CN111405264B - A 3D Video Comfort Improvement Method Based on Depth Adjustment - Google Patents
A 3D Video Comfort Improvement Method Based on Depth Adjustment Download PDFInfo
- Publication number
- CN111405264B CN111405264B CN202010068774.3A CN202010068774A CN111405264B CN 111405264 B CN111405264 B CN 111405264B CN 202010068774 A CN202010068774 A CN 202010068774A CN 111405264 B CN111405264 B CN 111405264B
- Authority
- CN
- China
- Prior art keywords
- depth
- map
- image
- video
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000001914 filtration Methods 0.000 claims abstract description 35
- 238000007781 pre-processing Methods 0.000 claims abstract description 19
- 238000010586 diagram Methods 0.000 claims description 11
- 230000009466 transformation Effects 0.000 claims description 11
- 238000012937 correction Methods 0.000 claims description 6
- 238000002474 experimental method Methods 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 abstract description 2
- 241000282414 Homo sapiens Species 0.000 description 7
- 238000009877 rendering Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 101150064138 MAP1 gene Proteins 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/122—Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/128—Adjusting depth or disparity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/15—Processing image signals for colour aspects of image signals
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Processing Or Creating Images (AREA)
- Image Generation (AREA)
Abstract
Description
技术领域technical field
本发明涉及立体视频舒适度增强和3D图像处理领域,尤其涉及一种基于深度调整的3D视频舒适度改善方法。The invention relates to the fields of stereoscopic video comfort enhancement and 3D image processing, in particular to a 3D video comfort improvement method based on depth adjustment.
背景技术Background technique
随着虚拟现实、增强现实以及全息投影等3D技术在人类生活中的应用发展,人类对 3D影像的观看需求越来越大。目前,3D视频的生成和显示技术并不完善,其质量良莠不齐,当人们长时间观看质量较差的3D图像、视频时会产生一些不舒适的生理现象。比如申请号为CN201510275341.4名称为一种基于视差变化连续性调节的立体视频舒适度增强方法,它在立体视频解码过程中提取每个考察时段帧的视差和运动矢量信息,根据舒适度评价模型,计算每个考察时段的立体视频舒适度平均值并判断该考察时段的帧是否为非舒适帧,对非舒适帧进行视差调节的方法,这个过程是复杂的,且一般情况下通过后续计算的视差信息是不准确的。With the application and development of 3D technologies such as virtual reality, augmented reality and holographic projection in human life, human beings have an increasing demand for viewing 3D images. At present, the generation and display technology of 3D video is not perfect, and its quality varies. When people watch 3D images and videos of poor quality for a long time, some uncomfortable physiological phenomena will occur. For example, the application number is CN201510275341.4, and the name is a stereoscopic video comfort enhancement method based on the continuous adjustment of parallax changes. It extracts the parallax and motion vector information of each frame of investigation period in the stereoscopic video decoding process, and evaluates the model according to the comfort level. , calculate the average value of stereoscopic video comfort for each inspection period and determine whether the frame in the inspection period is an uncomfortable frame, and the method of adjusting the parallax for the uncomfortable frame is a complicated process, and is generally calculated by subsequent calculation. Parallax information is inaccurate.
发明内容SUMMARY OF THE INVENTION
本发明解决一般3D视频观看不舒适、视觉体验不佳的问题,提供了一种基于深度调整的3D视频舒适度改善方法。The invention solves the problems of uncomfortable viewing and poor visual experience of general 3D videos, and provides a method for improving the comfort of 3D videos based on depth adjustment.
为了解决上述存在的技术问题,本发明的技术方案是:一种基于深度调整的3D视频舒适度改善方法,3D视频包括左视点图和右视点图,左视点图和右视点图都包括彩色图和深度图,所述改善方法包括以下步骤:In order to solve the above-mentioned existing technical problems, the technical solution of the present invention is: a method for improving the comfort of 3D video based on depth adjustment. The 3D video includes a left view point image and a right view point image, and both the left view point image and the right view point image include color images. and depth map, the improvement method includes the following steps:
S1:对左视点图、右视点图的深度图都进行预处理,得到预处理图;S1: Preprocess the depth maps of the left view point image and the right view point image to obtain a preprocessed image;
S2:对预处理图进行深度滤波,得到滤波图;S2: Perform depth filtering on the preprocessing image to obtain a filtered image;
S3:对滤波图进行深度去纹理,得到去纹理图;S3: Depth detexture is performed on the filter image to obtain a detextured image;
S4:根据去纹理图进行虚拟视点绘制,获得虚拟右视点彩色图;S4: Perform virtual viewpoint drawing according to the de-textured map to obtain a virtual right viewpoint color map;
S5:用虚拟右视点彩色图和原始视点图进行替换得到改善的3D视频。S5: Improved 3D video by replacing the virtual right view color map and the original view map.
原始的深度图,其视差可能会存在过大的问题,预处理过程是对深度图深度值进行适当调整,降低过大视差对3D视频舒适度的影响。深度滤波的必要性在于它可以解决由深度图中梯度变化所造成的不适感。当纹理信息过多时,会导致人眼在融合3D影像时产生明显的融合困难,通过对图像进行去纹理操作可以改善提升舒适度。而对图像进行虚拟视点的绘制以及相关的替换可以实现整体观感体验的提升。The parallax of the original depth map may be too large. The preprocessing process is to appropriately adjust the depth value of the depth map to reduce the impact of excessive parallax on the comfort of 3D video. The necessity of depth filtering is that it can solve the discomfort caused by gradient changes in the depth map. When there is too much texture information, it will cause obvious fusion difficulties for the human eye when fusing 3D images. By de-texturing the images, the comfort can be improved. The rendering of virtual viewpoints and the related replacement of the image can improve the overall look and feel experience.
作为上述方案的一种优选方案,所述预处理是将深度图的每一个像素点的深度值代入预处理的目标函数进行运算,运算后得到的图为预处理图,所述预处理的目标函数为:As a preferred solution of the above solution, the preprocessing is to substitute the depth value of each pixel of the depth map into the preprocessed objective function for operation, and the image obtained after the operation is a preprocessed map, and the preprocessed target The function is:
其中Zpro表示预处理之后的深度值,Z表示原始深度值,Zm表示该深度图像中深度最小值。在已有深度图中表现出来的深度像素值与深度呈反比,深度越小深度像素值越大,越接近于白色。式中的“0.8”比例表示将大于最大值一半的部分深度向远处移动80%,也就是当视差过大时,对其进行一定程度的调整。Where Z pro represents the depth value after preprocessing, Z represents the original depth value, and Zm represents the minimum depth value in the depth image. The depth pixel value shown in the existing depth map is inversely proportional to the depth. The smaller the depth, the larger the depth pixel value, and the closer it is to white. The "0.8" ratio in the formula means that the depth of the part greater than half of the maximum value is moved 80% farther, that is, when the parallax is too large, it is adjusted to a certain extent.
作为上述方案的一种优选方案,所述深度滤波是将预处理图的每一个像素点代入深度滤波的目标函数进行运算,运算后得到的图为滤波图,所述深度滤波的目标函数为:As a preferred solution of the above scheme, the depth filtering is to substitute each pixel of the preprocessing map into the objective function of the depth filtering for operation, and the image obtained after the operation is a filtering map, and the objective function of the depth filtering is:
O(x,y)=∑m,nZ(x+m,y+n)*K(m,n)O(x,y)=∑ m,n Z(x+m,y+n)*K(m,n)
其中O(x,y)表示滤波之后的(x,y)位置的像素输出值,(x,y)表示深度图像素点的位置, Z(x+m,y+n)表示预处理图(x+m,y+n)位置处的深度值。K(m,n)表示滤波器核,(m,n)表示滤波器核位置坐标示意图中的坐标,滤波器核采用高斯滤波。高斯滤波是一种线性滤波,是对整个图像进行加权平均的过程,不同于均值滤波器中所有模板系数都是1的情况,高斯滤波器的模板系数是变化的,该系数同像素与模板中心的距离成反比。采用高斯滤波是因为它能使梯度的变化趋于平滑,改善不适感。where O(x, y) represents the pixel output value at the (x, y) position after filtering, (x, y) represents the position of the depth map pixel, Z(x+m, y+n) represents the preprocessing image ( The depth value at the position x+m, y+n). K(m, n) represents the filter kernel, (m, n) represents the coordinates in the schematic diagram of the position coordinates of the filter kernel, and the filter kernel adopts Gaussian filtering. Gaussian filtering is a linear filter, which is a process of weighted averaging of the entire image. Unlike the case where all template coefficients in the mean filter are 1, the template coefficient of the Gaussian filter is changed, and the coefficient is the same as the pixel and the template center. distance is inversely proportional. Gaussian filtering is used because it can smooth the gradient changes and improve discomfort.
作为上述方案的一种优选方案,所述高斯滤波采用选择3×3的高斯核进行模糊,所述 3×3的高斯核所对应的二维高斯函数的表达式为其中(x,y)表示3×3高斯核位置坐标图中的坐标,σ表示标准差,采用σ=0.8进行坐标修正,σ=0.8是根据有效次试验获取的最佳数值。深度滤波目标函数中的K(m,n)的表达式采用二维高斯函数的表达式,即 K(m,n)=h(m,n)。As a preferred solution of the above solution, the Gaussian filtering adopts a Gaussian kernel of 3×3 for blurring, and the expression of the two-dimensional Gaussian function corresponding to the Gaussian kernel of 3×3 is: Where (x, y) represents the coordinates in the 3×3 Gaussian kernel position coordinate graph, σ represents the standard deviation, and σ=0.8 is used for coordinate correction, and σ=0.8 is the best value obtained from valid trials. The expression of K(m, n) in the depth filtering objective function adopts the expression of a two-dimensional Gaussian function, that is, K(m, n)=h(m, n).
作为上述方案的一种优选方案,所述坐标修正包括以下步骤:As a preferred solution of the above scheme, the coordinate correction includes the following steps:
S51:将3×3高斯核位置坐标图中的9个坐标代入二维高斯函数,求得对应的9个值;S51: Substitute 9 coordinates in the 3×3 Gaussian kernel position coordinate map into the two-dimensional Gaussian function, and obtain the corresponding 9 values;
S52:对9个值进行求和,取和的倒数为α;S52: sum 9 values, and the reciprocal of the sum is α;
S53:将3×3高斯核位置坐标图中的9个坐标都乘以α,得到新的3×3高斯核位置坐标图;S53: Multiply all 9 coordinates in the 3×3 Gaussian kernel position coordinate map by α to obtain a new 3×3 Gaussian kernel position coordinate map;
S54:将新的3×3高斯核位置坐标图中9个坐标值代入深度滤波的目标函数,以进行相应计算。S54 : Substitute the 9 coordinate values in the new 3×3 Gaussian kernel position coordinate map into the objective function of depth filtering to perform corresponding calculation.
权重计算本质上就是获得9个系数,9个系数代入到深度滤波的目标函数,相当于是将每个像素点作为中心,该像素点与其偏移的周围8个像素点分别与每个系数相乘,最后对 9个积求和,得到该中心像素点所在位置的像素输出值。The weight calculation is essentially to obtain 9 coefficients, which are substituted into the objective function of depth filtering, which is equivalent to taking each pixel as the center, and multiplying the pixel and the surrounding 8 pixels offset by each coefficient respectively. , and finally sum up the 9 products to obtain the pixel output value at the position of the central pixel point.
作为上述方案的一种优选方案,所述深度去纹理包括以下步骤:As a preferred solution of the above solution, the depth detexture includes the following steps:
S61:使用Z=[Z(i,j)]W×H表示分辨率为W×H的给定滤波图并且进行DCT变换;S61: use Z=[Z(i, j)] W×H to represent a given filter map with a resolution of W×H and perform DCT transformation;
所述DCT变换的目标函数为:The objective function of the DCT transform is:
其中:in:
W和H表示分辨率的两个值,(i,j)表示滤波图中像素点的坐标,(μ,v)表示经过DCT变换后的滤波图中像素点的坐标,u表示二维波的水平方向频率, v为二维波的垂直方向频率。 W and H represent two values of resolution, (i, j) represent the coordinates of the pixel points in the filter image, (μ, v) represent the coordinates of the pixel points in the filter image after DCT transformation, and u represents the two-dimensional wave frequency in the horizontal direction, v is the frequency in the vertical direction of the two-dimensional wave.
S62:将DCT变换的结果经过阈值限定后进行反DCT变换,获得去纹理图,阈值限定的目标函数为:S62: Perform inverse DCT transformation on the result of DCT transformation after thresholding to obtain a de-textured map. The objective function defined by the threshold is:
其中DM表示去纹理图,T为实验选择的阈值。where DM represents the de-textured map, and T is the threshold selected for the experiment.
当纹理信息过多时,会导致人眼在融合3D影像时产生明显的融合困难,因此通过对图像进行去纹理操作可以让人眼更容易融合3D影响,从而改善提升舒适度。When there is too much texture information, it will cause obvious fusion difficulties for the human eye when fusing 3D images. Therefore, by de-texturing the image, it is easier for the human eye to fuse the 3D effects, thereby improving comfort.
作为上述方案的一种优选方案,所述虚拟视点绘制采用DIBR绘制,包括以下步骤:S71:修正LeftNearestDepthValue、LeftFarthestDepthValue、RightNearestDepthValue和RightFarthestDepthValue,修正的目标函数为:As a preferred solution of the above scheme, the virtual viewpoint is drawn using DIBR, including the following steps: S71: Correcting LeftNearestDepthValue, LeftFarthestDepthValue, RightNearestDepthValue and RightFarthestDepthValue, the corrected objective function is:
DVad=DVor-DVor×0.1DV ad =DV or -DV or ×0.1
其中DVad代表调整之后的最大深度值和最小深度值,DVor代表原始深度最大值和最小值, LeftNearestDepthValue表示左视点去纹理图的深度最小值,LeftFarthestDepthValue表示左视点去纹理图的深度最大值,RightNearestDepthValue表示右视点去纹理图的深度最小值, RightFarthestDepthValue表示右视点去纹理图的深度最大值;Where DV ad represents the adjusted maximum depth value and minimum depth value, DV or represents the original maximum and minimum depth values, LeftNearestDepthValue represents the minimum depth of the left view to the texture map, LeftFarthestDepthValue represents the left view to the maximum depth of the texture map, RightNearestDepthValue represents the minimum depth of the texture map from the right view, and RightFarthestDepthValue represents the maximum depth of the texture map from the right view;
S72:根据LeftNearestDepthValue、LeftFarthestDepthValue、RightNearestDepthValue和 RightFarthestDepthValue进行DIBR绘制得到虚拟右视点彩色图。通过DIBR绘制虚拟右视点彩色图1定程度上也减小了视差。S72: Perform DIBR drawing according to LeftNearestDepthValue, LeftFarthestDepthValue, RightNearestDepthValue and RightFarthestDepthValue to obtain a virtual right-view color map. The parallax is also reduced to a certain extent by rendering the virtual right-
作为上述方案的一种优选方案,所述用虚拟右视点彩色图和原始视点图进行替换是将虚拟右视点彩色图、原始左视点彩色图、左视点去纹理图和右视点去纹理图替换原3D视频中的右视点彩色图、左视点彩色图、左视点深度图和右视点深度图。将虚拟右视点彩色图与原始左视点图、左右视点的去纹理图结合并替换原有的图从而实现整体的3D视频舒适度改善。As a preferred solution of the above solution, the replacement with the virtual right-view color map and the original view is to replace the virtual right-view color map, the original left-view color map, the left-view de-textured map and the right-view de-textured map with the original ones. Right-view color map, left-view color map, left-view depth map, and right-view depth map in 3D video. The virtual right-view color map is combined with the original left-view map and the de-textured map of the left- and right-view points and replaced with the original image to achieve overall 3D video comfort improvement.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
1.预处理的方法可以降低过大视差对3D视频舒适度的影响,将其调整至舒适;1. The preprocessing method can reduce the influence of excessive parallax on the comfort of 3D video, and adjust it to a comfortable level;
2.采用高斯滤波可以降低深度图中因梯度变化造成的不适感;2. The use of Gaussian filtering can reduce the discomfort caused by gradient changes in the depth map;
3.去纹理的处理可以改善图像中过多的纹理特征对观感的影响;3. De-texture processing can improve the influence of too many texture features in the image on the look and feel;
4.虚拟视点的绘制以及相关的替换实现了整体舒适度的改善。4. The rendering of virtual viewpoints and related replacements achieve an overall improvement in comfort.
附图说明Description of drawings
图1是本发明的流程图;Fig. 1 is the flow chart of the present invention;
图2是本发明的高斯核位置坐标的示意图。FIG. 2 is a schematic diagram of the Gaussian kernel position coordinates of the present invention.
具体实施方式Detailed ways
下面通过实施例,并结合附图,对本发明的技术方案作进一步的说明。The technical solutions of the present invention will be further described below through examples and in conjunction with the accompanying drawings.
实施例:本实施例一种基于深度调整的3D视频舒适度改善方法,3D视频包括左视点图和右视点图,左视点图和右视点图都包括彩色图和深度图,所述改善方法包括以下步骤:第一步:对左视点图、右视点图的深度图都进行预处理,得到预处理图。预处理是将深度图的每一个像素点的深度值代入预处理的目标函数进行运算,运算后得到的图为预处理图,预处理的目标函数为:Embodiment: This embodiment is a method for improving the comfort of 3D video based on depth adjustment. The 3D video includes a left view point image and a right view point image, and both the left view point image and the right view point image include a color image and a depth image. The improvement method includes: The following steps: Step 1: Preprocess the depth maps of the left view point map and the right view point map to obtain a preprocessed map. Preprocessing is to substitute the depth value of each pixel of the depth map into the preprocessed objective function for operation. The image obtained after the operation is the preprocessed map, and the preprocessed objective function is:
其中Zpro表示预处理之后的深度值,Z表示原始深度值,Zm表示该深度图像中深度最小值。在已有深度图中表现出来的深度像素值与深度呈反比,深度越小深度像素值越大,越接近于白色。式中的“0.8”比例表示将大于最大值一半的部分深度向远处移动80%,也就是当视差过大时,对其进行一定程度的调整。Where Z pro represents the depth value after preprocessing, Z represents the original depth value, and Zm represents the minimum depth value in the depth image. The depth pixel value shown in the existing depth map is inversely proportional to the depth. The smaller the depth, the larger the depth pixel value, and the closer it is to white. The "0.8" ratio in the formula means that the depth of the part greater than half of the maximum value is moved 80% farther, that is, when the parallax is too large, it is adjusted to a certain extent.
第二步:对预处理图进行深度滤波,得到滤波图。深度滤波是将预处理图的每一个像素点代入深度滤波的目标函数进行运算,运算后得到的图为滤波图,深度滤波的目标函数为:Step 2: Perform deep filtering on the preprocessed image to obtain a filtered image. Depth filtering is to substitute each pixel of the preprocessing image into the objective function of depth filtering for operation. The image obtained after the operation is the filtering image, and the objective function of depth filtering is:
O(x,y)=∑m,nZ(x+m,y+n)*K(m,n)O(x,y)=∑ m,n Z(x+m,y+n)*K(m,n)
其中O(x,y)表示滤波之后的(x,y)位置的像素输出值,(x,y)表示深度图像素点的位置, Z(x+m,y+n)表示预处理图(x+m,y+n)位置处的深度值。K(m,n)表示滤波器核,(m,n)表示滤波器核位置坐标示意图中的坐标,滤波器核采用高斯滤波。高斯滤波是一种线性滤波,是对整个图像进行加权平均的过程,不同于均值滤波器中所有模板系数都是1的情况,高斯滤波器的模板系数是变化的,该系数同像素与模板中心的距离成反比。采用高斯滤波是因为它能使梯度的变化趋于平滑,改善不适感。where O(x, y) represents the pixel output value at the (x, y) position after filtering, (x, y) represents the position of the depth map pixel, Z(x+m, y+n) represents the preprocessing image ( The depth value at the position x+m, y+n). K(m, n) represents the filter kernel, (m, n) represents the coordinates in the schematic diagram of the position coordinates of the filter kernel, and the filter kernel adopts Gaussian filtering. Gaussian filtering is a linear filter, which is a process of weighted averaging of the entire image. Unlike the case where all template coefficients in the mean filter are 1, the template coefficients of the Gaussian filter change, and the coefficients are the same as the pixel and template center. distance is inversely proportional. Gaussian filtering is used because it can smooth the gradient changes and improve discomfort.
其中,高斯滤波采用选择3×3的高斯核进行模糊,所述3×3的高斯核所对应的二维高斯函数的表达式为其中(x,y)表示3×3高斯核位置坐标图中的坐标,高斯核位置坐标图如图2所示,σ表示标准差,采用σ=0.8进行坐标修正,σ=0.8是根据有效次试验获取的最佳数值。深度滤波目标函数中的K(m,n)的表达式采用二维高斯函数的表达式,即 K(m,n)=h(m,n)。Among them, Gaussian filtering adopts a Gaussian kernel of 3×3 for blurring, and the expression of the two-dimensional Gaussian function corresponding to the Gaussian kernel of 3×3 is: Where (x, y) represents the coordinates in the 3×3 Gaussian kernel position coordinate diagram, and the Gaussian kernel position coordinate diagram is shown in Figure 2, σ represents the standard deviation, and σ=0.8 is used for coordinate correction, and σ=0.8 is based on the effective times The best value obtained by experiment. The expression of K(m, n) in the depth filtering objective function adopts the expression of a two-dimensional Gaussian function, that is, K(m, n)=h(m, n).
其中,坐标修正是将3×3高斯核位置坐标图中的9个坐标代入二维高斯函数,求得对应的9个值,然后对9个值进行求和,并取和的倒数为α,再将3×3高斯核位置坐标图中的9个坐标都乘以α,得到新的3×3高斯核位置坐标图,最后将新的3×3高斯核位置坐标图中9个坐标值代入深度滤波的目标函数,以进行相应计算。权重计算本质上就是获得9个系数,9个系数代入到深度滤波的目标函数,相当于是将每个像素点作为中心,该像素点与其偏移的周围8个像素点分别与每个系数相乘,最后对9个积求和,得到该中心像素点所在位置的像素输出值。Among them, the coordinate correction is to substitute the 9 coordinates in the 3×3 Gaussian kernel position coordinate map into the two-dimensional Gaussian function, obtain the corresponding 9 values, and then sum the 9 values, and the reciprocal of the sum is α, Then multiply the 9 coordinates in the 3×3 Gaussian kernel position coordinate graph by α to obtain a new 3×3 Gaussian kernel position coordinate graph, and finally substitute the 9 coordinate values in the new 3×3 Gaussian kernel position coordinate graph into the The objective function of the depth filter to calculate accordingly. The weight calculation is essentially to obtain 9 coefficients, which are substituted into the objective function of depth filtering, which is equivalent to taking each pixel as the center, and multiplying the pixel and the surrounding 8 pixels offset by each coefficient respectively. , and finally sum up the 9 products to obtain the pixel output value at the position of the central pixel point.
第三步:对滤波图进行深度去纹理,得到去纹理图。深度去纹理包括以下步骤:Step 3: Deeply detexture the filter image to obtain a detextured image. Depth detexturing consists of the following steps:
1.使用Z=[Z(i,j)]W×H表示分辨率为W×H的给定滤波图并且进行DCT变换;1. Use Z=[Z(i,j)] W×H to represent a given filter map with a resolution of W×H and perform DCT transform;
所述DCT变换的目标函数为:The objective function of the DCT transform is:
其中:in:
W和H表示分辨率的两个值,(i,j)表示滤波图中像素点的坐标,(μ,v)表示经过DCT变换后的滤波图中像素点的坐标,u表示二维波的水平方向频率, v为二维波的垂直方向频率。 W and H represent two values of resolution, (i, j) represent the coordinates of the pixel points in the filter image, (μ, v) represent the coordinates of the pixel points in the filter image after DCT transformation, and u represents the two-dimensional wave frequency in the horizontal direction, v is the frequency in the vertical direction of the two-dimensional wave.
2.将DCT变换的结果经过阈值限定后进行反DCT变换,获得去纹理图,阈值限定的目标函数为:2. Perform inverse DCT transformation on the result of DCT transformation after thresholding to obtain a de-textured image. The threshold-limited objective function is:
其中DM表示去纹理图,T为实验选择的阈值。where DM represents the de-textured map, and T is the threshold selected for the experiment.
当纹理信息过多时,会导致人眼在融合3D影像时产生明显的融合困难,因此通过对图像进行去纹理操作可以让人眼更容易融合3D影响,从而改善提升舒适度。When there is too much texture information, it will cause obvious fusion difficulties for the human eye when fusing 3D images. Therefore, by de-texturing the image, it is easier for the human eye to fuse the 3D effects, thereby improving comfort.
第四步:根据去纹理图进行虚拟视点绘制,获得虚拟右视点彩色图。虚拟视点绘制采用DIBR绘制,包括以下步骤:Step 4: Draw a virtual viewpoint according to the de-textured map to obtain a virtual right viewpoint color map. The virtual viewpoint drawing adopts DIBR drawing, including the following steps:
1.修正LeftNearestDepthValue、LeftFarthestDepthValue、RightNearestDepthValue和 RightFarthestDepthValue,修正的目标函数为:1. Revise LeftNearestDepthValue, LeftFarthestDepthValue, RightNearestDepthValue and RightFarthestDepthValue. The revised objective function is:
DVad=DVor-DVor×0.1DV ad =DV or -DV or ×0.1
其中DVad代表调整之后的最大深度值和最小深度值,DVor代表原始深度最大值和最小值, LeftNearestDepthValue表示左视点去纹理图的深度最小值,LeftFarthestDepthValue表示左视点去纹理图的深度最大值,RightNearestDepthValue表示右视点去纹理图的深度最小值, RightFarthestDepthValue表示右视点去纹理图的深度最大值;Where DV ad represents the adjusted maximum depth value and minimum depth value, DV or represents the original maximum and minimum depth values, LeftNearestDepthValue represents the minimum depth of the left view to the texture map, LeftFarthestDepthValue represents the left view to the maximum depth of the texture map, RightNearestDepthValue represents the minimum depth of the texture map from the right view, and RightFarthestDepthValue represents the maximum depth of the texture map from the right view;
2.根据LeftNearestDepthValue、LeftFarthestDepthValue、RightNearestDepthValue和 RightFarthestDepthValue进行DIBR绘制得到虚拟右视点彩色图。通过DIBR绘制虚拟右视点彩色图1定程度上也减小了视差。2. Perform DIBR drawing according to LeftNearestDepthValue, LeftFarthestDepthValue, RightNearestDepthValue and RightFarthestDepthValue to obtain a virtual right view color map. The parallax is also reduced to a certain extent by rendering the virtual right-
最后一步:用虚拟右视点彩色图和原始视点图进行替换是将虚拟右视点彩色图、原始左视点彩色图、左视点去纹理图和右视点去纹理图替换原3D视频中的右视点彩色图、左视点彩色图、左视点深度图和右视点深度图,就可得到改善后的3D视频了。虚拟右视点彩色图与原始左视点图、左右视点的去纹理图结合并替换原有的图是最终在整体上对3D视频舒适度进行了改善。The last step: replacing the virtual right view color map with the original view image is to replace the right view color map in the original 3D video with the virtual right view color map, the original left view color map, the left view de-texture map and the right view de-texture map , left-view color map, left-view depth map, and right-view depth map to get an improved 3D video. Combining the virtual right-view color map with the original left-view map and the left- and right-view de-textured maps and replacing the original image finally improves the overall comfort of 3D video.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010068774.3A CN111405264B (en) | 2020-01-20 | 2020-01-20 | A 3D Video Comfort Improvement Method Based on Depth Adjustment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010068774.3A CN111405264B (en) | 2020-01-20 | 2020-01-20 | A 3D Video Comfort Improvement Method Based on Depth Adjustment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111405264A CN111405264A (en) | 2020-07-10 |
CN111405264B true CN111405264B (en) | 2022-04-12 |
Family
ID=71428381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010068774.3A Active CN111405264B (en) | 2020-01-20 | 2020-01-20 | A 3D Video Comfort Improvement Method Based on Depth Adjustment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111405264B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112040091B (en) | 2020-09-01 | 2023-07-21 | 先临三维科技股份有限公司 | Camera gain adjusting method and device and scanning system |
CN117591385B (en) * | 2024-01-19 | 2024-04-16 | 深圳清华大学研究院 | Control system for VR projection |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102256149A (en) * | 2011-07-13 | 2011-11-23 | 深圳创维-Rgb电子有限公司 | Three-dimensional (3D) display effect regulation method, device and television |
CN102333230A (en) * | 2011-09-21 | 2012-01-25 | 山东大学 | A Method of Improving the Quality of Synthesized Virtual View in 3D Video System |
CN105208369A (en) * | 2015-09-23 | 2015-12-30 | 宁波大学 | Method for enhancing visual comfort of stereoscopic image |
CN109510981A (en) * | 2019-01-23 | 2019-03-22 | 杭州电子科技大学 | A kind of stereo-picture comfort level prediction technique based on multiple dimensioned dct transform |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8798158B2 (en) * | 2009-03-11 | 2014-08-05 | Industry Academic Cooperation Foundation Of Kyung Hee University | Method and apparatus for block-based depth map coding and 3D video coding method using the same |
US9525858B2 (en) * | 2011-07-06 | 2016-12-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Depth or disparity map upscaling |
-
2020
- 2020-01-20 CN CN202010068774.3A patent/CN111405264B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102256149A (en) * | 2011-07-13 | 2011-11-23 | 深圳创维-Rgb电子有限公司 | Three-dimensional (3D) display effect regulation method, device and television |
CN102333230A (en) * | 2011-09-21 | 2012-01-25 | 山东大学 | A Method of Improving the Quality of Synthesized Virtual View in 3D Video System |
CN105208369A (en) * | 2015-09-23 | 2015-12-30 | 宁波大学 | Method for enhancing visual comfort of stereoscopic image |
CN109510981A (en) * | 2019-01-23 | 2019-03-22 | 杭州电子科技大学 | A kind of stereo-picture comfort level prediction technique based on multiple dimensioned dct transform |
Non-Patent Citations (1)
Title |
---|
《Stereoscopic Visual Discomfort Prediction Using Multi-scale》;Yang Zhou等;《Proceedings of the 27th ACM International Conference on Multimedia, ACM》;20191031;第184-191页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111405264A (en) | 2020-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9053575B2 (en) | Image processing apparatus for generating an image for three-dimensional display | |
US20110304708A1 (en) | System and method of generating stereo-view and multi-view images for rendering perception of depth of stereoscopic image | |
CN109462747B (en) | DIBR system cavity filling method based on generation countermeasure network | |
CN102026013B (en) | Three-dimensional video matching method based on affine transformation | |
CN107958444A (en) | A kind of face super-resolution reconstruction method based on deep learning | |
WO2014083949A1 (en) | Stereoscopic image processing device, stereoscopic image processing method, and program | |
CN102223556A (en) | Multi-view stereoscopic image parallax free correction method | |
Pan et al. | 3D video disparity scaling for preference and prevention of discomfort | |
CN101771893A (en) | Video frequency sequence background modeling based virtual viewpoint rendering method | |
WO2024022065A1 (en) | Virtual expression generation method and apparatus, and electronic device and storage medium | |
CN111405264B (en) | A 3D Video Comfort Improvement Method Based on Depth Adjustment | |
Choi et al. | Visual fatigue evaluation and enhancement for 2D-plus-depth video | |
CN105657401A (en) | Naked eye 3D display method and system and naked eye 3D display device | |
CN115482323A (en) | Stereoscopic video parallax control and editing method based on nerve radiation field | |
CN109218706B (en) | A method for generating stereoscopic vision images from a single image | |
Tam et al. | Stereoscopic image rendering based on depth maps created from blur and edge information | |
CN104820981B (en) | A kind of image stereo representation method and system that segmentation is layered based on parallax | |
US20120308115A1 (en) | Method for Adjusting 3-D Images by Using Human Visual Model | |
US20120121163A1 (en) | 3d display apparatus and method for extracting depth of 3d image thereof | |
CN117061720B (en) | Stereo image pair generation method based on monocular image and depth image rendering | |
CN105208369B (en) | A method for enhancing visual comfort of stereo images | |
CN103841403A (en) | Non-deforming three-dimensional image parallax quick adjusting method | |
Xue et al. | Disparity-based just-noticeable-difference model for perceptual stereoscopic video coding using depth of focus blur effect | |
CN112449170A (en) | Three-dimensional video repositioning method | |
CN111556304B (en) | Panoramic image processing method, device and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |