CN111404278A - 超导磁储能系统斩波器均压均流控制方法 - Google Patents

超导磁储能系统斩波器均压均流控制方法 Download PDF

Info

Publication number
CN111404278A
CN111404278A CN202010113410.2A CN202010113410A CN111404278A CN 111404278 A CN111404278 A CN 111404278A CN 202010113410 A CN202010113410 A CN 202010113410A CN 111404278 A CN111404278 A CN 111404278A
Authority
CN
China
Prior art keywords
chopper
capacitor
superconducting magnet
current
submodule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010113410.2A
Other languages
English (en)
Other versions
CN111404278B (zh
Inventor
张芳
沈浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010113410.2A priority Critical patent/CN111404278B/zh
Publication of CN111404278A publication Critical patent/CN111404278A/zh
Application granted granted Critical
Publication of CN111404278B publication Critical patent/CN111404278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种超导磁储能系统斩波器均压均流控制方法,所采用的斩波器包括n+m个结构相同的斩波器子模块,斩波器子模块SM1的中间端子与直流母线的正极相连,斩波器子模块SMk的中间端子与斩波器子模块SMk‑1的下端子相连,斩波器子模块SMn+m的下端子与直流母线的负极相连;每经过一个控制周期,依据超导磁体电流的大小对n+m个斩波器子模块排序;当超导磁储能系统充电时,依据超导磁体电流由小到大的顺序依次选取n个斩波器子模块,对于所选取的每个斩波器子模块,保持超导磁体Lsc的充电功率与电容C的充电功率相等,以维持电容电压恒定;控制剩余m个斩波器子模块,保持超导磁体Lsc在一个控制周期内始终处于续流状态。

Description

超导磁储能系统斩波器均压均流控制方法
技术领域
本发明涉及超导磁储能系统领域,涉及一种斩波器。
背景技术
超导磁储能(Superconducting Magnetic Energy Storage,SMES)系统是将能量储存在超导磁体中的一种快速、高效的储能装置。SMES系统相较于机械储能、电化学储能等储能装置,具有响应速度快、循环次数多、功率密度大及能量转换率高等优势,进而可用于抑制光伏、风电等新能源并网引起的电力系统频率波动;提升电网的暂态稳定性;增强重要负荷的供电可靠性等。
斩波器作为SMES系统的核心部分,主要功能是实现超导磁体与电网之间的可控能量交换。目前SMES系统多采用单相斩波器,由于开关器件关断电压的限制,单相斩波器只适用于电压等级较低的场合。中点钳位型单相斩波器的每个开关器件的关断电压仅为直流母线极对极电压的一半,适用于电压等级较高的场合,但这类结构的控制逻辑复杂、扩展性差,且易产生中点电位漂移。
显著提升单相斩波器的电压等级在技术上存在困难,将多个单相斩波器串联至较高电压等级是解决这一难题的有效措施,同时,由多个单相斩波器串联构成的斩波器可接入多个超导磁体,进而可有效提升SMES系统整体的储能量,但该斩波器可靠性较低,某一单相斩波器故障会导致斩波器整体退出运行,同时,斩波器中各电容及各超导磁体的参数在实际工程中难以保证完全一致,进而难以维持各电容电压均衡及各超导磁体电流均衡。电容电压不均衡可能引起部分器件过电压,超导磁体电流不均衡会造成部分超导磁体优先完成充、放电过程,而剩余超导磁体被迫停止充、放电,进而削弱SMES系统整体的放电深度。
发明内容
本发明提出一种超导磁储能系统斩波器均压均流控制方法,特别适用于高电压等级、大储能量超导磁储能系统,允许多个超导磁体接入以提升系统整体储能量,同时,该结构具备均压和均流能力、可靠性高且扩展性强,可应用于电压等级较高的场合。技术方案如下:
一种超导磁储能系统斩波器均压均流控制方法,所采用的斩波器包括n+m个结构相同的斩波器子模块,斩波器子模块SM1的中间端子与直流母线的正极相连,斩波器子模块SMk,k=2,3,…,n+m,的中间端子与斩波器子模块SMk-1的下端子相连,斩波器子模块SMn+m的下端子与直流母线的负极相连;斩波器子模块由一个半桥电路、一个电容C和一个单相斩波器并联构成,其中,半桥电路包括两路并联器件,一路为串联的两个IGBT,即T1和T2,一路为串联的两个二极管,即D1和D2,半桥电路中各器件连接方式为:T1的集电极、D1的阴极与电容C的正极相连,T1的发射极、T2的集电极、D1的阳极与D2的阴极相连于斩波器子模块的中间端子,T2的发射极、D2的阳极与电容C的负极相连斩波器子模块的下端子;单相斩波器包括一个超导磁体Lsc与两路并联器件,两路并联器件均由一个IGBT和一个二极管串联构成,设第一路并联器件包括T3、D4,第二路并联器件包括T4、D3,单相斩波器中各器件的连接方式为:T3的集电极、D3的阴极与电容C的正极相连,T3的发射极、D4的阴极与超导磁体Lsc的一端相连,T4的集电极、D3的阳极与超导磁体Lsc的另一端相连,T4的发射极、D4的阳极与电容C的负极相连。
每经过一个控制周期,依据超导磁体电流的大小对n+m个斩波器子模块排序;当超导磁储能系统充电时,依据超导磁体电流由小到大的顺序依次选取n个斩波器子模块,对于所选取的每个斩波器子模块,控制T1导通、T2关断,电流经过D1使电容C充电,控制T3和T4的导通与关断,保持超导磁体Lsc的充电功率与电容C的充电功率相等,以维持电容电压恒定;控制剩余m个斩波器子模块的T2导通、T1关断,电流经过T2使电容C旁路,电容C不与电网进行能量交换,控制T3和T4的导通与关断,保持超导磁体Lsc在一个控制周期内始终处于续流状态,以维持电容电压及超导磁体电流恒定;当超导磁储能系统放电时,依据超导磁体电流由大到小的顺序依次选取n个斩波器子模块,对于所选用的每个斩波器子模块,控制T1导通、T2关断,电流经过T1使电容C放电,控制T3和T4的导通与关断,保持超导磁体Lsc的放电功率与电容C的放电功率相等,以维持电容电压恒定;控制剩余m个斩波器子模块的T2导通、T1关断,电流经过D2使电容C旁路,电容C不与电网进行能量交换,控制T3和T4的导通与关断,保持超导磁体Lsc在一个控制周期内始终处于续流状态,以维持电容电压及超导磁体电流恒定;每经过一个控制周期更新一次n+m个斩波器子模块的排序,进而维持各超导磁体电流均衡。
本发明相对于现有的技术有以下优点:
(1)本发明将多个新型斩波器子模块串联接入电路中,在各新型斩波器子模块电压等级较低、各超导磁体储能量较小的条件下,可成倍数地提升新型斩波器整体的电压等级及储能量。
(2)本发明中各新型斩波器子模块中单相斩波器均采用定直流电压控制,在维持各新型斩波器子模块电容电压均衡的同时,通过控制各新型斩波器子模块中半桥电路的IGBT开关信号,可维持各超导磁体电流均衡。
(3)基于新型斩波器的模块化结构特点,确定斩波器子模块总数时可留有一定的裕度,以保证在某一新型斩波器子模块中单相斩波器发生故障的条件下,新型斩波器的正常运行。
附图说明
图1为适用于高电压等级、大储能量SMES系统的新型斩波器拓扑结构;
图2为新型斩波器子模块的工作模式;
具体实施方式
本发明提出一种适用于高电压等级、大储能量超导磁储能系统的新型斩波器,新型斩波器允许多个超导磁体接入以提升系统整体储能量,同时,该结构具备均压和均流能力、可靠性高且扩展性强,可应用于电压等级较高的场合。本发明可通过以下技术方案实现:
具体拓扑结构如图1所示。
新型斩波器包括n+m个结构完全相同的新型斩波器子模块,新型斩波器子模块SM1的中间端子与直流母线的正极相连,新型斩波器子模块SMk(k=2,3,…,n+m)的中间端子与新型斩波器子模块SMk-1的下端子相连,新型斩波器子模块SMn+m的下端子与直流母线的负极相连。新型斩波器子模块由一个半桥电路、一个电容C和一个单相斩波器并联构成,其中,半桥电路包括两路并联器件,一路为串联的两个IGBT,即T1和T2,一路为串联的两个二极管,即D1和D2,半桥电路中各器件连接方式为:T1的集电极、D1的阴极与电容C的正极相连,T1的发射极、T2的集电极、D1的阳极与D2的阴极相连于新型斩波器子模块的中间端子,T2的发射极、D2的阳极与电容C的负极相连新型斩波器子模块的下端子;单相斩波器包括一个超导磁体Lsc与两路并联器件,两路并联器件均由一个IGBT和一个二极管串联构成,即T3、D4和T4、D3,单相斩波器中各器件的连接方式为:T3的集电极、D3的阴极与电容C的正极相连,T3的发射极、D4的阴极与超导磁体Lsc的一端相连,T4的集电极、D3的阳极与超导磁体Lsc的另一端相连,T4的发射极、D4的阳极与电容C的负极相连。
新型斩波器的工作原理分为新型斩波器子模块的工作模式和排序规则两部分:
各新型斩波器子模块中单相斩波器均采用定直流电压控制,以维持各新型斩波器子模块的电容电压均为额定值Uc。根据图2中Idc的参考方向,定义新型斩波器子模块的工作模式为以下4种:
1、工作模式1:SMES系统充电且新型斩波器子模块投入
工作模式1如图2(a)所示,对T1与T2分别施加导通与关断信号,此时D1导通,电流经由D1对电容C充电,单相斩波器通过控制T3和T4的导通与关断,保持超导磁体Lsc的充电功率与电容C的充电功率相等,进而维持电容电压恒定。
2、工作模式2:SMES系统放电且新型斩波器子模块投入
工作模式2如图2(b)所示,对T1与T2分别施加导通与关断信号,电流经由T1使电容C放电,单相斩波器通过控制T3和T4的导通与关断,保持超导磁体Lsc的放电功率与电容C的放电功率相等,进而维持电容电压恒定。
3、工作模式3:SMES系统充电且新型斩波器子模块旁路
工作模式3如图2(c)所示,对T1与T2分别施加关断与导通信号,电流经由T2将电容C旁路。电容C旁路时,不与电网进行能量交换,单相斩波器控制超导磁体Lsc在一个控制周期内始终处于续流状态,维持电容电压及超导磁体电流恒定。
4、工作模式4:SMES系统放电且新型斩波器子模块旁路
工作模式4如图2(d)所示,对T1与T2分别施加关断与导通信号,电流经由D2将电容C旁路。电容C旁路时,不与电网进行能量交换,单相斩波器控制超导磁体Lsc在一个控制周期内始终处于续流状态,维持电容电压及超导磁体电流恒定。
新型斩波器子模块的排序规则为:
1、每经过一个控制周期测量一次n+m个新型斩波器子模块的超导磁体电流,并依据超导磁体电流的大小对新型斩波器子模块进行排序。
2、当SMES系统充电时,按照各新型斩波器子模块中超导磁体电流由小到大的顺序,依次选取n个新型斩波器子模块切换至工作模式1;余下m个超导磁体电流较大的新型斩波器子模块切换至工作模式3。
3、当SMES系统放电时,依照各新型斩波器子模块中超导磁体电流由大到小的顺序,依次选取n个新型斩波器子模块切换至工作模式2;余下m个超导磁体电流较小的新型斩波器子模块切换至工作模式4。
4、每经过一个控制周期更新一次各新型斩波器子模块的排序。
按照新型斩波器子模块的排序规则确定各新型斩波器子模块的工作模式后,电流较小的超导磁体具备更长的充电时长和更短的放电时长,电流较大的超导磁体与之相反,最终各超导磁体电流趋于一致。确定新型斩波器子模块总数时可留有一定的裕度,进而当某一新型斩波器子模块中单相斩波器发生故障退出运行后,并不会影响非故障新型斩波器子模块的排序效果,即新型斩波器仍可正常运行,可靠性较高。

Claims (1)

1.一种超导磁储能系统斩波器均压均流控制方法,所采用的斩波器包括n+m个结构相同的斩波器子模块,斩波器子模块SM1的中间端子与直流母线的正极相连,斩波器子模块SMk,k=2,3,…,n+m,的中间端子与斩波器子模块SMk-1的下端子相连,斩波器子模块SMn+m的下端子与直流母线的负极相连;斩波器子模块由一个半桥电路、一个电容C和一个单相斩波器并联构成,其中,半桥电路包括两路并联器件,一路为串联的两个IGBT,即T1和T2,一路为串联的两个二极管,即D1和D2,半桥电路中各器件连接方式为:T1的集电极、D1的阴极与电容C的正极相连,T1的发射极、T2的集电极、D1的阳极与D2的阴极相连于斩波器子模块的中间端子,T2的发射极、D2的阳极与电容C的负极相连斩波器子模块的下端子;单相斩波器包括一个超导磁体Lsc与两路并联器件,两路并联器件均由一个IGBT和一个二极管串联构成,设第一路并联器件包括T3、D4,第二路并联器件包括T4、D3,单相斩波器中各器件的连接方式为:T3的集电极、D3的阴极与电容C的正极相连,T3的发射极、D4的阴极与超导磁体Lsc的一端相连,T4的集电极、D3的阳极与超导磁体Lsc的另一端相连,T4的发射极、D4的阳极与电容C的负极相连。
控制方法如下:每经过一个控制周期,依据超导磁体电流的大小对n+m个斩波器子模块排序;当超导磁储能系统充电时,依据超导磁体电流由小到大的顺序依次选取n个斩波器子模块,对于所选取的每个斩波器子模块,控制T1导通、T2关断,电流经过D1使电容C充电,控制T3和T4的导通与关断,保持超导磁体Lsc的充电功率与电容C的充电功率相等,以维持电容电压恒定;控制剩余m个斩波器子模块的T2导通、T1关断,电流经过T2使电容C旁路,电容C不与电网进行能量交换,控制T3和T4的导通与关断,保持超导磁体Lsc在一个控制周期内始终处于续流状态,以维持电容电压及超导磁体电流恒定;当超导磁储能系统放电时,依据超导磁体电流由大到小的顺序依次选取n个斩波器子模块,对于所选用的每个斩波器子模块,控制T1导通、T2关断,电流经过T1使电容C放电,控制T3和T4的导通与关断,保持超导磁体Lsc的放电功率与电容C的放电功率相等,以维持电容电压恒定;控制剩余m个斩波器子模块的T2导通、T1关断,电流经过D2使电容C旁路,电容C不与电网进行能量交换,控制T3和T4的导通与关断,保持超导磁体Lsc在一个控制周期内始终处于续流状态,以维持电容电压及超导磁体电流恒定;每经过一个控制周期更新一次n+m个斩波器子模块的排序,进而维持各超导磁体电流均衡。
CN202010113410.2A 2020-02-24 2020-02-24 超导磁储能系统斩波器均压均流控制方法 Active CN111404278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010113410.2A CN111404278B (zh) 2020-02-24 2020-02-24 超导磁储能系统斩波器均压均流控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010113410.2A CN111404278B (zh) 2020-02-24 2020-02-24 超导磁储能系统斩波器均压均流控制方法

Publications (2)

Publication Number Publication Date
CN111404278A true CN111404278A (zh) 2020-07-10
CN111404278B CN111404278B (zh) 2022-05-17

Family

ID=71413862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010113410.2A Active CN111404278B (zh) 2020-02-24 2020-02-24 超导磁储能系统斩波器均压均流控制方法

Country Status (1)

Country Link
CN (1) CN111404278B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188378A (zh) * 2007-12-06 2008-05-28 中国科学院电工研究所 一种高性价比大功率igbt模块
CN103633872A (zh) * 2013-12-17 2014-03-12 山东大学 模块化多电平变换器电容电压自平衡电路
CN107947573A (zh) * 2017-12-15 2018-04-20 华中科技大学 一种适用于超导磁储能的dc/dc斩波器
CN109193953A (zh) * 2018-10-26 2019-01-11 广东电网有限责任公司 一种模块化超导磁储能结构及控制方法
EP3609069A1 (en) * 2018-08-06 2020-02-12 General Electric Technology GmbH Converter system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188378A (zh) * 2007-12-06 2008-05-28 中国科学院电工研究所 一种高性价比大功率igbt模块
CN103633872A (zh) * 2013-12-17 2014-03-12 山东大学 模块化多电平变换器电容电压自平衡电路
CN107947573A (zh) * 2017-12-15 2018-04-20 华中科技大学 一种适用于超导磁储能的dc/dc斩波器
EP3609069A1 (en) * 2018-08-06 2020-02-12 General Electric Technology GmbH Converter system
CN109193953A (zh) * 2018-10-26 2019-01-11 广东电网有限责任公司 一种模块化超导磁储能结构及控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MUKESH M. BHESANIYA: "Current_Source_Modular_Multilevel_Converter_Detailed_Analysis_and_STATCOM_Application", 《IEEE TRANSACTIONS ON POWER DELIVERY》 *
严干贵: "多电平电流源变流器研究综述", 《电网技术》 *

Also Published As

Publication number Publication date
CN111404278B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US11264894B2 (en) Converter and current control system thereof
CN110890743B (zh) 具备故障阻断能力的低损耗的模块化多电平直流变压器
US11451135B2 (en) Multilevel port under-voltage protection circuit with flying capacitor
CN109546672B (zh) 一种直流耗能装置、系统以及控制方法
CN109494752B (zh) 一种集中式电阻耗能装置及其控制方法
Hao et al. Tap for classical HVDC based on multilevel current-source inverters
CN105119511A (zh) 一种具有直流侧故障阻断能力的mmc子模块电路
CN106024497B (zh) 一种高短路关断直流断路器用辅助电路及其控制方法
CN109787264A (zh) 一种集中式耗能装置及其控制方法
CN110943615A (zh) 一种低损耗模块化多电平直流直流变换器的故障穿越方法
CN113285584A (zh) 基于负极预充的预充电电路以及飞跨电容三电平变换器
CN110994560B (zh) 一种低损耗模块化多电平换流器故障穿越方法
Diao et al. A novel fault ride-through topology with high efficiency and fast fault clearing capability for MVdc PV system
CN112542957B (zh) 一种基于平均值等效的igct-mmc损耗分析方法
CN110994974B (zh) 一种低损耗模块化多电平直流直流变换器及其子模块
CN111404278B (zh) 超导磁储能系统斩波器均压均流控制方法
CN110890742B (zh) 低损耗模块化多电平直流变压器的直流侧故障穿越方法
CN204906215U (zh) 具有直流侧故障阻断能力的mmc子模块电路
CN113063985A (zh) 一种换流阀过流和均压测试电路、系统及方法
CN110995039B (zh) 一种低损耗模块化多电平换流器及其参数设计方法
CN111313702A (zh) 用于超导磁储能系统的斩波器
CN113437863B (zh) 一种并联igbt动态均流缓冲电路
Fan et al. Power flow controllers in DC systems
Mobarrez et al. Impact of DC side fault protection on performance and operation of multi-terminal DC (MTDC) systems
Pandey et al. Self-balanced modular multilevel DC-DC converter for high conversion ratio

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant