CN111401261A - 基于gan-cnn框架的机器人手势识别方法 - Google Patents

基于gan-cnn框架的机器人手势识别方法 Download PDF

Info

Publication number
CN111401261A
CN111401261A CN202010192589.5A CN202010192589A CN111401261A CN 111401261 A CN111401261 A CN 111401261A CN 202010192589 A CN202010192589 A CN 202010192589A CN 111401261 A CN111401261 A CN 111401261A
Authority
CN
China
Prior art keywords
cnn
pictures
gesture
robot
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010192589.5A
Other languages
English (en)
Other versions
CN111401261B (zh
Inventor
司海飞
胡兴柳
史震
方挺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinling Institute of Technology
Original Assignee
Jinling Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinling Institute of Technology filed Critical Jinling Institute of Technology
Priority to CN202010192589.5A priority Critical patent/CN111401261B/zh
Publication of CN111401261A publication Critical patent/CN111401261A/zh
Application granted granted Critical
Publication of CN111401261B publication Critical patent/CN111401261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition

Abstract

基于GAN‑CNN框架的机器人手势识别方法,高清摄像机预先采集不同手势样本图片,而后通过WIFI传送至机器人数据处理系统;数据处理系统利用生成对抗网络对步骤1中不同的手势样本图片进行扩展;对上步骤获得的扩展手势图片制作相应的标签,然后将扩展得到的手势图片及其对应的标签输入到卷积神经网络中,从而完成CNN分类识别模型的预训练;高清摄像机实时采集不同手势样本图片,而后通过WIFI传送至机器人数据处理系统;数据处理系统利用预训练好的CNN模型对上步骤中所采集的照片进行分类识别,并将相关的识别信息通过WIFI上传至MYSQL数据库进行存储;机器人根据CNN识别结果执行相应的动作,至此,整个闭环过程结束。本发明解决小样本条件下机器人手势识别的难题。

Description

基于GAN-CNN框架的机器人手势识别方法
技术领域
本发明涉及机器人手势识别领域,特别是涉及基于GAN-CNN框架的机器人手势识别方法。
背景技术
随着人工智能和虚拟现实技术的不断发展,人机交互系统已经成为当前的研究热点。现今,作为一种新兴的人机交互方式,手势识别得到了很多研究者的重视,并产生了一系列有效的成果,且在诸如智能机器人、智能驾驶等设备中得到了广泛的应用。手势识别,简单的来说就是让机器在视觉或传感器采集系统的辅助下来理解人类所想要表达的思想,即通过无接触的方式完成交互过程,从而通过机器人完成相应的动作,在真正意义上实现智能化。
对于不同手势的识别分类,其核心即是图像的分类识别。近年来发展的深度学习模型凭借其强大的表征能力和自适应学习能力被广泛应用于计算机视觉、自然语言处理和人脸识别等领域。此类的模型如深度信念网络(DBN)、循环神经网络(RNN)、堆栈降噪自编码(SDAE)、卷积神经网络(CNN)、长短时记忆网络(LSTM)。其中的CNN是仿造生物的视知觉机制构建的,是一种具有深度结构的前馈神经网络,在图像分类识别中具有很好的效果,但如何以CNN为核心构建一个分类识别模型,并且支持模型的更新优化是当前亟待解决的问题。
国内涉及CNN方法在手势识别中应用的专利有“一种面向水下设备的手势识别方法”(201910858330.7),利用卷积神经网络实现对手势图像的识别,解决现有方法中存在的实现过程繁琐、实时性差、且识别率低的问题。国家发明专利“基于毫米波雷达和卷积神经网络的微动手势识别方法”(201911054117.7),该专利针对毫米波雷达特征图像设计卷积神经网络,而后调用分类模型以实现多种手势的分类识别。以上两个国家发明专利都涉及CNN在手势识别中的应用,但是都存在训练样本量不够充足,而导致CNN模型可能会出现过拟合现象,从而降低了模型的泛化性。
发明内容
为解决上述问题,本发明在GAN,CNN,MYSQL数据库的基础上,提出了基于GAN-CNN框架的机器人手势识别方法,首先利用GAN对有限的手势照片进行扩展以解决小样本条件下模型以过拟合的问题,而后利用具有强大的非线性表达能力的CNN对不同的手势图片进行分类识别。另外,充分利用了MYSQL数据库的存储优势,能够实现对现有模型的更新优化,从而大大的提高了模型的识别精度和泛化性。为达此目的,本发明提供基于GAN-CNN框架的机器人手势识别方法,具体步骤如下,其特征在于:
步骤1,高清摄像机预先采集不同手势样本图片,而后通过WIFI传送至机器人数据处理系统;
步骤2,数据处理系统利用生成对抗网络(GAN)对步骤1中不同的手势样本图片进行扩展;
步骤3,对步骤2获得的扩展手势图片制作相应的标签,然后将扩展得到的手势图片及其对应的标签输入到卷积神经网络(CNN)中,从而完成CNN分类识别模型的预训练;
步骤4,高清摄像机实时采集不同手势样本图片,而后通过WIFI传送至机器人数据处理系统;
步骤5,数据处理系统利用预训练好的CNN模型对步骤4中所采集的照片进行分类识别,并将相关的识别信息通过WIFI上传至MYSQL数据库进行存储;
步骤6,机器人根据CNN识别结果执行相应的动作,至此,整个闭环过程结束。
进一步,步骤2中GAN网络模型训练的步骤为:
步骤2.1,固定生成器G,训练鉴别器D;
步骤2.2,固定鉴别器D,训练生成器G;
步骤2.3,重复步骤2.1和步骤2.2,直至整个网络达到纳什平衡或者迭次次数达到设定的最大值,整个对抗过程的目标函数可以表示为:
Figure BDA0002416448140000021
式中,pdata(x)表示真实样本x的分布概率,pz(z)表示生成器G的输入噪声变量z的分布概率z的分布概率,D(x)表示D鉴别x来源于真实样本的概率,D(G(z))表示D鉴别z来源于虚假样本的概率。
进一步,步骤3中CNN网络模型训练的步骤为:
步骤3.1,将扩展得到的手势图片及其对应的标签输入到CNN中,其中卷积层滤波处理可以表达为:
Figure BDA0002416448140000022
式中,
Figure BDA0002416448140000023
为n层卷积上第l个卷积核的输出,σ(·)为非线性激活函数,本发明选用RULE函数,
Figure BDA0002416448140000024
为n层第l个卷积核的权重系数,
Figure BDA0002416448140000025
为n-1层第m个特征输出,
Figure BDA0002416448140000026
是偏置项。
步骤3.2,将卷积层处理后的图片输入至下一个处理层,即:池化层,本发明的池化方式选用Max pooling;
步骤3.3,依次对图片进行类似于步骤3.1和步骤3.2的卷积池化处理;
步骤3.4,将步骤3.3中获得图片以Flatten的方式进行展开,然后连接全连接层1和全连接层2;
步骤3.5,利用Softmax逻辑回归实现对多层提取后的特征向量的识别与分类,其中Softmax回归的输出定义如下:
Figure BDA0002416448140000031
式中,K为类别数,θj(1≤j≤K)为分类层参数。
步骤3.6,在交叉熵损失函数下,利用随机梯度下降(SGD)算法对CNN网络参数进行更新优化;
步骤3.7,重复以上步骤,直至交叉熵损失函数收敛或网络迭代次数达到设定的阈值,此时认为模型训练完成。
进一步,步骤5中将相关的识别信息通过WIFI上传至MYSQL数据库进行存储可具体描述为:
将实时采集的照片和相应的判断结果发送至MYSQL数据库,当已有的模型判断出错时,则将判断出错的图片数据制作相应的标签,而后对已有的模型进行重新训练,其中训练过程与步骤3.1-3.7保持一致,从而提高模型的分类识别的精度和泛化性。
本发明基于GAN-CNN框架的机器人手势识别方法,有益效果:本发明的技术效果在于:
1.本发明利用GAN实现对有限的手势样本图片的扩展,能够很好的解决深度学习模型在小样本条件下容易过拟合的问题;
2.本发明充分的利用了CNN强大的非线性表达能力,在GAN生成扩展的图片样本的基础上,能很好的捕捉到不同手势图片之间的分布特征,从而精确的实现了机器人对不同手势的识别;
3.本发明利用MYSQL数据库存储数据的优势,可以很好的实现对GAN-CNN模型的更新优化,一方面增强了模型的识别精度,另一方面也提高了模型的泛化性。
附图说明
图1为本发明的流程图;
图2为本发明采用的GAN模型对抗训练示意图;
图3为本发明采用的CNN模型网络结构图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:
本发明提出了基于GAN-CNN框架的机器人手势识别方法,旨在实现机器人对人类不同手势精确的识别判断,同时实现模型的更新优化。
图1为本发明的流程图。下面结合流程图对本发明的步骤作详细介绍。
步骤1,高清摄像机预先采集不同手势样本图片,而后通过WIFI传送至机器人数据处理系统;
步骤2,数据处理系统利用生成对抗网络(GAN)对步骤1中不同的手势样本图片进行扩展;
步骤2中GAN网络模型训练的步骤为:
步骤2.1,固定生成器G,训练鉴别器D;
步骤2.2,固定鉴别器D,训练生成器G;
步骤2.3,重复步骤2.1和步骤2.2,直至整个网络达到纳什平衡或者迭次次数达到设定的最大值,整个对抗过程的目标函数可以表示为:
Figure BDA0002416448140000041
式中,pdata(x)表示真实样本x的分布概率,pz(z)表示生成器G的输入噪声变量z的分布概率z的分布概率,D(x)表示D鉴别x来源于真实样本的概率,D(G(z))表示D鉴别z来源于虚假样本的概率。
步骤3,对步骤2获得的扩展手势图片制作相应的标签,然后将扩展得到的手势图片及其对应的标签输入到卷积神经网络(CNN)中,从而完成CNN分类识别模型的预训练;
步骤3中CNN网络模型训练的步骤为:
步骤3.1,将扩展得到的手势图片及其对应的标签输入到CNN中,其中卷积层滤波处理可以表达为:
Figure BDA0002416448140000042
式中,
Figure BDA0002416448140000043
为n层卷积上第l个卷积核的输出,σ(·)为非线性激活函数,本发明选用RULE函数,
Figure BDA0002416448140000044
为n层第l个卷积核的权重系数,
Figure BDA0002416448140000045
为n-1层第m个特征输出,
Figure BDA0002416448140000046
是偏置项。
步骤3.2,将卷积层处理后的图片输入至下一个处理层,即:池化层,本发明的池化方式选用Max pooling;
步骤3.3,依次对图片进行类似于步骤3.1和步骤3.2的卷积池化处理;
步骤3.4,将步骤3.3中获得图片以Flatten的方式进行展开,然后连接全连接层1和全连接层2;
步骤3.5,利用Softmax逻辑回归实现对多层提取后的特征向量的识别与分类,其中Softmax回归的输出定义如下:
Figure BDA0002416448140000051
式中,K为类别数,θj(1≤j≤K)为分类层参数。
步骤3.6,在交叉熵损失函数下,利用随机梯度下降(SGD)算法对CNN网络参数进行更新优化;
步骤3.7,重复以上步骤,直至交叉熵损失函数收敛或网络迭代次数达到设定的阈值,此时认为模型训练完成。
步骤4,高清摄像机实时采集不同手势样本图片,而后通过WIFI传送至机器人数据处理系统;
步骤5,数据处理系统利用预训练好的CNN模型对步骤4中所采集的照片进行分类识别,并将相关的识别信息通过WIFI上传至MYSQL数据库进行存储;
步骤5中将相关的识别信息通过WIFI上传至MYSQL数据库进行存储可具体描述为:
将实时采集的照片和相应的判断结果发送至MYSQL数据库,当已有的模型判断出错时,则将判断出错的图片数据制作相应的标签,而后对已有的模型进行重新训练,其中训练过程与步骤3.1-3.7保持一致,从而提高模型的分类识别的精度和泛化性。
步骤6,机器人根据CNN识别结果执行相应的动作,至此,整个闭环过程结束。
图2为本发明采用的GAN模型对抗训练示意图。可以看出,生成器G和鉴别器D在整个过程中进行对抗博弈,当两者达到纳什平衡的时候,可以认为模型训练结束,也即通过生成器G可以生成与真实手势图片分布一致的虚假样本,从而实现对有限手势图片的扩展。
图3为本发明采用的CNN模型网络结构图。可以看出,本发明中的CNN由三层卷积层和三层池化层构成,在卷积层和池化层对特征提取结束后对获得的数据进行Flatten展开,而后利用两层全连接层实现对所提特征的降维,最后结合Softmax层实现对样本的分类。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何其他形式的限制,而依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。

Claims (4)

1.基于GAN-CNN框架的机器人手势识别方法,具体步骤如下,其特征在于:
步骤1,高清摄像机预先采集不同手势样本图片,而后通过WIFI传送至机器人数据处理系统;
步骤2,数据处理系统利用生成对抗网络(GAN)对步骤1中不同的手势样本图片进行扩展;
步骤3,对步骤2获得的扩展手势图片制作相应的标签,然后将扩展得到的手势图片及其对应的标签输入到卷积神经网络(CNN)中,从而完成CNN分类识别模型的预训练;
步骤4,高清摄像机实时采集不同手势样本图片,而后通过WIFI传送至机器人数据处理系统;
步骤5,数据处理系统利用预训练好的CNN模型对步骤4中所采集的照片进行分类识别,并将相关的识别信息通过WIFI上传至MYSQL数据库进行存储;
步骤6,机器人根据CNN识别结果执行相应的动作,至此,整个闭环过程结束。
2.根据权利要求1所述的基于GAN-CNN框架的机器人手势识别方法,其特征在于:步骤2中GAN网络模型训练的步骤为:
步骤2.1,固定生成器G,训练鉴别器D;
步骤2.2,固定鉴别器D,训练生成器G;
步骤2.3,重复步骤2.1和步骤2.2,直至整个网络达到纳什平衡或者迭次次数达到设定的最大值,整个对抗过程的目标函数可以表示为:
Figure FDA0002416448130000011
式中,pdata(x)表示真实样本x的分布概率,pz(z)表示生成器G的输入噪声变量z的分布概率z的分布概率,D(x)表示D鉴别x来源于真实样本的概率,D(G(z))表示D鉴别z来源于虚假样本的概率。
3.根据权利要求1所述的基于GAN-CNN框架的机器人手势识别方法,其特征在于:步骤3中CNN网络模型训练的步骤为:
步骤3.1,将扩展得到的手势图片及其对应的标签输入到CNN中,其中卷积层滤波处理可以表达为:
Figure FDA0002416448130000012
式中,
Figure FDA0002416448130000013
为n层卷积上第l个卷积核的输出,σ(·)为非线性激活函数,本发明选用RULE函数,
Figure FDA0002416448130000014
为n层第l个卷积核的权重系数,
Figure FDA0002416448130000015
为n-1层第m个特征输出,
Figure FDA0002416448130000016
是偏置项;
步骤3.2,将卷积层处理后的图片输入至下一个处理层,即:池化层,本发明的池化方式选用Max pooling;
步骤3.3,依次对图片进行类似于步骤3.1和步骤3.2的卷积池化处理;
步骤3.4,将步骤3.3中获得图片以Flatten的方式进行展开,然后连接全连接层1和全连接层2;
步骤3.5,利用Softmax逻辑回归实现对多层提取后的特征向量的识别与分类,其中Softmax回归的输出定义如下:
Figure FDA0002416448130000021
式中,K为类别数,θj(1≤j≤K)为分类层参数;
步骤3.6,在交叉熵损失函数下,利用随机梯度下降(SGD)算法对CNN网络参数进行更新优化;
步骤3.7,重复以上步骤,直至交叉熵损失函数收敛或网络迭代次数达到设定的阈值,此时认为模型训练完成。
4.根据权利要求1所述的基于GAN-CNN框架的机器人手势识别方法,其特征在于:步骤5中将相关的识别信息通过WIFI上传至MYSQL数据库进行存储可具体描述为:
将实时采集的照片和相应的判断结果发送至MYSQL数据库,当已有的模型判断出错时,则将判断出错的图片数据制作相应的标签,而后对已有的模型进行重新训练,其中训练过程与步骤3.1-3.7保持一致,从而提高模型的分类识别的精度和泛化性。
CN202010192589.5A 2020-03-18 2020-03-18 基于gan-cnn框架的机器人手势识别方法 Active CN111401261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010192589.5A CN111401261B (zh) 2020-03-18 2020-03-18 基于gan-cnn框架的机器人手势识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010192589.5A CN111401261B (zh) 2020-03-18 2020-03-18 基于gan-cnn框架的机器人手势识别方法

Publications (2)

Publication Number Publication Date
CN111401261A true CN111401261A (zh) 2020-07-10
CN111401261B CN111401261B (zh) 2022-06-10

Family

ID=71432608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010192589.5A Active CN111401261B (zh) 2020-03-18 2020-03-18 基于gan-cnn框架的机器人手势识别方法

Country Status (1)

Country Link
CN (1) CN111401261B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112580611A (zh) * 2021-02-21 2021-03-30 江苏铨铨信息科技有限公司 一种基于igan-cnn模型的空气污染评估方法
CN116736340A (zh) * 2023-04-11 2023-09-12 中山大学·深圳 一种欺骗信号检测方法、装置、计算机设备及存储介质
CN117892637A (zh) * 2024-03-13 2024-04-16 中国电子科技集团公司第十五研究所 一种基于联合网络模型的靶板击穿厚度预测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107729854A (zh) * 2017-10-25 2018-02-23 南京阿凡达机器人科技有限公司 一种机器人的手势识别方法、系统及机器人
CN108334814A (zh) * 2018-01-11 2018-07-27 浙江工业大学 一种基于卷积神经网络结合用户习惯性行为分析的ar系统手势识别方法
CN109214250A (zh) * 2017-07-05 2019-01-15 中南大学 一种基于多尺度卷积神经网络的静态手势识别方法
CN109815920A (zh) * 2019-01-29 2019-05-28 南京信息工程大学 基于卷积神经网络和对抗卷积神经网络的手势识别方法
US20190236341A1 (en) * 2018-02-01 2019-08-01 Ford Global Technologies, Llc Validating Gesture Recognition Capabilities Of Automated Systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109214250A (zh) * 2017-07-05 2019-01-15 中南大学 一种基于多尺度卷积神经网络的静态手势识别方法
CN107729854A (zh) * 2017-10-25 2018-02-23 南京阿凡达机器人科技有限公司 一种机器人的手势识别方法、系统及机器人
CN108334814A (zh) * 2018-01-11 2018-07-27 浙江工业大学 一种基于卷积神经网络结合用户习惯性行为分析的ar系统手势识别方法
US20190236341A1 (en) * 2018-02-01 2019-08-01 Ford Global Technologies, Llc Validating Gesture Recognition Capabilities Of Automated Systems
CN109815920A (zh) * 2019-01-29 2019-05-28 南京信息工程大学 基于卷积神经网络和对抗卷积神经网络的手势识别方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴晓凤等: "基于Faster R-CNN的手势识别算法", 《计算机辅助设计与图形学学报》 *
曹军梅等: "基于AE-CNN的手势识别算法的探讨及实现", 《信息技术》 *
江帆等: "基于CNN-GRNN模型的图像识别", 《计算机工程》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112580611A (zh) * 2021-02-21 2021-03-30 江苏铨铨信息科技有限公司 一种基于igan-cnn模型的空气污染评估方法
CN116736340A (zh) * 2023-04-11 2023-09-12 中山大学·深圳 一种欺骗信号检测方法、装置、计算机设备及存储介质
CN117892637A (zh) * 2024-03-13 2024-04-16 中国电子科技集团公司第十五研究所 一种基于联合网络模型的靶板击穿厚度预测方法及装置

Also Published As

Publication number Publication date
CN111401261B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
Rao et al. Deep convolutional neural networks for sign language recognition
Pandey et al. Deep learning techniques for speech emotion recognition: A review
Kishore et al. Indian classical dance action identification and classification with convolutional neural networks
CN111401261B (zh) 基于gan-cnn框架的机器人手势识别方法
Du et al. Hierarchical recurrent neural network for skeleton based action recognition
CN109443382A (zh) 基于特征提取与降维神经网络的视觉slam闭环检测方法
CN107102727B (zh) 基于elm神经网络的动态手势学习与识别方法
Kollias et al. On line emotion detection using retrainable deep neural networks
CN113705769A (zh) 一种神经网络训练方法以及装置
CN113158861B (zh) 一种基于原型对比学习的运动分析方法
Yu et al. Human action recognition using deep learning methods
CN107169117A (zh) 一种基于自动编码器和dtw的手绘图人体运动检索方法
Balasubramanian et al. Analysis of facial emotion recognition
CN110096976A (zh) 基于稀疏迁移网络的人体行为微多普勒分类方法
Greco et al. Emotion analysis from faces for social robotics
CN111582395A (zh) 一种基于卷积神经网络的产品质量分类系统
Yan et al. An incremental intelligent object recognition system based on deep learning
Valle et al. Recognition of human walking/running actions based on neural network
Jahagirdar et al. Comparison of feed forward and cascade forward neural networks for human action recognition
CN116246338B (zh) 一种基于图卷积和Transformer复合神经网络的行为识别方法
Özbay et al. 3D Human Activity Classification with 3D Zernike Moment Based Convolutional, LSTM-Deep Neural Networks.
Kabakus A novel sketch recognition model based on convolutional neural networks
Kumar et al. A comprehensive review on the advancement of high-dimensional neural networks in quaternionic domain with relevant applications
Yu et al. Prototypical network based on Manhattan distance
CN114724245A (zh) 基于csi的增量学习人体动作识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant