CN111397643A - 一种制氢转化炉的炉管智能监测方法 - Google Patents

一种制氢转化炉的炉管智能监测方法 Download PDF

Info

Publication number
CN111397643A
CN111397643A CN202010117021.7A CN202010117021A CN111397643A CN 111397643 A CN111397643 A CN 111397643A CN 202010117021 A CN202010117021 A CN 202010117021A CN 111397643 A CN111397643 A CN 111397643A
Authority
CN
China
Prior art keywords
grating
furnace tube
temperature
hydrogen production
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010117021.7A
Other languages
English (en)
Inventor
杨大明
高建
倪明刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Zhuoran Intelligent Heavy Industry Co ltd
Original Assignee
Jiangsu Zhuoran Intelligent Heavy Industry Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Zhuoran Intelligent Heavy Industry Co ltd filed Critical Jiangsu Zhuoran Intelligent Heavy Industry Co ltd
Priority to CN202010117021.7A priority Critical patent/CN111397643A/zh
Publication of CN111397643A publication Critical patent/CN111397643A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35387Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using wavelength division multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Transform (AREA)

Abstract

本发明公开了一种制氢转化炉的炉管智能监测方法,包括超高温光栅FBG、波分复用、解调,采集光电检测器输出的电信号,记录相应的锯齿波电压,得到反射波长的值。将超高温光栅FBG和FBG应变传感器串联,应用于转化炉炉管的温度监测和炉管的应变应力分布监测,充分利用光纤传感技术的优势,对炉管温度、应变场进行直接、高精度的监测。

Description

一种制氢转化炉的炉管智能监测方法
技术领域
本发明涉及石化设备生产监测技术领域,尤其是一种制氢转化炉的炉管智能监测方法。
背景技术
转化炉是制氢装置中转化反应的反应器,属于装置的心脏设备。由于转化反应的强吸热及高温等特点,这种反应器被设计成加热炉的形式,催化剂装在一根根的转化炉管内,在炉膛内直接加热,反应介质通过炉管内的催化剂床层进行反应。炉管作为其主要工作部件,大多在高温环境下工作,操作条件苛刻。炉管超温和过应力对炉管的服役寿命有着很大的影响,一旦炉管发生失效,不仅会影响正常生产,而且可能造成经济上的巨大损失并危及人身的安全。
发明内容
本发明要解决的技术问题是:克服以上现有技术的缺陷,将超高温光栅FBG和FBG应变传感器串联,应用于转化炉炉管的温度监测和炉管的应变应力分布监测,对炉管温度、应变场进行直接、高精度的监测。
本发明解决其技术问题所采用的技术方案是:一种制氢转化炉的炉管智能监测方法,包括以下步骤:
第一步,超高温光栅FBG,将FBG写入光纤纤芯结构;
第二步,波分复用用作光纤光栅传感器的复用方法,将多个光纤光栅串联在一起,再将一个宽带光源产生的宽频信号射入光纤光栅的串联网络中;
第三步,解调仪解调,宽带光源发出的光进入可调谐F-P滤波器,在锯齿波扫描电压的作用下,不同波长的光信号周期性地通过F-P滤波器,经耦合器分成两个支路,一路光经耦合器入射到传感光栅阵列中,另一路光经耦合器入射到F-P标准具中;
第四步:在上一步的传感光栅阵列中,当F-P滤波器的扫描波长与光纤光栅的反射波长一致时,采集光电检测器输出的电信号,当电信号最大时,记录相应的锯齿波电压,然后根据锯齿波电压与波长的关系得到反射波长的值,达到传感信号解调的目的。
优选地,对超高温光栅的栅区部分涂覆耐温聚酰亚胺,黄金或钢。
优选地,将超高温光栅FBG做成单点光栅,或刻写成光栅串,对关键点处的温度进行监测或进行多点测温。
优选地,经耦合器入射到传感光栅阵列中的一路光占比90%,阵列中所有光栅的布拉格反射波长均在F-P滤波器的扫描范围内,并且每个光栅的反射波长都不相同,以避免信号串扰。
优选地,经耦合器入射到F-P标准具中的另一路光占比10%,用来对可调谐F-P滤波器进行校准,以消除可调谐F-P滤波器腔长漂移对测量精度造成的影响。
本发明的一种制氢转化炉的炉管智能监测方法,其有益效果是:将超高温光栅FBG和FBG应变传感器串联,应用于转化炉炉管的温度监测和炉管的应变应力分布监测,充分利用光纤传感技术的优势,对炉管温度、应变场进行直接、高精度的监测。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是波分复用的结构示意图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
一种制氢转化炉的炉管智能监测方法,包括以下步骤:
第一步,超高温光栅FBG,将FBG写入光纤纤芯结构;
超高温光栅FBG具有下述特点:FBG写入光纤纤芯结构的精度决定了超高温光栅的高分辨率,线性度好以及高重复性,边模抑制比高,用户可指定带宽大小;适合要求耐温1000℃的应用场合,可做退火处理,适合于系统要求传感器做预标定,直接用于测温的应用;超高温光栅的栅区部分可以根据应用需求可以重新涂覆耐温聚酰亚胺,黄金,钢或者不做涂覆以便二次封装;可做单点光栅,也可刻写成光栅串。主要用于测温,根据项目情况,可以测点关键点处的温度,也可以做成多点光栅串,进行多点测温。
第二步,将波分复用用作光纤光栅传感器的复用方法,将多个光纤光栅串联在一起,再将一个宽带光源产生的宽频信号射入光纤光栅的串联网络中;
波分复用(WDM)是光纤光栅传感器最基本的复用方法。如附图所示,当外部应变、温度等物理量变化时,会导致光纤光栅的栅距呈线性变化,光栅反射中心波长也随着栅距的变化呈线性变化。
宽频光信号的频谱应涵盖所有的光纤光栅的中心波长。当光信号经过每个光纤光栅时,光栅会发射携带测量量变化信息的波长,由于每个光纤光栅具有互不相同的中心波长,带宽也彼此不重叠,因此反射后的总的光信号由各个光纤光栅的不同波长组成,并由同一传输通道入射到分布式光纤传感检测装置内。各个波长信号由于避免了码间串扰,信噪比很高,有利于正确解调。这样就能在一根光纤上实现了温度、应变等多参数的实时测量。
第三步,解调仪解调,宽带光源发出的光进入可调谐F-P滤波器,在锯齿波扫描电压的作用下,不同波长的光信号周期性地通过F-P滤波器,经耦合器分成两个支路,其中一路约90%的光经耦合器入射到传感光栅阵列中,阵列中所有光栅的布拉格反射波长必须全部在F-P滤波器的扫描范围内,并且每个光栅的反射波长都不相同,以避免信号串扰;另一路约10%的光则经耦合器入射到F-P标准具中,该支路用来对可调谐F-P滤波器进行校准,以消除可调谐F-P滤波器腔长漂移对测量精度造成的影响;
第四步:在上一步的传感光栅阵列中,当F-P滤波器的扫描波长与光纤光栅的反射波长一致时,光电检测器探测到的光能量最大,此时,采集光电检测器输出的电信号,当电信号最大时,记录相应的锯齿波电压,然后根据锯齿波电压与波长的关系得到反射波长的值,达到传感信号解调的目的。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (5)

1.一种制氢转化炉的炉管智能监测方法,其特征是:包括以下步骤:
第一步,超高温光栅FBG,将FBG写入光纤纤芯结构;
第二步,波分复用用作光纤光栅传感器的复用方法,将多个光纤光栅串联在一起,再将一个宽带光源产生的宽频信号射入光纤光栅的串联网络中;
第三步,解调仪解调,宽带光源发出的光进入可调谐F-P滤波器,在锯齿波扫描电压的作用下,不同波长的光信号周期性地通过F-P滤波器,经耦合器分成两个支路,一路光经耦合器入射到传感光栅阵列中,另一路光经耦合器入射到F-P标准具中;
第四步:在上一步的传感光栅阵列中,当F-P滤波器的扫描波长与光纤光栅的反射波长一致时,采集光电检测器输出的电信号,当电信号最大时,记录相应的锯齿波电压,然后根据锯齿波电压与波长的关系得到反射波长的值,达到传感信号解调的目的。
2.根据权利要求1所述的一种制氢转化炉的炉管智能监测方法,其特征是:对超高温光栅的栅区部分涂覆耐温聚酰亚胺,黄金或钢。
3.根据权利要求1所述的一种制氢转化炉的炉管智能监测方法,其特征是:将超高温光栅FBG做成单点光栅,或刻写成光栅串,对关键点处的温度进行监测或进行多点测温。
4.根据权利要求1所述的一种制氢转化炉的炉管智能监测方法,其特征是:经耦合器入射到传感光栅阵列中的一路光占比90%,阵列中所有光栅的布拉格反射波长均在F-P滤波器的扫描范围内,并且每个光栅的反射波长都不相同,以避免信号串扰。
5.根据权利要求1所述的一种制氢转化炉的炉管智能监测方法,其特征是:经耦合器入射到F-P标准具中的另一路光占比10%,用来对可调谐F-P滤波器进行校准,以消除可调谐F-P滤波器腔长漂移对测量精度造成的影响。
CN202010117021.7A 2020-02-25 2020-02-25 一种制氢转化炉的炉管智能监测方法 Pending CN111397643A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010117021.7A CN111397643A (zh) 2020-02-25 2020-02-25 一种制氢转化炉的炉管智能监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010117021.7A CN111397643A (zh) 2020-02-25 2020-02-25 一种制氢转化炉的炉管智能监测方法

Publications (1)

Publication Number Publication Date
CN111397643A true CN111397643A (zh) 2020-07-10

Family

ID=71434048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010117021.7A Pending CN111397643A (zh) 2020-02-25 2020-02-25 一种制氢转化炉的炉管智能监测方法

Country Status (1)

Country Link
CN (1) CN111397643A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952829A (zh) * 2020-08-22 2020-11-17 中国人民解放军国防科技大学 一种光纤纤芯三维空间温度的准分布式测量方法
EP3945297A1 (en) * 2020-07-27 2022-02-02 Shanghai Huayi New Material Co., Ltd. Reactor temperature measurement system, reactor and method for preparing a fiber bragg grating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2864649Y (zh) * 2006-01-20 2007-01-31 天津市协力自动化工程有限公司 对可调谐光学滤波器进行校准与拟合的装置
CN201845405U (zh) * 2010-01-21 2011-05-25 中国石油天然气集团公司 标准具与温控光栅联合的光纤光栅温度火灾报警系统
CN102928003A (zh) * 2012-10-31 2013-02-13 西安交通大学 一种具有实时参考的光纤光栅解调系统
CN103196473A (zh) * 2013-03-26 2013-07-10 天津大学 多通道高精度光纤光栅传感解调装置及其解调方法
CN108592962A (zh) * 2018-01-08 2018-09-28 南京航空航天大学 一种具有波长标尺校准功能的光纤布拉格光栅传感系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2864649Y (zh) * 2006-01-20 2007-01-31 天津市协力自动化工程有限公司 对可调谐光学滤波器进行校准与拟合的装置
CN201845405U (zh) * 2010-01-21 2011-05-25 中国石油天然气集团公司 标准具与温控光栅联合的光纤光栅温度火灾报警系统
CN102928003A (zh) * 2012-10-31 2013-02-13 西安交通大学 一种具有实时参考的光纤光栅解调系统
CN103196473A (zh) * 2013-03-26 2013-07-10 天津大学 多通道高精度光纤光栅传感解调装置及其解调方法
CN108592962A (zh) * 2018-01-08 2018-09-28 南京航空航天大学 一种具有波长标尺校准功能的光纤布拉格光栅传感系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3945297A1 (en) * 2020-07-27 2022-02-02 Shanghai Huayi New Material Co., Ltd. Reactor temperature measurement system, reactor and method for preparing a fiber bragg grating
US11714010B2 (en) 2020-07-27 2023-08-01 Shanghai Huayi New Material Co., Ltd. Reactor temperature measurement system, reactor and method for preparing a Fiber Bragg Grating
CN111952829A (zh) * 2020-08-22 2020-11-17 中国人民解放军国防科技大学 一种光纤纤芯三维空间温度的准分布式测量方法
CN111952829B (zh) * 2020-08-22 2022-03-18 中国人民解放军国防科技大学 一种光纤纤芯三维空间温度的准分布式测量方法

Similar Documents

Publication Publication Date Title
CN201476800U (zh) 一种基于awg的高速多通道光纤光栅传感解调系统
CN101949744B (zh) 一种基于光纤光栅的变压器内部温度检测系统
CN111397643A (zh) 一种制氢转化炉的炉管智能监测方法
CN101881634A (zh) 基于awg的高速多通道光纤光栅传感解调系统及方法
CN107044969B (zh) 差分强度调制测量液体折射率的光纤传感装置及测量方法
CN201892586U (zh) 一种基于光纤光栅的变压器内部温度检测系统
US20220373366A1 (en) Interferometric demodulation system and method for large capacity fiber grating sensing network
CN103398801B (zh) 一种光纤光栅温度测量装置及测量方法
CN103604446A (zh) 一种基于单探测器的多通道光纤光栅绝对波长解调系统与方法
CN102661755A (zh) 基于光纤布拉格光栅的可扩展分布式传感系统
US20220246961A1 (en) System and method for monitoring a reactor system using optical fiber based sensors
CN102169028A (zh) 晶闸管壳内温度实时测量系统
CN105136909A (zh) 一种基于阵列波导光栅的多通道声发射传感解调系统
CN105698831A (zh) 双芯光纤光栅阵列传感网络及分布式传感信息获取方法
CN110954240A (zh) 一种基于fbg传感器的ocm反应器温度监测系统
CN110823262A (zh) 基于光量子技术的高灵敏度光纤光栅传感方法及系统
CN104931431A (zh) 基于光纤光栅微腔的fpi氢气传感器
CN101046450B (zh) 光纤光栅甲烷检测的方法和设备
CN103969217A (zh) 一种可实现多点监测的波分复用光纤氢气传感系统
CN111189556A (zh) 基于awg的实时多通道光纤光栅测温系统
CN114877923B (zh) 基于阵列波导光栅和神经网络算法的Fabry-Perot干涉传感器解调系统及方法
Fusiek et al. Temperature-independent high-speed distributed voltage measurement using intensiometric FBG interrogation
CN111811554A (zh) 基于光腔衰荡大范围高精度光纤光栅传感方法及装置
CN103714869A (zh) 基于光纤光栅传感的反应堆堆芯温度监测系统及方法
CN201251594Y (zh) 长距离非接触式电流监测系统及传感探头

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200710

WD01 Invention patent application deemed withdrawn after publication