二硫化钼含量的MoS2@TiO2纳米材料的光催化降解染料曲线。
图4为本发明实施例1制得的MoS2@TiO2纳米材料与含二硫化钼纳米片的TiO2的光催化降解染料曲线。
具体实施方式
结合以下实施例对本发明作进一步说明。
实施例1
本实施例的MoS2量子点负载纳米TiO2的制备方法包括以下步骤:
(1)将纳米二氧化钛、二硫化钼和壳聚糖按照75:1:2混合研磨20min获得混合粉末;
(2)往混合粉末加入N-甲基吡咯烷酮搅拌混合获得混合液,其中纳米二氧化钛与N-甲基吡咯烷酮的质量比为1:100;
(3)将混合液放入超声波清洗机中处理1小时,超声处理的功率为250W;
(4)将超声处理后的混合液加热至120℃,反应3小时;
(5)将经热处理后的混合液控制在100℃下蒸干至变成粉末。
本发明实施例中,所述的二硫化钼和壳聚糖粉末购买自阿拉丁试剂、所述P25型纳米二氧化钛购自赢创工业集团。
将本实施例1至4,所得的MoS2@TiO2纳米材料进行表征测试,其中,图1是MoS2@TiO2纳米材料的低倍透射电子显微镜成像图(TEM)与高倍透射电子显微镜成像图(HRTEM)。图1可以看出MoS2@TiO2纳米材料具有很好的原位分散特性,且MoS2量子点与纳米TiO2形成了明显的异质结结构,二硫化钼量子点原子层的晶格条纹间距为0.27 nm,二氧化钛原子层的晶格条纹间距为0.35 nm。
图2是MoS2@TiO2纳米材料的x射线衍射谱(XRD),图2中XRD图显示了强的TiO2衍射谱和弱的MoS2衍射谱,说明MoS2@TiO2纳米材料粉体中含有大部分TiO2和少量MoS2。图1和图2本发明的制备方法可行。
取20 mg MoS2@TiO2纳米材料粉体,加入到40ml含染料罗丹明B的溶液中,以高压汞灯模拟(北京畅拓CHF-XM-500)太阳光进行光催化降解测试,测试结果如下:
图3显示本发明制备MoS2的质量为TiO2质量的0.1%(MoS2:TiO2=1:75)时,光催化效率最高,且明显好于单独的P25材料(商业直接购买的二氧化钛),而MoS2含量高于1%时,复合纳米材料的光催化效率反而降低。
图4显示MoS2量子点负载的纳米TiO2的光催化效率好于MoS2片层负载的纳米二氧化钛,且均好于P25材料。
实施例2
本实施例的主要技术方案与实施例1基本相同,在本实施例中未作解释的特征,采用实施例1中的解释,在此不再进行赘述。本实施例与实施例1的不同之处在于:
(1)将纳米二氧化钛、二硫化钼和壳聚糖研磨30min获得混合粉末;
(2)纳米二氧化钛与N-甲基吡咯烷酮的质量比为1:1000;
(3)超声处理0.5小时,超声处理的功率为200W;
(4)热处理至110℃,反应2小时;
(5)在80℃下蒸干至变成粉末。
实施例3
本实施例的主要技术方案与实施例1基本相同,在本实施例中未作解释的特征,采用实施例1中的解释,在此不再进行赘述。本实施例与实施例1的不同之处在于:
(1)将纳米二氧化钛、二硫化钼和壳聚糖研磨10min获得混合粉末;
(2)纳米二氧化钛与N-甲基吡咯烷酮的质量比为1:10;
(3)超声处理2小时,超声处理的功率为300W;
(4)热处理至140℃,反应4小时;
(5)在90℃下蒸干至变成粉末。
实施例4
本实施例的主要技术方案与实施例1基本相同,在本实施例中未作解释的特征,采用实施例1中的解释,在此不再进行赘述。本实施例与实施例1的不同之处在于:步骤(3)和(4)重复2次。
最后应当说明的是,以上实施例仅用于说明本发明的技术方案说明而非对权利要求保护范围的限制。本领域的普通技术人员参照较佳实施例应当理解,并可以对本发明的技术方案进行修改或者等同替换,但属于本发明技术方案的实质相同和保护范围。
Claims (5)
1.一种MoS2量子点负载纳米TiO2的制备方法,其特征在于,包括以下步骤:
(1)将纳米二氧化钛、二硫化钼和壳聚糖按照75:1:2混合研磨10~30min获得混合粉末;
(2)往混合粉末加入N-甲基吡咯烷酮搅拌混合获得混合液,其中纳米二氧化钛与N-甲基吡咯烷酮的质量比为1:10~1:1000;
(3)将混合液放入超声波清洗机中处理0.5~2小时;
(4)将超声处理后的混合液加热至110~140℃,反应2~4小时;
(4)将经热处理后的混合液控制在80~100℃下蒸干至变成粉末。
2.根据权利要求1所述一种MoS2量子点负载纳米TiO2的制备方法,其特征在于,步骤(3)和步骤(4)可重复操作。
3.根据权利要求1所述一种MoS2量子点负载纳米TiO2的制备方法,其特征在于,所述超声处理的功率为200-300W。
4.根据权利要求1所述一种MoS2量子点负载纳米TiO2的制备方法,其特征在于,所述纳米二氧化钛为商P25型二氧化钛,晶粒度为20nm;二硫化钼的粒径为2-10μm。
5.根据权利要求1所述一种MoS2量子点负载纳米TiO2的制备方法,其特征在于,所述纳米二氧化钛与N-甲基吡咯烷酮质量比为1:100。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010251171.7A CN111408386A (zh) | 2020-04-01 | 2020-04-01 | 一种MoS2量子点负载纳米TiO2的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010251171.7A CN111408386A (zh) | 2020-04-01 | 2020-04-01 | 一种MoS2量子点负载纳米TiO2的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111408386A true CN111408386A (zh) | 2020-07-14 |
Family
ID=71485413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010251171.7A Withdrawn CN111408386A (zh) | 2020-04-01 | 2020-04-01 | 一种MoS2量子点负载纳米TiO2的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111408386A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111418608A (zh) * | 2020-04-16 | 2020-07-17 | 杜燃(佛山)环保科技发展有限公司 | Ag-MoS2@TiO2纳米光催化杀菌材料及其制备方法 |
CN115067358A (zh) * | 2022-06-21 | 2022-09-20 | 重庆德强化工有限公司 | Ag/Zn离子负载的黑色二氧化钛复合二硫化钼纳米片纳米材料 |
CN115226724A (zh) * | 2022-06-21 | 2022-10-25 | 重庆德强化工有限公司 | 一种纳米光催化杀菌材料及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105597787A (zh) * | 2016-02-22 | 2016-05-25 | 山东大学 | 一种单层二硫化钼/超细二氧化钛纳米带异质结构光催化剂及其制备方法 |
CN108080026A (zh) * | 2018-01-18 | 2018-05-29 | 成都新柯力化工科技有限公司 | 一种用于污水处理的夹层状复合光催化剂及制备方法 |
CN110935449A (zh) * | 2018-09-21 | 2020-03-31 | 中国科学院上海硅酸盐研究所 | 一种高效环保黑色二氧化钛基光触媒及其制备方法 |
-
2020
- 2020-04-01 CN CN202010251171.7A patent/CN111408386A/zh not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105597787A (zh) * | 2016-02-22 | 2016-05-25 | 山东大学 | 一种单层二硫化钼/超细二氧化钛纳米带异质结构光催化剂及其制备方法 |
CN108080026A (zh) * | 2018-01-18 | 2018-05-29 | 成都新柯力化工科技有限公司 | 一种用于污水处理的夹层状复合光催化剂及制备方法 |
CN110935449A (zh) * | 2018-09-21 | 2020-03-31 | 中国科学院上海硅酸盐研究所 | 一种高效环保黑色二氧化钛基光触媒及其制备方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111418608A (zh) * | 2020-04-16 | 2020-07-17 | 杜燃(佛山)环保科技发展有限公司 | Ag-MoS2@TiO2纳米光催化杀菌材料及其制备方法 |
CN115067358A (zh) * | 2022-06-21 | 2022-09-20 | 重庆德强化工有限公司 | Ag/Zn离子负载的黑色二氧化钛复合二硫化钼纳米片纳米材料 |
CN115226724A (zh) * | 2022-06-21 | 2022-10-25 | 重庆德强化工有限公司 | 一种纳米光催化杀菌材料及其制备方法 |
CN115067358B (zh) * | 2022-06-21 | 2024-03-19 | 重庆德强化工有限公司 | Ag/Zn离子负载的黑色二氧化钛复合二硫化钼纳米片纳米材料 |
CN115226724B (zh) * | 2022-06-21 | 2024-03-19 | 重庆德强化工有限公司 | 一种纳米光催化杀菌材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity | |
Jianwei et al. | Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts | |
CN111408386A (zh) | 一种MoS2量子点负载纳米TiO2的制备方法 | |
Zhou et al. | Synergistic effects and kinetics of rGO-modified TiO2 nanocomposite on adsorption and photocatalytic degradation of humic acid | |
Jiang et al. | Synthesis of flowerlike g‐C3N4/BiOBr with enhanced visible light photocatalytic activity for dye degradation | |
Zhang et al. | Carbon quantum dots sensitized ZnSn (OH) 6 for visible light-driven photocatalytic water purification | |
Zhang et al. | Recent progress on carbon‐nanotube‐based materials for photocatalytic applications: a review | |
Lu et al. | Synthesis of BiPO 4/Bi 2 S 3 heterojunction with enhanced photocatalytic activity under visible-light irradiation | |
Jiang et al. | Natural assembly of a ternary Ag–SnS–TiO 2 photocatalyst and its photocatalytic performance under simulated sunlight | |
CN111418608A (zh) | Ag-MoS2@TiO2纳米光催化杀菌材料及其制备方法 | |
Li et al. | Synthesis and photocatalytic performance of reduced graphene oxide–TiO 2 nanocomposites for orange II degradation under UV light irradiation | |
Sun et al. | Lignosulfonate-controlled BiOBr/C hollow microsphere photocatalyst for efficient removal of tetracycline and Cr (VI) under visible light | |
Preetha et al. | Promoting photocatalytic interaction of boron doped reduced graphene oxide supported BiFeO3 nanocomposite for visible-light-induced organic pollutant degradation | |
Ye et al. | In situ construction of Fe substituted palygorskite/FeS2 heterostructure for full-spectrum photocatalytic nitrogen fixation | |
Yu et al. | Visible-light photocatalytic tetracycline degradation over nanodots-assembled N-ZrO2− x nanostructures: Performance, degradation pathways and mechanistic insight | |
Naing et al. | Enhanced broad spectrum (vis-NIR) responsive photocatalytic performance of Ag2O/rectorite nanoarchitectures | |
Zeda et al. | Photodegradation of organic dye by CoS2 and carbon (C60, graphene, CNT)/TiO2 composite sensitizer | |
Lin et al. | Synthesis of a carbon-loaded Bi2O2CO3/TiO2 photocatalyst with improved photocatalytic degradation of methyl orange dye | |
Wu et al. | Enhancement of bacterial inactivation of BiOBr nanoflower through oxygen vacancy engineering | |
Zhang et al. | Amorphous carbon layer: An effective assistant for realizing near-infrared-activated photocatalysis | |
Selvaraj et al. | Effect of Sr doping in ZnO microspheres for solar light-driven photodegradation of organic pollutants | |
Sanni et al. | Tailored synthesis of Ag/AgBr nanostructures coupled activated carbon with intimate interface interaction for enhanced photodegradation of tetracycline | |
Zhao et al. | Effective cocatalyst Pt/PtO nanodots on La2O3 microspheres for degradation of methyl orange | |
Qu et al. | Fabrication of CdTe QDs/BiOI-promoted TiO 2 hollow microspheres with superior photocatalytic performance under simulated sunlight | |
Liang et al. | A stable BiPO 4/gC 3 N 4 nanosheet composite with highly enhanced visible light photocatalytic activity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200714 |
|
WW01 | Invention patent application withdrawn after publication |