CN111399001A - Method and device for processing broadband interference - Google Patents

Method and device for processing broadband interference Download PDF

Info

Publication number
CN111399001A
CN111399001A CN202010241379.0A CN202010241379A CN111399001A CN 111399001 A CN111399001 A CN 111399001A CN 202010241379 A CN202010241379 A CN 202010241379A CN 111399001 A CN111399001 A CN 111399001A
Authority
CN
China
Prior art keywords
signal
gnss
radio frequency
interference
convergence mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010241379.0A
Other languages
Chinese (zh)
Other versions
CN111399001B (en
Inventor
贾志科
黄磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unicorecomm Shanghai Technology Co ltd
Hexin Xingtong Technology Beijing Co ltd
Original Assignee
Unicorecomm Shanghai Technology Co ltd
Hexin Xingtong Technology Beijing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unicorecomm Shanghai Technology Co ltd, Hexin Xingtong Technology Beijing Co ltd filed Critical Unicorecomm Shanghai Technology Co ltd
Priority to CN202010241379.0A priority Critical patent/CN111399001B/en
Publication of CN111399001A publication Critical patent/CN111399001A/en
Application granted granted Critical
Publication of CN111399001B publication Critical patent/CN111399001B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Circuits Of Receivers In General (AREA)
  • Noise Elimination (AREA)

Abstract

The embodiment of the application discloses a method and a device for processing broadband interference. The device is applied to a multimode GNSS receiver and comprises an Automatic Gain Controller (AGC), wherein the input end of the Automatic Gain Controller (AGC) is connected with an analog-to-digital converter of a radio frequency front end, and the output end of the Automatic Gain Controller (AGC) is connected with an analog signal amplifier of the radio frequency front end, wherein: the automatic gain controller AGC is used for acquiring signal amplitude information of a GNSS signal output by the analog-to-digital converter ADC; determining change information of the signal amplitude of the GNSS signal; and when the change information of the signal amplitude of the GNSS signal meets a preset abnormal change condition, outputting a control signal for reducing the radio frequency gain to the analog signal amplifier.

Description

Method and device for processing broadband interference
Technical Field
The present invention relates to the field of information processing, and more particularly, to a method and apparatus for processing wideband interference.
Background
In recent years, countries and regions such as China, America, Russia, European Union and the like successively emit and build respective satellite navigation systems, and application based on GNSS positioning is almost ubiquitous, with the increasing demands of consumers on positioning accuracy, positioning time, positioning availability and the like, a multimode GNSS receiver gradually becomes a mainstream product in the market, FIG. 1 is a schematic diagram of GNSS signals located in L1 and L5 frequency bands in the related art, and as shown in FIG. 1, the multimode GNSS receiver not only supports receiving traditional C/A signals of a GPS L1 frequency band, but also supports receiving GNSS signals of a Beidou B1I, Galileo E1B and E1C, Glonass L1, even L2, L5 frequency bands and the like.
FIG. 2 is a diagram of a GNSS receiver in the related art. As shown in fig. 2, the GNSS receiver determines information such as a position, a velocity, and a time of the user through processing of an antenna, a radio frequency front end, a digital front end, an acquisition engine, a tracking engine, a position, velocity, and time calculation module, and the like.
Because the distance between the navigation satellite and the ground is more than 20000 kilometers, the satellite signals which can be received by the ground are very weak, and even in the open sky scene, the power of the received satellite signals is about-130 dBm, which is 20dB lower than the noise power. Under such conditions, satellite signals are extremely susceptible to various interferences, especially various interferences in the frequency band of GNSS useful signals, including narrowband/single-tone interference and broadband interference (interference bandwidth is above 200 KHz), which, if not detected and suppressed, have a very large influence on positioning performance, resulting in reduced positioning accuracy, even causing loss of lock of a satellite signal tracking loop, failing to acquire and track the satellite signals for positioning, and the like.
For broadband interference, spatial filtering is a relatively common means, and suppression of broadband interference is realized by using an adaptive antenna array. However, for a consumer GNSS receiver, there is generally only one antenna and spatial filtering schemes cannot be used due to control cost considerations.
Disclosure of Invention
In order to solve the above technical problem, embodiments of the present application provide a method and an apparatus for processing wideband interference.
To achieve the purpose of the embodiments of the present application, an apparatus for processing wideband interference is provided in an embodiment of the present application, and is applied to a multimode GNSS receiver, the apparatus includes an automatic gain controller AGC, wherein an input terminal of the automatic gain controller AGC is connected to an analog-to-digital converter of a radio frequency front end, and an output terminal of the automatic gain controller AGC is connected to an analog signal amplifier of the radio frequency front end, where:
the automatic gain controller AGC is used for acquiring signal amplitude information of a GNSS signal output by the analog-to-digital converter ADC; determining change information of the signal amplitude of the GNSS signal; and when the change information of the signal amplitude of the GNSS signal meets a preset abnormal change condition, outputting a control signal for reducing the radio frequency gain to the analog signal amplifier.
In an exemplary embodiment, the automatic gain controller AGC is specifically configured to:
if the change information of the signal amplitude accords with the judgment condition of fast change, firstly carrying out a fast convergence mode, and then acquiring new change information of the signal amplitude of the GNSS signal after the fast convergence mode is executed; if the new change information meets the trigger condition of the preset slow convergence mode after the fast convergence mode is executed, switching the fast convergence mode into the slow convergence mode until the change information of the signal amplitude meets the preset normal change condition;
if the change information of the signal amplitude accords with the judgment condition of slow change, executing a slow convergence mode until the change information of the signal amplitude meets the preset normal change condition;
wherein the fast convergence mode and the slow convergence mode both transmit the control signal;
and in the same time, compared with the speed of controlling the reduction of the radio frequency gain by the control signal sent in the slow convergence mode, the speed of controlling the reduction of the radio frequency gain by the control signal sent in the fast convergence mode is high.
In an exemplary embodiment, the automatic gain controller AGC is specifically configured to:
in the process of executing the slow convergence mode, acquiring new change information of the signal amplitude of the GNSS signal after executing the slow convergence mode; and if the change information of the new signal amplitude after the slow convergence mode is executed meets the judgment condition of fast change, switching the slow convergence mode into the fast convergence mode.
In an exemplary embodiment, the AGC is further configured to obtain amplitude reduction information of the current rf gain after the operation of reducing the rf gain is completed; judging whether the reduction amplitude information of the current reduction operation and the last reduction operation is larger than preset threshold information or not to obtain a judgment result; and if the judgment results are all larger than the threshold information, notifying to execute broadband interference detection operation.
In one exemplary embodiment, the apparatus further comprises:
the CPU is positioned in a chip of the GNSS receiver, is connected with the automatic gain controller AGC and is used for acquiring a narrow-band interference detection result of the digital signal by the baseband processing module after the analog-to-digital converter outputs the digital signal to the baseband processing module; if the narrow-band interference detection result is that no narrow-band interference exists, judging whether the carrier-to-noise ratio of the GNSS signal is reduced; if the carrier-to-noise ratio of the GNSS signal is reduced, determining that the GNSS signal has broadband interference in the band; if the narrow-band interference detection result is that the narrow-band interference exists, judging whether the power of the narrow-band interference and the change of the radio frequency gain are preset matching strategies or not; if the change of the power of the narrow-band interference and the change of the radio frequency gain do not accord with the matching strategy, judging whether the carrier-to-noise ratio of the GNSS signal is reduced; and if the carrier-to-noise ratio of the GNSS signal is reduced, determining that the GNSS signal has broadband interference in the band.
In an exemplary embodiment, the CPU is further configured to acquire a signal type of the GNSS signal in which the carrier-to-noise ratio degradation occurs; acquiring the signal type of the GNSS signal with reduced baseband gain in the GNSS signal receiving path; and determining the target signal type of the GNSS signal in which carrier-to-noise ratio reduction and baseband gain reduction simultaneously occur according to the acquired signal type, and taking a signal band corresponding to the target signal type as a signal band in which broadband interference occurs.
In one exemplary embodiment, the apparatus further comprises:
and the baseband processing module is used for performing suppression operation on the broadband interference in the digital signal by using a filter if the digital signal of the GNSS signal is received after the GNSS signal is detected to have the broadband interference.
In an exemplary embodiment, the filter comprises a cascaded integrator-comb filter of order n, where n represents the order and takes the value of a positive integer.
In an exemplary embodiment, the order of the n-th order cascaded integrator-comb filter in the filter is determined according to the detection result of the broadband interference and the interference strength.
A method of handling wideband interference for use in a radio frequency front end of a multimode GNSS receiver, the method comprising:
acquiring signal amplitude information of a GNSS signal output by an analog-to-digital converter (ADC);
determining change information of the signal amplitude of the GNSS signal;
and when the change information of the signal amplitude of the GNSS signal meets a preset abnormal change condition, outputting a control signal for reducing the radio frequency gain to the analog signal amplifier.
According to the scheme provided by the embodiment of the application, when sudden interference occurs, the AGC (automatic gain control) device can automatically and rapidly reduce the gain of the radio frequency, the adjustment of the gain of the radio frequency can be usually completed within 1ms, and the occurrence of ADC (analog to digital converter) saturation is avoided.
Additional features and advantages of the embodiments of the application will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of the embodiments of the application. The objectives and other advantages of the embodiments of the application may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
Drawings
The accompanying drawings are included to provide a further understanding of the embodiments of the present application and are incorporated in and constitute a part of this specification, illustrate embodiments of the present application and together with the examples of the embodiments of the present application do not constitute a limitation of the embodiments of the present application.
FIG. 1 is a diagram illustrating GNSS signals in L1 and L5 bands in the related art;
FIG. 2 is a diagram illustrating a GNSS receiver in the related art;
FIG. 3 is a schematic diagram of an RF signal amplifying and gain control circuit in a GNSS receiver according to an embodiment of the present disclosure;
fig. 4 is a schematic diagram of a state transition of a radio frequency automatic gain control (RF AGC) according to an embodiment of the present application;
fig. 5 is a schematic diagram of a baseband digital signal preprocessing circuit according to an embodiment of the present disclosure;
FIG. 6 is a diagram illustrating a multi-stage configurable cascaded integrator-comb filter (CIC filter) according to an embodiment of the present invention;
fig. 7 is a flowchart of a method for handling wideband interference according to an embodiment of the present application.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present application more apparent, the embodiments of the present application will be described in detail below with reference to the accompanying drawings. It should be noted that, in the embodiments of the present application, features in the embodiments and the examples may be arbitrarily combined with each other without conflict.
The embodiment of the application provides a device for processing broadband interference, which is characterized in that the device is applied to a multimode GNSS receiver, the device comprises an Automatic Gain Controller (AGC), wherein the input end of the AGC is connected with an analog-to-digital converter of a radio frequency front end, and the output end of the AGC is connected with an analog signal amplifier of the radio frequency front end, wherein:
the automatic gain controller AGC is used for acquiring signal amplitude information of a GNSS signal output by the analog-to-digital converter ADC; determining change information of the signal amplitude of the GNSS signal; and when the change information of the signal amplitude of the GNSS signal meets a preset abnormal change condition, outputting a control signal for reducing the radio frequency gain to the analog signal amplifier.
Taking a dual-band multimode GNSS receiver chip as an example for explanation:
firstly, determining GNSS signals which can be received by a multi-mode GNSS receiver and signal frequency band information corresponding to each GNSS signal; table 1 shows GNSS signals and signal bands that a multimode GNSS receiver can receive.
Figure BDA0002432668200000051
TABLE 1
The above-described apparatus for handling wideband interference is used to detect and suppress wideband interference occurring in the right column of table 1.
Fig. 1 is a schematic diagram of a radio frequency signal amplifying and gain controlling circuit in a GNSS receiver according to an embodiment of the present disclosure. As shown in fig. 1, after a GNSS signal enters a GNSS receiver through an antenna, first, frequency mixing and filtering are performed at a radio frequency front end to form a low intermediate frequency signal, and then, amplification and analog-to-digital conversion are performed to convert the low intermediate frequency signal into a digital signal, and the digital signal is sent to a digital baseband for processing. The automatic gain controller AGC can automatically adjust the rf gain according to the input power.
In an exemplary embodiment, the automatic gain controller AGC is specifically configured to:
if the change information of the signal amplitude accords with the judgment condition of fast change, firstly carrying out a fast convergence mode, and then acquiring new change information of the signal amplitude of the GNSS signal after the fast convergence mode is executed; if the new change information meets the trigger condition of the preset slow convergence mode after the fast convergence mode is executed, switching the fast convergence mode into the slow convergence mode until the change information of the signal amplitude meets the preset normal change condition;
if the change information of the signal amplitude accords with the judgment condition of slow change, executing a slow convergence mode until the change information of the signal amplitude meets the preset normal change condition;
wherein the fast convergence mode and the slow convergence mode both transmit the control signal;
and in the same time, compared with the speed of controlling the reduction of the radio frequency gain by the control signal sent in the slow convergence mode, the speed of controlling the reduction of the radio frequency gain by the control signal sent in the fast convergence mode is high.
In an exemplary embodiment, the automatic gain controller AGC is specifically configured to:
in the process of executing the slow convergence mode, acquiring new change information of the signal amplitude of the GNSS signal after executing the slow convergence mode; and if the change information of the new signal amplitude after the slow convergence mode is executed meets the judgment condition of fast change, switching the slow convergence mode into the fast convergence mode.
Fig. 4 is a schematic diagram of a state transition of a radio frequency automatic gain control (RF AGC) according to an embodiment of the present application; as shown in fig. 4, in order to improve the response time of the system and simultaneously ensure the stability of the system after convergence, two different gain convergence factors are used, and the convergence mode is divided into a fast convergence mode and a slow convergence mode. The difference between the fast convergence mode and the slow convergence mode is mainly the difference between the gain convergence factor and the number of statistical points. The associated thresholds, including slow2fastThr, fast2slowThr, etc., may be configured by software. When the amplitude of the signal changes greatly, fast gain convergence is carried out after the symbol condition is detected and judged, and after the gain converges to a certain degree, the mode is switched to a slow convergence mode.
In an exemplary embodiment, the AGC is further configured to obtain amplitude reduction information of the current rf gain after the operation of reducing the rf gain is completed; judging whether the reduction amplitude information of the current reduction operation and the last reduction operation is larger than preset threshold information or not to obtain a judgment result; and if the judgment results are all larger than the threshold information, notifying to execute broadband interference detection operation.
When sudden interference occurs, the radio frequency automatic gain controller AGC can automatically and rapidly reduce the radio frequency gain, can complete the adjustment of the radio frequency gain within 1ms, and avoids the analog-to-digital converter (ADC) from saturation as much as possible; meanwhile, when the amplitude of the two adjacent radio frequency gain adjustments is larger than a preset threshold, the automatic gain controller AGC of the radio frequency generates an interrupt, a main CPU in a chip of the GNSS receiver is informed to process, and the main CPU triggers a corresponding broadband interference detection mechanism.
In one exemplary embodiment, the apparatus further comprises:
the CPU is positioned in a chip of the GNSS receiver, is connected with the automatic gain controller AGC and is used for acquiring a narrow-band interference detection result of the digital signal by the baseband processing module after the analog-to-digital converter outputs the digital signal to the baseband processing module; if the narrow-band interference detection result is that no narrow-band interference exists, judging whether the carrier-to-noise ratio of the GNSS signal is reduced; if the carrier-to-noise ratio of the GNSS signal is reduced, determining that the GNSS signal has broadband interference in the band; if the narrow-band interference detection result is that the narrow-band interference exists, judging whether the power of the narrow-band interference and the change of the radio frequency gain are preset matching strategies or not; if the change of the power of the narrow-band interference and the change of the radio frequency gain do not accord with the matching strategy, judging whether the carrier-to-noise ratio of the GNSS signal is reduced; and if the carrier-to-noise ratio of the GNSS signal is reduced, determining that the GNSS signal has broadband interference in the band.
The detection of the wideband interference is determined based on 3 sets of parameters, including the rf gain change amount reported by the interruption generated by the AGC, the narrowband interference detection result reported by the baseband pre-processing module, and the GNSS signal carrier-to-noise ratio (CN0), where table 2 provides a wideband interference detection scheme for 5 scenarios in the L1 frequency band, which is specifically as follows:
Figure BDA0002432668200000071
Figure BDA0002432668200000081
TABLE 2
The detection method of broadband interference in the L5 frequency band is the same as that of the L1 frequency band.
In an exemplary embodiment, the CPU is further configured to acquire a signal type of the GNSS signal in which the carrier-to-noise ratio degradation occurs; acquiring the signal type of the GNSS signal with reduced baseband gain in the GNSS signal receiving path; and determining the target signal type of the GNSS signal in which carrier-to-noise ratio reduction and baseband gain reduction simultaneously occur according to the acquired signal type, and taking a signal band corresponding to the target signal type as a signal band in which broadband interference occurs.
When detecting whether the broadband interference exists, the method can also detect accurately which GNSS signal is influenced by the broadband interference according to the change of CN0 and the change of the baseband gain in the corresponding signal processing path.
In an exemplary embodiment, detecting a decrease in CN0 of the GPS L1C/A signal, and a decrease in baseband gain in the GPS L1C/A signal receive path, confirms that wideband interference is occurring within the GPS L1C/A signal band (centered at 1575.42MHz, +/-4.092 MMhz).
In one exemplary embodiment, the apparatus further comprises:
and the baseband processing module is used for performing suppression operation on the broadband interference in the digital signal by using a filter if the digital signal of the GNSS signal is received after the GNSS signal is detected to have the broadband interference.
Fig. 5 is a schematic diagram of a digital signal preprocessing circuit according to an embodiment of the present disclosure, as shown in fig. 5, after a digitized signal output by an ADC enters a GNSS baseband processor, the digitized signal is first preprocessed, baseband-mixed according to center frequencies of different GNSS signals, converted into a zero intermediate frequency baseband signal, and then filtered to remove interference outside the GNSS signal, after down-sampling the signal, narrowband/single-tone interference detection and removal processing is performed, and then re-quantization is performed, and finally the signal is sent to an acquisition/tracking engine, where each type of GNSS signal to be received must be subjected to respective baseband preprocessing, and different mixing frequencies, filter configurations, down-sampling rates, and narrowband interference search ranges are adopted, and the signal type may be a GPS L1C/a signal or a beidou B1I signal.
In an exemplary embodiment, the filter comprises a cascaded integrator-comb filter of order n, where n represents the order and takes the value of a positive integer.
The filter in the baseband preprocessing module adopts a multi-order configurable cascaded integrator-comb filter (CIC filter), and specifically, as shown in fig. 6, fig. 6 is a schematic diagram of a multi-order configurable cascaded integrator-comb filter (CIC filter) provided in the embodiment of the present application.
In an exemplary embodiment, the order of the n-th order cascaded integrator-comb filter in the filter is determined according to the detection result of the broadband interference and the interference strength.
In the operation process of the GNSS receiver, determining whether broadband interference exists or not according to the detection result of recording whether the broadband interference exists or not; when broadband interference is detected, the order of the cascade integrator-comb filter is configured adaptively according to the actually detected interference intensity, wherein the order is 4 levels at most. The higher the order, the stronger the suppression of the out-of-band interference of the GNSS, at the cost of some loss of the in-band useful signal, generally within 2 dB.
In conclusion, the simple and efficient broadband interference detection and suppression method provided by the application can detect the burst broadband interference in the GNSS band in real time on the basis of not increasing the hardware cost of the GNSS receiver, and performs interference suppression through software configuration, so that the broadband interference resistance of the multimode GNSS receiver is greatly improved.
There are technical advantages, in particular, in the following aspects, including:
1. the design of a double-gain convergence factor is adopted in the automatic gain controller AGC of the radio frequency, when sudden interference occurs, the automatic gain controller AGC of the radio frequency can automatically and rapidly reduce the gain of the radio frequency, the adjustment of the gain of the radio frequency can be usually completed within 1ms, and the saturation of an ADC is avoided as much as possible;
2. an interrupt generation mechanism is added in the automatic gain controller AGC of the radio frequency. When the amplitude of the two adjacent radio frequency gain adjustments is larger than a preset threshold, an interruption is generated, a main CPU of a GNSS receiver chip is informed to process, and corresponding broadband interference detection is triggered;
3. the wideband interference is detected based on 3 sets of parameters without adding additional hardware modules. The parameters used include the rf gain change reported by the interruption generated by the AGC, the narrowband interference detection reported by the baseband pre-processing module, and the GNSS signal carrier-to-noise ratio (CN 0);
4. according to the change of CN0 and the change of baseband gain in the corresponding signal processing path, accurately detecting which GNSS signal is influenced by the broadband interference;
5. the multi-order configurable cascade integrator-comb filter is adopted, and the broadband interference is suppressed by adaptively adjusting the order of the filter.
Fig. 7 is a flowchart of a method for handling wideband interference according to an embodiment of the present application. The method shown in fig. 7 is applied to a radio frequency front end of a multimode GNSS receiver, and the method includes:
step 701, acquiring signal amplitude information of a GNSS signal output by an analog-to-digital converter (ADC);
step 702, determining the change information of the signal amplitude of the GNSS signal;
and 703, outputting a control signal for reducing the radio frequency gain to the analog signal amplifier when the change information of the signal amplitude of the GNSS signal meets a preset abnormal change condition.
According to the method provided by the embodiment of the application, when sudden interference occurs, the AGC can automatically and rapidly reduce the radio frequency gain, the adjustment of the radio frequency gain can be usually completed within 1ms, and the occurrence of ADC saturation is avoided.
It will be understood by those of ordinary skill in the art that all or some of the steps of the methods, systems, functional modules/units in the devices disclosed above may be implemented as software, firmware, hardware, and suitable combinations thereof. In a hardware implementation, the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be performed by several physical components in cooperation. Some or all of the components may be implemented as software executed by a processor, such as a digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit. Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media). The term computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data, as is well known to those of ordinary skill in the art. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by a computer. In addition, communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media as known to those skilled in the art.

Claims (10)

1. An apparatus for processing wideband interference, applied to a multimode GNSS receiver, the apparatus comprising an automatic gain controller AGC, wherein an input terminal of the automatic gain controller AGC is connected to an analog-to-digital converter of a radio frequency front end, and an output terminal of the automatic gain controller AGC is connected to an analog signal amplifier of the radio frequency front end, wherein:
the automatic gain controller AGC is used for acquiring signal amplitude information of a GNSS signal output by the analog-to-digital converter ADC; determining change information of the signal amplitude of the GNSS signal; and when the change information of the signal amplitude of the GNSS signal meets a preset abnormal change condition, outputting a control signal for reducing the radio frequency gain to the analog signal amplifier.
2. The apparatus according to claim 1, wherein the automatic gain controller AGC is specifically configured to:
if the change information of the signal amplitude accords with the judgment condition of fast change, firstly carrying out a fast convergence mode, and then acquiring new change information of the signal amplitude of the GNSS signal after the fast convergence mode is executed; if the new change information meets the trigger condition of the preset slow convergence mode after the fast convergence mode is executed, switching the fast convergence mode into the slow convergence mode until the change information of the signal amplitude meets the preset normal change condition;
if the change information of the signal amplitude accords with the judgment condition of slow change, executing a slow convergence mode until the change information of the signal amplitude meets the preset normal change condition;
wherein the fast convergence mode and the slow convergence mode both transmit the control signal;
and in the same time, compared with the speed of controlling the reduction of the radio frequency gain by the control signal sent in the slow convergence mode, the speed of controlling the reduction of the radio frequency gain by the control signal sent in the fast convergence mode is high.
3. The apparatus according to claim 2, wherein the automatic gain controller AGC is specifically configured to:
in the process of executing the slow convergence mode, acquiring new change information of the signal amplitude of the GNSS signal after executing the slow convergence mode; and if the change information of the new signal amplitude after the slow convergence mode is executed meets the judgment condition of fast change, switching the slow convergence mode into the fast convergence mode.
4. The apparatus of any one of claims 1 to 3, wherein:
the automatic gain controller AGC is also used for obtaining the amplitude reduction information of the radio frequency gain after the radio frequency gain reduction operation is finished; judging whether the reduction amplitude information of the current reduction operation and the last reduction operation is larger than preset threshold information or not to obtain a judgment result; and if the judgment results are all larger than the threshold information, notifying to execute broadband interference detection operation.
5. The apparatus of claim 4, further comprising:
the CPU is positioned in a chip of the GNSS receiver, is connected with the automatic gain controller AGC and is used for acquiring a narrow-band interference detection result of the digital signal by the baseband processing module after the analog-to-digital converter outputs the digital signal to the baseband processing module; if the narrow-band interference detection result is that no narrow-band interference exists, judging whether the carrier-to-noise ratio of the GNSS signal is reduced; if the carrier-to-noise ratio of the GNSS signal is reduced, determining that the GNSS signal has broadband interference in the band; if the narrow-band interference detection result is that the narrow-band interference exists, judging whether the power of the narrow-band interference and the change of the radio frequency gain are preset matching strategies or not; if the change of the power of the narrow-band interference and the change of the radio frequency gain do not accord with the matching strategy, judging whether the carrier-to-noise ratio of the GNSS signal is reduced; and if the carrier-to-noise ratio of the GNSS signal is reduced, determining that the GNSS signal has broadband interference in the band.
6. The apparatus of claim 5, wherein:
the CPU is also used for acquiring the signal type of the GNSS signal with the lowered carrier-to-noise ratio; acquiring the signal type of the GNSS signal with reduced baseband gain in the GNSS signal receiving path; and determining the target signal type of the GNSS signal in which carrier-to-noise ratio reduction and baseband gain reduction simultaneously occur according to the acquired signal type, and taking a signal band corresponding to the target signal type as a signal band in which broadband interference occurs.
7. The apparatus of claim 5 or 6, further comprising:
and the baseband processing module is used for performing suppression operation on the broadband interference in the digital signal by using a filter if the digital signal of the GNSS signal is received after the GNSS signal is detected to have the broadband interference.
8. The apparatus of claim 7, wherein the filter comprises an n-order cascaded integrator-comb filter, wherein n represents the order and is a positive integer.
9. The apparatus of claim 8, wherein the order of the n-th order cascaded integrator-comb filter in the filter is determined according to the detection result of the wideband interference and the interference strength.
10. A method of handling wideband interference for use in a radio frequency front end of a multimode GNSS receiver, the method comprising:
acquiring signal amplitude information of a GNSS signal output by an analog-to-digital converter (ADC);
determining change information of the signal amplitude of the GNSS signal;
and when the change information of the signal amplitude of the GNSS signal meets a preset abnormal change condition, outputting a control signal for reducing the radio frequency gain to the analog signal amplifier.
CN202010241379.0A 2020-03-31 2020-03-31 Method and device for processing broadband interference Active CN111399001B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010241379.0A CN111399001B (en) 2020-03-31 2020-03-31 Method and device for processing broadband interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010241379.0A CN111399001B (en) 2020-03-31 2020-03-31 Method and device for processing broadband interference

Publications (2)

Publication Number Publication Date
CN111399001A true CN111399001A (en) 2020-07-10
CN111399001B CN111399001B (en) 2022-05-06

Family

ID=71431376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010241379.0A Active CN111399001B (en) 2020-03-31 2020-03-31 Method and device for processing broadband interference

Country Status (1)

Country Link
CN (1) CN111399001B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114339A (en) * 2021-03-26 2021-07-13 中国人民解放军国防科技大学 Satellite-borne navigation receiver, zero-value signal gain control method and storage medium

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539531A (en) * 1983-09-26 1985-09-03 Northern Telecom Limited Phase locked loop variable oscillator with switched capacitors
US5901174A (en) * 1996-06-21 1999-05-04 Alcatel Telspace Equalizer-combiner for diversity receiver, receiver incorporating same and corresponding diversity reception method
CN1270700A (en) * 1998-07-20 2000-10-18 三星电子株式会社 Multi-channel digital receiver for GPS
US6658069B1 (en) * 1998-06-24 2003-12-02 Nec Corporation Automatic gain control circuit and control method therefor
CN1723670A (en) * 2003-01-17 2006-01-18 汤姆森许可贸易公司 AGC circuit arrangement for a tuner
CN101124798A (en) * 2005-03-31 2008-02-13 飞思卡尔半导体公司 AGC with integrated wideband interferer detection
US20080317175A1 (en) * 2007-06-21 2008-12-25 Shinya Ito Automatic gain control circuit, receiving apparatus and automatic gain control method
CN101466137A (en) * 2009-01-12 2009-06-24 北京天碁科技有限公司 TD-SCDMA terminal and automatic gain control method thereof
CN101479947A (en) * 2006-06-27 2009-07-08 新泻精密株式会社 Automatic gain control circuit
CN102106091A (en) * 2008-07-31 2011-06-22 高通股份有限公司 Method and apparatus for providing jammer detection in a receiver
CN102540219A (en) * 2010-12-31 2012-07-04 和芯星通科技(北京)有限公司 Receiving method and receiver for signal of global navigation satellite system
CN102769586A (en) * 2012-06-29 2012-11-07 华为技术有限公司 Method for restraining frequency deviation exceeding and mobile terminal
CN102932301A (en) * 2011-08-09 2013-02-13 中国科学院微电子研究所 Automatic gain control device and method for fast convergence
CN103176189A (en) * 2013-03-08 2013-06-26 浙江大学 Near-far effect suppressor for high-flexibility satellite navigation receiver and near-far effect suppressing method thereof
CN103312373A (en) * 2012-03-13 2013-09-18 郑州威科姆科技股份有限公司 Time-domain device for suppressing narrow-band interference in Beidou I time-service receiver
UA86834U (en) * 2013-07-23 2014-01-10 Государственное Высшее Учебное Заведение Донецкий Национальный Технический Университет Method for mesasurement of signal/noise ratio
CN103580704A (en) * 2012-07-25 2014-02-12 中国科学院微电子研究所 Receiver device adopting automatic gain control and method for controlling receiver by means of automatic gain
US20140091910A1 (en) * 2003-03-03 2014-04-03 Veroscan, Inc. Interrogator and interrogation system employing the same
CN105301607A (en) * 2015-11-20 2016-02-03 武汉梦芯科技有限公司 Device, system and method for narrowband interference suppression of single-frequency and multi-frequency GNSS signals
CN106443721A (en) * 2016-11-11 2017-02-22 深圳市天弓导航科技有限公司 Rapid convergence type anti-interference method of satellite navigation antenna array
CN107390236A (en) * 2017-05-23 2017-11-24 青岛海信移动通信技术股份有限公司 The method that satellite signal receiving apparatus and its satellite-signal to reception are handled
CN108768425A (en) * 2018-07-02 2018-11-06 成都国恒空间技术工程有限公司 A kind of dynamic adjusting method of automatic growth control AGC
US20180329069A1 (en) * 2017-05-15 2018-11-15 Stmicroelectronics S.R.L. Device module for the detection of temperature compensated crystal oscillator originated micro-jumps in a global navigation satellite system and related detection method
CN109541648A (en) * 2018-11-30 2019-03-29 西安空间无线电技术研究所 A kind of high-precision carrier-to-noise ratio estimation method and system
CN110324054A (en) * 2019-06-20 2019-10-11 上海华虹集成电路有限责任公司 A kind of auto gain control method of digital communication receiver
CN110515098A (en) * 2019-03-11 2019-11-29 江苏无线电厂有限公司 Anti- broadband interference Beidou vehicle-mounted integral machine

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539531A (en) * 1983-09-26 1985-09-03 Northern Telecom Limited Phase locked loop variable oscillator with switched capacitors
US5901174A (en) * 1996-06-21 1999-05-04 Alcatel Telspace Equalizer-combiner for diversity receiver, receiver incorporating same and corresponding diversity reception method
US6658069B1 (en) * 1998-06-24 2003-12-02 Nec Corporation Automatic gain control circuit and control method therefor
CN1270700A (en) * 1998-07-20 2000-10-18 三星电子株式会社 Multi-channel digital receiver for GPS
CN1723670A (en) * 2003-01-17 2006-01-18 汤姆森许可贸易公司 AGC circuit arrangement for a tuner
US20140091910A1 (en) * 2003-03-03 2014-04-03 Veroscan, Inc. Interrogator and interrogation system employing the same
CN101124798A (en) * 2005-03-31 2008-02-13 飞思卡尔半导体公司 AGC with integrated wideband interferer detection
CN101479947A (en) * 2006-06-27 2009-07-08 新泻精密株式会社 Automatic gain control circuit
US20080317175A1 (en) * 2007-06-21 2008-12-25 Shinya Ito Automatic gain control circuit, receiving apparatus and automatic gain control method
CN102106091A (en) * 2008-07-31 2011-06-22 高通股份有限公司 Method and apparatus for providing jammer detection in a receiver
CN101466137A (en) * 2009-01-12 2009-06-24 北京天碁科技有限公司 TD-SCDMA terminal and automatic gain control method thereof
CN102540219A (en) * 2010-12-31 2012-07-04 和芯星通科技(北京)有限公司 Receiving method and receiver for signal of global navigation satellite system
CN102932301A (en) * 2011-08-09 2013-02-13 中国科学院微电子研究所 Automatic gain control device and method for fast convergence
CN103312373A (en) * 2012-03-13 2013-09-18 郑州威科姆科技股份有限公司 Time-domain device for suppressing narrow-band interference in Beidou I time-service receiver
CN102769586A (en) * 2012-06-29 2012-11-07 华为技术有限公司 Method for restraining frequency deviation exceeding and mobile terminal
CN103580704A (en) * 2012-07-25 2014-02-12 中国科学院微电子研究所 Receiver device adopting automatic gain control and method for controlling receiver by means of automatic gain
CN103176189A (en) * 2013-03-08 2013-06-26 浙江大学 Near-far effect suppressor for high-flexibility satellite navigation receiver and near-far effect suppressing method thereof
UA86834U (en) * 2013-07-23 2014-01-10 Государственное Высшее Учебное Заведение Донецкий Национальный Технический Университет Method for mesasurement of signal/noise ratio
CN105301607A (en) * 2015-11-20 2016-02-03 武汉梦芯科技有限公司 Device, system and method for narrowband interference suppression of single-frequency and multi-frequency GNSS signals
CN106443721A (en) * 2016-11-11 2017-02-22 深圳市天弓导航科技有限公司 Rapid convergence type anti-interference method of satellite navigation antenna array
US20180329069A1 (en) * 2017-05-15 2018-11-15 Stmicroelectronics S.R.L. Device module for the detection of temperature compensated crystal oscillator originated micro-jumps in a global navigation satellite system and related detection method
CN107390236A (en) * 2017-05-23 2017-11-24 青岛海信移动通信技术股份有限公司 The method that satellite signal receiving apparatus and its satellite-signal to reception are handled
CN108768425A (en) * 2018-07-02 2018-11-06 成都国恒空间技术工程有限公司 A kind of dynamic adjusting method of automatic growth control AGC
CN109541648A (en) * 2018-11-30 2019-03-29 西安空间无线电技术研究所 A kind of high-precision carrier-to-noise ratio estimation method and system
CN110515098A (en) * 2019-03-11 2019-11-29 江苏无线电厂有限公司 Anti- broadband interference Beidou vehicle-mounted integral machine
CN110324054A (en) * 2019-06-20 2019-10-11 上海华虹集成电路有限责任公司 A kind of auto gain control method of digital communication receiver

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHENGYU WEN 等: ""Design and implementation of fast convergence and large dynamic digital Automatic Gain Control"", 《2011 IEEE 13TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY》 *
JIA ZHIKE 等: ""Adaptive quantization scheme for very low bit rate video coding"", 《FIFTH ASIA-PACIFIC CONFERENCE ON ... AND FOURTH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE ON COMMUNICATIONS》 *
李伟 等: ""卫星导航接收机数控AGC算法研究与电路设计"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
马飞 等: ""一种改进的数字AGC及其FPGA实现"", 《无线电工程》 *
黄磊 等: ""卫星通信宽带接收机变频组件研究与设计"", 《电子技术与软件工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114339A (en) * 2021-03-26 2021-07-13 中国人民解放军国防科技大学 Satellite-borne navigation receiver, zero-value signal gain control method and storage medium

Also Published As

Publication number Publication date
CN111399001B (en) 2022-05-06

Similar Documents

Publication Publication Date Title
US8693595B2 (en) Adaptive wireless communication receiver
JP5331130B2 (en) System and method for station detection and search in a wireless receiver
CN102377441B (en) The method of communication device and one or more signal processing parameter of dynamic conditioning
CA2309721C (en) Diversity reception system
CN107390236B (en) Satellite signal receiving device and method for processing received satellite signal
CN111478710B (en) Method and system for suppressing adjacent channel interference, receiver and communication system
US8022872B2 (en) Positioning receiver
US9172344B2 (en) Statistical gain control in a receiver
CN111399001B (en) Method and device for processing broadband interference
US9800277B2 (en) Interference detection and mitigation in radio frequency receivers
US8804882B2 (en) Receiving apparatus, and computer readable memory medium that stores a program
CN115755127A (en) Positioning method and device based on double-antenna receiver and related equipment
US11012268B2 (en) Receiving apparatus and non-transitory computer readable medium storing receiving processing program
CN103684496A (en) Receiver of digital interphone and signal processing method of receiver
US20240031207A1 (en) Frequency modulation tracking for band rejection to reduce dynamic range
US20120258679A1 (en) Apparatus and method for reducing interference signal in receiver
JP2006222759A (en) High-frequency ic and gps receiver
CN112398454B (en) Method and device for adjusting amplification factor of analog amplification circuit
KR101040989B1 (en) Gain and Bandwidth control apparatus and method on Array Antenna for anti-jamming in GPS system
US11043929B2 (en) Method and system for gain control in a communications device
CN101682341B (en) Increasing sensitivity of radio receiver
CN110493153B (en) Satellite beacon signal demodulation method and device and satellite beacon signal receiving method and device
US9281792B2 (en) Receiver and method for gain control
WO2006030282A1 (en) Impulse noise correction
CN114520988B (en) Squelch control method, device, equipment and readable storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant