CN111399034A - 基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置及方法 - Google Patents

基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置及方法 Download PDF

Info

Publication number
CN111399034A
CN111399034A CN202010246651.4A CN202010246651A CN111399034A CN 111399034 A CN111399034 A CN 111399034A CN 202010246651 A CN202010246651 A CN 202010246651A CN 111399034 A CN111399034 A CN 111399034A
Authority
CN
China
Prior art keywords
fiber
grating
chirped
chirped grating
grating array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010246651.4A
Other languages
English (en)
Other versions
CN111399034B (zh
Inventor
李政颖
王洪海
王立新
桂鑫
郭会勇
姜德生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202010246651.4A priority Critical patent/CN111399034B/zh
Publication of CN111399034A publication Critical patent/CN111399034A/zh
Priority to DE112021000002.0T priority patent/DE112021000002T5/de
Priority to PCT/CN2021/070284 priority patent/WO2021196815A1/zh
Application granted granted Critical
Publication of CN111399034B publication Critical patent/CN111399034B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • G01V1/186Hydrophones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • G01V1/226Optoseismic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • G02B2006/0209Helical, chiral gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置,包括干涉型分布式光纤光栅声学传感解调仪、低弯曲损耗啁啾光栅阵列光纤和金属弹性圆筒,低弯曲损耗啁啾光栅阵列光纤基于低损耗弯曲不敏感单模光纤在线制备而成,低弯曲损耗啁啾光栅阵列光纤中相邻两个啁啾光栅之间的光纤构成光栅测区,光栅测区包括奇数啁啾光栅测区和偶数啁啾光栅测区,其中,奇数啁啾光栅测区缠绕在金属弹性圆筒上,偶数光栅测区沿金属弹性圆筒长度方向直线布设。干涉型分布式光纤光栅声学传感解调仪的光学信号输出端连接低弯曲损耗啁啾光栅阵列光纤的一端,低弯曲损耗啁啾光栅阵列光纤的另一端打结悬空或者连接光纤终结器。

Description

基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置 及方法
技术领域
本发明涉及光纤传感技术领域,具体地指一种基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置及方法。
背景技术
声波是人类已知的唯一能在海水中远距离传输的能量形式。水听器是利用在海洋中传播的声波作为信息载体对水下目标进行探测以及实现水下导航、测量和通信的一类传感器。
压电式水听器和干涉式光纤水听器是目前应用最广泛的水声探测器件。压电式水听器发展较早,技术更加成熟,结构和制作工艺更简单,大规模生产时一致性可以得到相对较好的控制。但是,压电式水听器存在不抗电磁干扰、不易复用、体积大、灵敏度低、动态范围小等突出问题,使得其应用受到一定限制。
光纤水听器与传统的压电水听器相比,具有灵敏度高、频响特性好、动态范围大、抗电磁干扰等优点,已经成为水听器领域中一种重要的先进技术。并且随着各种潜艇技术的不断发展,对水听器规模、水听检测灵敏度、体积都提出了更高的要求。最早出现的单点式光纤结构式水听器已难以满足大规模及分布式检测的需求。采用Michelson干涉原理的具有较大规模阵列的分布式传感系统,但大规模阵列带来的光学器件以及体积的增加,并产生大量的光纤熔接点,增加光路损耗的同时降低了传感距离(参考文献,饶伟.光纤矢量水听器海底地层结构高分辨率探测关键技术研究[D].国防科学技术大学,2012.)。
基于光纤布拉格光栅(Fiber Bragg Gratings,FBG)的波长调制型水听器,其传感基元不包含额外的光学器件,可实现水听器阵列,但其波长调制原理决定了声压灵敏度较低,而且多个传感器串联需要熔融焊接,无法实现大规模的传感阵列,难以满足实际应用(参考文献Takahashi N,et al.Underwater Acoustic Sensor with Fiber BraggGrating[J].Optical Review,1997,4(6):691-694.)。
采用基于FBG的DFB光纤激光器型水听器,利用窄线宽激光输出波长的变化检测水声信号。该结构的声压灵敏度获得了提高,但由于DFB激光器的谐振腔很短,不能采用时分复用技术构建阵列。而由于光纤焊接点的光损耗问题,采用波分复用技术也仅能复用数十个水听器,限制了其复用规模,无法满足大规模水听阵列的要求(参考文献Tanaka S,etal.Fiber bragg grating hydrophone array using multi-wavelength laser:simultaneous multipoint underwater acoustic detection[C]//InternationalConference on Optical Fibre Sensors.International Society for Optics andPhotonics,2009.)。
采用光纤分布式声波检测(DAS)技术的声波检测,传统方法是基于光纤后向瑞利散射效应的Φ-OTDR技术。但是该方法采用的后向瑞利散射的耦合效率不高、反射率弱,导致信噪比不高、灵敏度低、响应差。而且,该方法基于光纤作为传感器,其传输与传感为同一根光纤,在对水声信号探测增敏的同时会导致光信号的传输损耗,进一步的降低信号比,因此难以对水下声波的测量进行结构上的增敏。综上所述,光纤分布式声波检测(DAS)技术难以满足水听器中高信噪比、高灵敏度的要求(参考文献:董杰.空间差分干涉的光纤分布式水下声波测量[J].光学精密工程,2017(9).)。
上述方法很难同时实现在结构可增敏、阵列规模大、检测距离长、线性细的分布式水听检测需求。基于以上问题,需要寻找一种传感信号强、结构可增敏、能够大容量长距离多点复用的新型分布式光纤水听检测技术。
发明内容
本发明的目的就是要提供一种基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置,本发明能够通过在光纤上刻写反射光栅提高传感信号强度、能够通过结构增敏提高传感器的声压灵敏度、能够实现大容量的水听器的无焊点长距离复用,从而满足更多的实际需要和应用场景。
为实现此目的,本发明所设计的包括干涉型分布式光纤光栅声学传感解调仪、啁啾光栅阵列光纤和金属弹性圆筒,所述啁啾光栅阵列光纤中相邻两个啁啾光栅之间的光纤构成光栅测区,光栅测区包括奇数啁啾光栅测区和偶数啁啾光栅测区,其中,奇数啁啾光栅测区缠绕在金属弹性圆筒上,偶数啁啾光栅测区沿金属弹性圆筒长度方向直线布设,且啁啾光栅阵列光纤中的所有啁啾光栅位于沿金属弹性圆筒长度方向同一直线上,干涉型分布式光纤光栅声学传感解调仪的光学信号输出端连接啁啾光栅阵列光纤的一端,啁啾光栅阵列光纤的另一端打结悬空或者连接光纤终结器。
所述干涉型分布式光纤光栅声学传感解调仪利用短脉冲匹配干涉法对啁啾光栅阵列光纤上的光栅测区进行独立干涉解调,解调得到每个光栅测区的相位变化信息,再通过每个光栅测区的相位变化信息线性还原得到每个光栅测区所感受的外界的水声声压的时间频率信息。
本发明的有益效果:
1、本发明采用啁啾光栅阵列光纤作为水下基本传感单元,大容量全同弱啁啾光纤光栅阵列凭借比传统瑞利散射光较强的反射光信号强度使得系统的信噪比提高了30~40dB。
2、本发明采用的单根大容量全同弱啁啾光纤光栅阵列无熔接点,无熔接损耗,提高传感距离。
3、本发明采用弹性材料的金属圆筒,具有较高的灵敏度和动态压力响应特性,对其上缠绕的光纤具有积极明显的增敏作用,并能够控制缠绕光纤的灵敏度,同时,也保证了啁啾光栅阵列光纤传感器的全光纤化(无熔接点)特征。
4、本发明采用的啁啾光栅阵列光纤制备在低损耗弯曲不敏感光纤上,在结构性增敏的同时减小弯曲带来的传输损耗,降低了对传感距离的影响。
5、本发明采用的啁啾光栅阵列光纤是在低损耗弯曲不敏感光纤上在线刻写,类型为全同弱啁啾光栅,表现为反射光谱、反射率、有效带宽等特征参数基本一致。并且,啁啾光栅较于其他普通光栅(如感温光栅),光谱较宽,3dB带宽达到4nm左右,较好地抑制了光谱温漂对水声检测的影响;目前还没有在水听器中使用啁啾光栅阵列的方案。
6、本发明利用干涉型分布式光纤光栅声学传感解调仪,采用短脉冲匹配干涉法解调得到每个光栅测区的相位变化信息,再通过每个光栅测区的相位变化信息线性还原得到每个光栅测区所感受的外界的水声声压的时间频率信息,定位能力强,解调灵敏度和精度高、速度快、实时性好。
附图说明
图1为本发明的结构示意图;
其中,1—干涉型分布式光纤光栅声学传感解调仪、2—啁啾光栅阵列光纤、2.1—啁啾光栅、2.2—奇数啁啾光栅测区、2.3—偶数啁啾光栅测区、3—金属弹性圆筒。
具体实施方式
以下结合附图和具体实施例对本发明作进一步的详细说明:
如图1所示基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置,包括干涉型分布式光纤光栅声学传感解调仪1、啁啾光栅阵列光纤2和金属弹性圆筒3,所述啁啾光栅阵列光纤2中相邻两个啁啾光栅2.1之间的光纤构成光栅测区,光栅测区包括奇数啁啾光栅测区2.2和偶数啁啾光栅测区2.3,其中,奇数啁啾光栅测区2.2作为增敏区,紧密缠绕在金属弹性圆筒3上(增加单位面积上的传感器长度和密度来增加传感器的传感灵敏度),偶数啁啾光栅测区2.3为了满足水听器长距离分布式检测需要,沿金属弹性圆筒3长度方向直线布设(仅增加灵敏度(只缠绕)会牺牲检测长度,但是奇数增加灵敏度,偶数保证检测长度),且啁啾光栅阵列光纤2中的所有啁啾光栅2.1位于沿金属弹性圆筒3长度方向同一直线上(这样设置能保证传感器的定位准确性),干涉型分布式光纤光栅声学传感解调仪1的光学信号输出端连接啁啾光栅阵列光纤2的一端,啁啾光栅阵列光纤2的另一端打结悬空或者连接光纤终结器,这样能避免光纤尾端端面反射对系统产生的光强干扰。
上述金属弹性圆筒3优选空心不锈钢圆筒,空心不锈钢圆筒具有良好的化学稳定性和动态压力响应特性。
上述技术方案中,所述干涉型分布式光纤光栅声学传感解调仪1利用短脉冲匹配干涉法(具体为短脉冲匹配干涉法中的3×3耦合器相位解调法,解调频率为10kHz)对啁啾光栅阵列光纤2上的光栅测区进行独立干涉解调,解调得到每个光栅测区的相位变化信息(参考文献Zhengying,Li,et al."Simultaneous distributed static and dynamicsensing based on ultra-short fiber Bragg gratings."Optics Express 26.13(2018):17437-17446.),再通过每个光栅测区的相位变化信息线性还原得到每个光栅测区所感受的外界的水声声压的时间频率信息,实现利用光纤达到水声探测的目的。上述解调形式具有解调灵敏度和精度高、速度快、实时性好等优势。
上述技术方案中,所述啁啾光栅阵列光纤2为低弯曲损耗啁啾光栅阵列光纤,该低弯曲损耗啁啾光栅阵列光纤由低损耗弯曲不敏感单模光纤上在线刻写形成,低弯曲损耗啁啾光栅阵列光纤中单根大容量(1000个以上的光栅数量)全同弱反射率啁啾光纤光栅阵列无熔接点(无熔接点保证了低损耗),啁啾光栅2.1的类型为全同弱反射率啁啾光栅,全同弱反射率啁啾光栅的反射率小于-30dB,低弯曲损耗啁啾光栅阵列光纤的10圈半径为15mm的宏弯附加损耗≤0.1dB。
全同弱啁啾光栅较宽的反射带宽可以抑制外界温度变化对解调光路系统的影响。所述全同弱啁啾光栅的光栅长度均相等,相邻两个全同弱啁啾光栅的光栅间隔均相等,这种等距(在一定误差范围内)全同弱啁啾光栅阵列一方面有利于水下目标的精确定位检测,另一方面,较于传统的基于瑞利散射效应的Φ-OTDR技术可以保证系统较高的信噪比。
上述技术方案中,啁啾光栅较于其它普通光栅(如感温光栅),光谱较宽,全同弱啁啾光栅的光栅反射光谱的3dB带宽为1~6nm,能较好地抑制光谱温漂对水声检测的影响。
上述技术方案中,所述啁啾光栅阵列光纤2中的全同弱啁啾光栅等间距分布,并且,啁啾光栅阵列表现出参数指标全同性,即光纤上所有的啁啾光栅的反射光谱、反射率、有效带宽等特征参数一致,这样解调光路系统在光脉冲宽度、脉冲强度等光学参数调节上更加便利,同时保证了解调光路系统的可靠性和稳定性。
上述技术方案中,所述奇数啁啾光栅测区2.2缠绕光纤的轴向长度远小于偶数啁啾光栅测区2.3的长度,这样提高了增敏区对水声的增强效果,同时保证了水听器长距离分布式检测的需要。
上述技术方案中,缠绕光纤的缠绕疏密、松紧程度可通过预留一定长度的光纤进行调节,实现水听器的检测灵敏度根据缠绕方法(张力、疏密程度)在一定范围内可调。
上述技术方案中,基于低损耗弯曲不敏感单模光纤的低弯曲损耗啁啾光栅阵列光纤,采用缠绕弹性体的方法进行结构上的增敏,弯曲带来的损耗对传输距离的影响较小。
上述技术方案中,所述金属弹性圆筒3在水声作用下引起的形变直接转换为缠绕在上面的啁啾光栅阵列光纤2的轴向应变,根据光纤的相位应力应变模型,利用干涉型分布式光纤光栅声学传感解调仪1实时解调水声引起的相位变化信息,从而实现高灵敏度的声压信号检测,利用光纤轴向应变即光纤长度变化来实现水声探测,在低频段(10kHz以下)具有良好的动态响应能力。
一种基于低弯曲损耗啁啾光栅阵列光纤的声压检测方法,其特征在于,它包括如下步骤:
步骤1:将啁啾光栅阵列光纤2的一端连接干涉型分布式光纤光栅声学传感解调仪1的光学信号输出端,啁啾光栅阵列光纤2的另一端打结悬空或者连接光纤终结器;
步骤2:啁啾光栅阵列光纤2沿金属弹性圆筒3缠绕延伸,缠绕延伸的规则为啁啾光栅阵列光纤2中相邻两个啁啾光栅2.1之间的光纤构成光栅测区,其中,奇数啁啾光栅测区2.2作为增敏区,紧密缠绕在金属弹性圆筒3上,偶数啁啾光栅测区2.3为了满足水听器分布式拖曳需要,沿金属弹性圆筒3长度方向直线布设,且啁啾光栅阵列光纤2中的所有啁啾光栅2.1位于沿金属弹性圆筒3长度方向同一直线上;
步骤3:所述金属弹性圆筒3在水声作用下引起的形变直接转换为缠绕在上面的啁啾光栅阵列光纤2的轴向应变,根据光纤的相位应力应变模型,利用干涉型分布式光纤光栅声学传感解调仪1实时解调水声引起的相位变化信息,从而实现高灵敏度的声压信号检测。
上述技术方案的步骤3中,所述根据光纤的相位应力应变模型,利用干涉型分布式光纤光栅声学传感解调仪1实时解调水声引起的相位变化信息,从而实现声压信号检测的具体方法为:
所述干涉型分布式光纤光栅声学传感解调仪1利用短脉冲匹配干涉法对啁啾光栅阵列光纤2上的光栅测区进行独立干涉解调,解调得到每个光栅测区的相位变化信息,再通过每个光栅测区的相位变化信息线性还原得到每个光栅测区所感受的外界的水声声压的时间频率信息。
本发明利用金属弹性圆筒材料本身的动态压力响应特性,解决现有的光纤水听器中光纤本身对水下声压灵敏度不高的缺陷,通过增敏结构设计和结合干涉型分布式光纤光栅声学传感解调系统,极大地提高了声学传感的灵敏度(在较小程度影响检测长度的情况下,(奇数区域)的缠绕在相同长度下增加了光纤的响应长度,增加了灵敏度)。
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (10)

1.一种基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置,其特征在于:包括干涉型分布式光纤光栅声学传感解调仪(1)、啁啾光栅阵列光纤(2)和金属弹性圆筒(3),所述啁啾光栅阵列光纤(2)中相邻两个啁啾光栅(2.1)之间的光纤构成光栅测区,光栅测区包括奇数啁啾光栅测区(2.2)和偶数啁啾光栅测区(2.3),其中,奇数啁啾光栅测区(2.2)缠绕在金属弹性圆筒(3)上,偶数啁啾光栅测区(2.3)沿金属弹性圆筒(3)长度方向直线布设,且啁啾光栅阵列光纤(2)中的所有啁啾光栅(2.1)位于沿金属弹性圆筒(3)长度方向同一直线上,干涉型分布式光纤光栅声学传感解调仪(1)的光学信号输出端连接啁啾光栅阵列光纤(2)的一端,啁啾光栅阵列光纤(2)的另一端打结悬空或者连接光纤终结器。
2.根据权利要求1所述的基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置,其特征在于:所述干涉型分布式光纤光栅声学传感解调仪(1)利用短脉冲匹配干涉法对啁啾光栅阵列光纤(2)上的光栅测区进行独立干涉解调,解调得到每个光栅测区的相位变化信息,再通过每个光栅测区的相位变化信息线性还原得到每个光栅测区所感受的外界的水声声压的时间频率信息。
3.根据权利要求1所述的基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置,其特征在于:所述啁啾光栅阵列光纤(2)为低弯曲损耗啁啾光栅阵列光纤,该低弯曲损耗啁啾光栅阵列光纤由低损耗弯曲不敏感单模光纤上在线刻写形成,低弯曲损耗啁啾光栅阵列光纤中单根全同弱反射率啁啾光纤光栅阵列无熔接点,啁啾光栅(2.1)的类型为全同弱反射率啁啾光栅,全同弱反射率啁啾光栅的反射率小于-30dB,低弯曲损耗啁啾光栅阵列光纤的10圈半径为15mm的宏弯附加损耗≤0.1dB。
4.根据权利要求3所述的基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置,其特征在于:各个全同弱反射率啁啾光栅的光栅长度均相等,相邻两个全同弱反射率啁啾光栅的光栅间隔均相等。
5.根据权利要求3所述的基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置,其特征在于:所述全同弱反射率啁啾光栅的光栅反射光谱的3dB带宽为1~6nm。
6.根据权利要求3所述的基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置,其特征在于:所述啁啾光栅阵列光纤(2)中的所有全同弱反射率啁啾光栅的反射光谱、反射率、有效带宽等特征参数均一致。
7.根据权利要求3所述的基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置,其特征在于:所述奇数啁啾光栅测区(2.2)缠绕光纤的轴向长度小于偶数啁啾光栅测区(2.3)的长度。
8.根据权利要求3所述的基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置,其特征在于:所述金属弹性圆筒(3)在水声作用下引起的形变直接转换为缠绕在上面的啁啾光栅阵列光纤(2)的轴向应变,根据光纤的相位应力应变模型,利用干涉型分布式光纤光栅声学传感解调仪(1)实时解调水声引起的相位变化信息,从而实现声压信号检测。
9.一种基于低弯曲损耗啁啾光栅阵列光纤的声压检测方法,其特征在于,它包括如下步骤:
步骤1:将啁啾光栅阵列光纤(2)的一端连接干涉型分布式光纤光栅声学传感解调仪(1)的光学信号输出端,啁啾光栅阵列光纤(2)的另一端打结悬空或者连接光纤终结器;
步骤2:啁啾光栅阵列光纤(2)沿金属弹性圆筒(3)缠绕延伸,缠绕延伸的规则为啁啾光栅阵列光纤(2)中相邻两个啁啾光栅(2.1)之间的光纤构成光栅测区,其中,奇数啁啾光栅测区(2.2)缠绕在金属弹性圆筒(3)上,偶数啁啾光栅测区(2.3)沿金属弹性圆筒(3)长度方向直线布设,且啁啾光栅阵列光纤(2)中的所有啁啾光栅(2.1)位于沿金属弹性圆筒(3)长度方向同一直线上;
步骤3:所述金属弹性圆筒(3)在水声作用下引起的形变直接转换为缠绕在上面的啁啾光栅阵列光纤(2)的轴向应变,根据光纤的相位应力应变模型,利用干涉型分布式光纤光栅声学传感解调仪(1)实时解调水声引起的相位变化信息,从而实现声压信号检测。
10.根据权利要求9所述的基于低弯曲损耗啁啾光栅阵列光纤的声压检测方法,其特征在于:所述步骤3中,所述根据光纤的相位应力应变模型,利用干涉型分布式光纤光栅声学传感解调仪(1)实时解调水声引起的相位变化信息,从而实现声压信号检测的具体方法为:
所述干涉型分布式光纤光栅声学传感解调仪(1)利用短脉冲匹配干涉法对啁啾光栅阵列光纤(2)上的光栅测区进行独立干涉解调,解调得到每个光栅测区的相位变化信息,再通过每个光栅测区的相位变化信息线性还原得到每个光栅测区所感受的外界的水声声压的时间频率信息。
CN202010246651.4A 2020-03-31 2020-03-31 基于低弯曲损耗啁啾光栅阵列的水听器检测装置与方法 Active CN111399034B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010246651.4A CN111399034B (zh) 2020-03-31 2020-03-31 基于低弯曲损耗啁啾光栅阵列的水听器检测装置与方法
DE112021000002.0T DE112021000002T5 (de) 2020-03-31 2021-01-05 Abtastvorrichtung und verfahren für ein verbessertes hydrophon basierend auf einer chirp-gitter-array-faser mit geringem biegeverlust
PCT/CN2021/070284 WO2021196815A1 (zh) 2020-03-31 2021-01-05 基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010246651.4A CN111399034B (zh) 2020-03-31 2020-03-31 基于低弯曲损耗啁啾光栅阵列的水听器检测装置与方法

Publications (2)

Publication Number Publication Date
CN111399034A true CN111399034A (zh) 2020-07-10
CN111399034B CN111399034B (zh) 2021-03-16

Family

ID=71436785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010246651.4A Active CN111399034B (zh) 2020-03-31 2020-03-31 基于低弯曲损耗啁啾光栅阵列的水听器检测装置与方法

Country Status (3)

Country Link
CN (1) CN111399034B (zh)
DE (1) DE112021000002T5 (zh)
WO (1) WO2021196815A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111882792A (zh) * 2020-07-21 2020-11-03 武汉理工大学 基于光栅阵列不饱和干涉的调节方法及分布式周界系统
CN111947765A (zh) * 2020-07-13 2020-11-17 深圳华中科技大学研究院 一种基于微结构光纤水听拖曳缆的全分布式水声传感系统
WO2021196815A1 (zh) * 2020-03-31 2021-10-07 武汉理工大学 基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置及方法
CN113485034A (zh) * 2021-07-20 2021-10-08 珠海光库科技股份有限公司 一种光纤光栅的调谐装置
WO2022099828A1 (zh) * 2020-11-16 2022-05-19 之江实验室 一种基于弹性体的螺旋型光纤分布式声场方向判断方法
CN114674413A (zh) * 2022-04-06 2022-06-28 武汉理工大学 全光纤拖曳水听器阵列和制造方法及水听方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088241A (zh) * 2021-10-21 2022-02-25 武汉理工大学 一种弱光纤光栅阵列温度/振动复合传感光缆及使用方法
CN114001814B (zh) * 2021-11-18 2023-08-15 湖北工业大学 基于f-p干涉的复合式mems矢量水听器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202075031U (zh) * 2011-03-24 2011-12-14 中国电子科技集团公司第二十三研究所 一种光纤光栅水听器及其相位解调装置
US20110305116A1 (en) * 2009-08-19 2011-12-15 Nicholas Lagakos Intensity Modulated Fiber Optic Hydrophones
CN103940360A (zh) * 2014-04-23 2014-07-23 鲁东大学 一种基于级联啁啾光纤光栅的应变监测装置
WO2016156197A1 (fr) * 2015-03-27 2016-10-06 Thales Dispositif de capteur a fibre optique
CN108775955A (zh) * 2018-07-18 2018-11-09 武汉理工大学 一种石化油气管道腐蚀状态光纤传感在线监测系统
CN108917908A (zh) * 2015-05-27 2018-11-30 三峡大学 一种光纤光栅地声传感系统
CN109724685A (zh) * 2018-12-10 2019-05-07 武汉理工大学 基于Fizeau干涉的光纤光栅水声传感阵列解调方法及系统
CN110108346A (zh) * 2019-04-22 2019-08-09 中国科学院上海光学精密机械研究所 基于延迟调相啁啾脉冲对的光纤振动传感器
CN110632649A (zh) * 2019-09-16 2019-12-31 中国船舶重工集团公司第七一五研究所 一种用于光纤水听器振动噪声抵消的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2946140B1 (fr) * 2009-05-29 2011-12-09 Ixsea Hydrophone a fibre a reseau de bragg avec amplificateur a membrane
FR2946141B1 (fr) * 2009-05-29 2011-09-30 Ixsea Hydrophone a fibre a reseau de bragg avec amplificateur a soufflet
CN101769762B (zh) * 2010-01-29 2011-10-19 武汉理工大学 一种光纤啁啾光栅传感解调系统
US9448312B1 (en) * 2015-03-11 2016-09-20 Baker Hughes Incorporated Downhole fiber optic sensors with downhole optical interrogator
FR3045817B1 (fr) * 2015-12-16 2018-01-19 Thales Transducteur electro-optique
CN105973450B (zh) * 2016-04-28 2018-10-23 武汉理工大学 光纤Fizeau干涉阵列分布式振动传感系统及方法
CN111399034B (zh) * 2020-03-31 2021-03-16 武汉理工大学 基于低弯曲损耗啁啾光栅阵列的水听器检测装置与方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110305116A1 (en) * 2009-08-19 2011-12-15 Nicholas Lagakos Intensity Modulated Fiber Optic Hydrophones
CN202075031U (zh) * 2011-03-24 2011-12-14 中国电子科技集团公司第二十三研究所 一种光纤光栅水听器及其相位解调装置
CN103940360A (zh) * 2014-04-23 2014-07-23 鲁东大学 一种基于级联啁啾光纤光栅的应变监测装置
WO2016156197A1 (fr) * 2015-03-27 2016-10-06 Thales Dispositif de capteur a fibre optique
CN108917908A (zh) * 2015-05-27 2018-11-30 三峡大学 一种光纤光栅地声传感系统
CN108775955A (zh) * 2018-07-18 2018-11-09 武汉理工大学 一种石化油气管道腐蚀状态光纤传感在线监测系统
CN109724685A (zh) * 2018-12-10 2019-05-07 武汉理工大学 基于Fizeau干涉的光纤光栅水声传感阵列解调方法及系统
CN110108346A (zh) * 2019-04-22 2019-08-09 中国科学院上海光学精密机械研究所 基于延迟调相啁啾脉冲对的光纤振动传感器
CN110632649A (zh) * 2019-09-16 2019-12-31 中国船舶重工集团公司第七一五研究所 一种用于光纤水听器振动噪声抵消的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHENGYING LI 等: "Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings", 《OPTIC EXPRESS》 *
王逸林 等: "基于多径分集的啁啾扩频正交频分复用水声通信系统", 《物理学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021196815A1 (zh) * 2020-03-31 2021-10-07 武汉理工大学 基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置及方法
CN111947765A (zh) * 2020-07-13 2020-11-17 深圳华中科技大学研究院 一种基于微结构光纤水听拖曳缆的全分布式水声传感系统
CN111882792A (zh) * 2020-07-21 2020-11-03 武汉理工大学 基于光栅阵列不饱和干涉的调节方法及分布式周界系统
CN111882792B (zh) * 2020-07-21 2022-03-11 武汉理工大学 基于光栅阵列不饱和干涉的调节方法及分布式周界系统
WO2022099828A1 (zh) * 2020-11-16 2022-05-19 之江实验室 一种基于弹性体的螺旋型光纤分布式声场方向判断方法
CN113485034A (zh) * 2021-07-20 2021-10-08 珠海光库科技股份有限公司 一种光纤光栅的调谐装置
CN114674413A (zh) * 2022-04-06 2022-06-28 武汉理工大学 全光纤拖曳水听器阵列和制造方法及水听方法
CN114674413B (zh) * 2022-04-06 2022-12-23 武汉理工大学 全光纤拖曳水听器阵列和制造方法及水听方法

Also Published As

Publication number Publication date
DE112021000002T5 (de) 2022-01-27
CN111399034B (zh) 2021-03-16
WO2021196815A1 (zh) 2021-10-07

Similar Documents

Publication Publication Date Title
CN111399034B (zh) 基于低弯曲损耗啁啾光栅阵列的水听器检测装置与方法
CN109238355B (zh) 光纤分布式动静态参量同时传感测量的装置及方法
US6256090B1 (en) Method and apparatus for determining the shape of a flexible body
CN110456410B (zh) 基于超强抗弯多芯光纤柔性光缆的分布式水听器
CA1124384A (en) Stable fiber-optic hydrophone
CN109959403B (zh) 一种多参量大容量传感系统
CN101963515B (zh) 分布式Michelson光纤白光干涉传感装置
CN103471701B (zh) 一种光纤声波传感器及光纤声波探测方法
CN111103051A (zh) 一种光纤干涉式水听器探测系统及方法
CN105277135A (zh) 一种具有温度不敏感特性的高灵敏度光纤曲率传感结构
CN110261892B (zh) 单分量、三分量光纤光栅振动传感器及传感阵列
CN100588913C (zh) 一种简化式多路复用白光干涉光纤传感解调装置
CN105181108A (zh) 一种光纤光栅地声传感探头及传感系统
AU613497B2 (en) An interferometric fibre optic network
CN111256807B (zh) 一种基于折叠空气腔的小尺寸干涉型高频光纤水听器
CN102162742B (zh) 基于非平衡Michelson干涉式准分布光纤白光应变传感解调装置
CN111829645A (zh) 一种基于光纤传感器的声学/振动监测系统
CN114878858A (zh) 基于多芯光纤光栅的建筑拉索摆动加速度测量装置及方法
CN110553715A (zh) 一种基于激光干涉的光纤阵列式声波信号采集装置
CN108662988A (zh) 一种倾斜角错位反射式强度调制型光纤传感器探头
CN204881836U (zh) 一种光纤光栅地声传感探头
CN210802682U (zh) 一种光纤干涉式水听器探测系统
CN109141487A (zh) 一种分布式光纤传感器
CN111664880A (zh) 一种基于法布里珀罗的光纤传感器及其应用
CN111537010A (zh) 基于otdr的f-p干涉型传感头多点测量方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant