CN111394371B - Migratory locust V-ATPase-V1 structural domain gene and application of dsRNA thereof in pest control - Google Patents
Migratory locust V-ATPase-V1 structural domain gene and application of dsRNA thereof in pest control Download PDFInfo
- Publication number
- CN111394371B CN111394371B CN202010249056.6A CN202010249056A CN111394371B CN 111394371 B CN111394371 B CN 111394371B CN 202010249056 A CN202010249056 A CN 202010249056A CN 111394371 B CN111394371 B CN 111394371B
- Authority
- CN
- China
- Prior art keywords
- atpase
- gene
- leu
- seq
- glu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N57/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
- A01N57/10—Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
- A01N57/16—Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing heterocyclic radicals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y306/00—Hydrolases acting on acid anhydrides (3.6)
- C12Y306/03—Hydrolases acting on acid anhydrides (3.6) acting on acid anhydrides; catalysing transmembrane movement of substances (3.6.3)
- C12Y306/03014—H+-transporting two-sector ATPase (3.6.3.14), i.e. F1 ATPase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention discloses a migratory locust V-ATPase-V1 structural domain gene and application of dsRNA thereof in pest control, wherein the migratory locust V-ATPase-V1 structural domain gene comprises migratory locust V-ATPase-A, V-ATPase-B, V-ATPase-C, V-ATPase-D, V-ATPase-E, V-ATPase-F and V-ATPase-G genes, and the V-ATPase-A to V-ATPase-G genes are obtained from a migratory locust transcription group database by a bioinformatics method, and the full-length cDNA sequences of the genes are obtained after cloning and sequencing the genes respectively; based on the gene sequences, V-ATPase-A to V-ATPase-G gene fragments are respectively obtained by a PCR method, corresponding dsRNA is synthesized, and the synthesized dsRNA can be respectively injected into a locusta migratoria coelomis and then can specifically silence a target gene, so that the locusta migratoria is died due to the fact that growth and development of the locusta migratoria are blocked, and the lethality rate reaches 60.3% -93.7%. Due to the specificity and the high-efficiency lethality rate, the invention has important significance for pest control and provides a new way for pest control.
Description
Technical Field
The invention relates to the field of biotechnology and agricultural pest control, in particular to a migratory locust V-ATPase-V1 structural domain gene and application of dsRNA thereof in pest control.
Background
Locusta migratoria is an intercontinental agricultural pest mainly distributed in four continents of asia, europe, africa and australia. The method has the characteristics of outbreak, cluster and migration, and once the outbreak occurs, the method is wide in related range, violent in incoming situation and serious in disaster. At present, chemical insecticides are still used as main means in locust control work, and the use of a large amount of chemical insecticides not only easily causes insects to generate drug resistance, but also brings serious pollution to the ecological environment and threatens the health of human beings, so that the research and development of green novel pesticides have important significance for locust control work in China.
RNA interference (RNAi), a phenomenon of specific post-transcriptional gene silencing caused by double-stranded RNA molecules, has been ascending at the technology front since the acquisition of the nobel prize in 2006. RNAi is not only a powerful tool for studying gene function, but also has great potential in pest control. Pest control by RNAi has the following characteristics: 1) the insecticidal has specificity and no killing effect on non-target organisms; 2) RNA is easy to degrade in nature and has no residue; 3) is nontoxic and harmless to the environment and is relatively safe. Currently, the RNAi technology has been internationally referred to as fourth generation pesticide core technology. RNAi transgenic maize (MON87411) expressing dsRNA of the maize root leaf beetle Snf7 gene, developed by Monsanto, USA, has been approved by the United States Department of Agriculture (USDA) and the Environmental Protection Agency (EPA), and is about to be commercially used. Experiments show that the transgenic corn can effectively kill corn rootworm and has no obvious toxic effect on non-target organisms such as bees and the like. Screening and identifying genes which are crucial to the growth and development of pests are key links for developing novel pesticides by applying RNAi technology, because not all dsRNA can effectively silence the expression of target genes, nor all dsRNA can kill pests.
V-ATPase (Vacuolar-type ATPase), an H+The channel protein is widely present on membranes of various organelles such as endosomes, lysosomes and the like of prokaryotes and eukaryotes and plasma membranes of some special cells, regulates the pH of the internal and external environments of the cells and is important for maintaining normal life activities of organisms. The V-ATPase is a highly conserved complex enzyme, and is formed by assembling an extracellular V1 domain and a transmembrane V0 domain, wherein the V1 domain consists of a A, B, C, D, E, F, G, H large subunit and is responsible for the hydrolysis of ATP; the V0 domain consists of a, c, c ', d, e (c' is present in yeast cells), and functions as a proton transporter. At present, no relevant research aiming at the V-ATPase-V1 structural domain gene (V-ATPase-A, V-ATPase-B, V-ATPase-C, V-ATPase-D, V-ATPase-E, V-ATPase-F and V-ATPase-G) of locusta migratoria is found. The invention proves that 60.3% -93.7% of lethality occurs after dsRNA of the V-ATPase-V1 structural domain gene of the migratory locust is injected to 3-year-old nymphs respectively for the first time. Therefore, the V-ATPase-V1 structural domain gene can be used as a high lethal target gene for RNAi-based pest control technology.
Disclosure of Invention
Aiming at the current state of the prior art, the invention aims to provide a migratory locust V-ATPase-V1 structural domain gene, a gene fragment and application of dsRNA thereof in lethal migratory locust.
The invention provides a locusta migratoria V-ATPase-V1 structural domain gene, which comprises the following genes:
the nucleotide sequence of the migratory locust V-ATPase-A gene is SEQ ID NO: 1, the length of the nucleotide is 1848 bp; the amino acid sequence is SEQ ID NO: 2, the sequence length is 615 amino acids;
the nucleotide sequence of the locust V-ATPase-B gene is SEQ ID NO: 6, the length of the nucleotide is 1503 bp; the amino acid sequence is SEQ ID NO: 7, the sequence length is 500 amino acids;
the nucleotide sequence of the migratory locust V-ATPase-C gene is SEQ ID NO: 11, the length of the nucleotide is 1158 bp; the amino acid sequence is SEQ ID NO: 12, the sequence length is 385 amino acids;
the nucleotide sequence of the migratory locust V-ATPase-D gene is SEQ ID NO: 16, the length of the nucleotide is 753 bp; the amino acid sequence is SEQ ID NO: 17, the sequence length is 250 amino acids;
the nucleotide sequence of the migratory locust V-ATPase-E gene is SEQ ID NO: 21, the length of the nucleotide is 684 bp; the amino acid sequence is SEQ ID NO: 22, the sequence length is 227 amino acids;
the nucleotide sequence of the migratory locust V-ATPase-F gene is SEQ ID NO: 26, the length of the nucleotide is 372 bp; the amino acid sequence is SEQ ID NO: 27, the sequence length is 123 amino acids;
the nucleotide sequence of the migratory locust V-ATPase-F gene is SEQ ID NO: 31, the length of the nucleotide is 357 bp; the amino acid sequence is SEQ ID NO: 32, the sequence length is 118 amino acids.
The invention provides a locusta migratoria V-ATPase-V1 structural domain gene fragment, which comprises the following gene fragments:
the nucleotide sequence of the V-ATPase-A gene fragment is SEQ ID NO: 3;
the nucleotide sequence of the V-ATPase-B gene fragment is SEQ ID NO: 8;
the nucleotide sequence of the V-ATPase-C gene fragment is SEQ ID NO: 13;
the nucleotide sequence of the V-ATPase-D gene fragment is SEQ ID NO: 18;
the nucleotide sequence of the V-ATPase-E gene fragment is SEQ ID NO: 23;
the nucleotide sequence of the V-ATPase-F gene fragment is SEQ ID NO: 28;
the nucleotide sequence of the V-ATPase-G gene fragment is SEQ ID NO: 33.
the dsRNA of the V-ATPase-V1 structural domain gene of migratory locust provided by the invention comprises the following dsRNA:
the locust migratory V-ATPase-A gene fragment SEQ ID NO: 3 a synthetic dsRNA;
the locust migratory V-ATPase-B gene fragment SEQ ID NO: 8 synthetic dsRNA;
the locust-migratory V-ATPase-C gene fragment SEQ ID NO: 13 synthetic dsRNA;
the locust migratory V-ATPase-D gene fragment SEQ ID NO: 18 synthetic dsRNA;
the locust migratory V-ATPase-E gene fragment SEQ ID NO: 23 synthetic dsRNA;
the locust migratory V-ATPase-F gene fragment SEQ ID NO: 28 synthetic dsRNA;
the locust migratory V-ATPase-G gene fragment SEQ ID NO: 33 synthetic dsRNA.
The invention provides an application of migratory locust V-ATPase-V1 structural domain gene dsRNA in pest control, based on migratory locust V-ATPase-A, V-ATPase-B, V-ATPase-C, V-ATPase-D, V-ATPase-E, V-ATPase-F and V-ATPase-G genes contained in a migratory locust V-ATPase-V1 structural domain, for each gene, an upstream primer and a downstream primer containing a T7 promoter aiming at the gene are designed through primer premier 5.0 software, and a DNA template with two ends being T7 promoters is obtained through PCR amplification. According to HiScribeTM T7 High Yield RNA Synthesis Kit(NEW ENGLANDInc.) kit demonstrates in vitro transcription synthesis of the corresponding dsRNA. Each synthetic dsRNA was injected into the body cavity of a 3-year migratory locust via a microinjector. The results show that:
after the dsRNA is injected, the mRNA expression of the migratory locust V-ATPase-A gene is obviously reduced, and the migratory locust has growth and development resistance and leads to 79.7 percent of death.
After the dsRNA is injected, the mRNA expression of the migratory locust V-ATPase-B gene is obviously reduced, and the migratory locust has the defects of growth and development resistance and 85.7 percent of death.
After the dsRNA is injected, the mRNA expression of the V-ATPase-C gene of the migratory locust is obviously reduced, and the migratory locust has growth and development resistance and causes 69.8 percent of death.
After the dsRNA is injected, the mRNA expression of the migratory locust V-ATPase-D gene is obviously reduced, and the migratory locust has growth and development resistance and causes 90.4 percent of death.
After the dsRNA is injected, the mRNA expression of the migratory locust V-ATPase-E gene is obviously reduced, and the migratory locust has the defects of hindered growth and development and causes 93.7 percent of death.
After the dsRNA is injected, the mRNA expression of the migratory locust V-ATPase-F gene is obviously reduced, and the migratory locust has growth and development resistance and leads to 77.8 percent of death.
After the dsRNA is injected, the mRNA expression of the V-ATPase-G gene of the migratory locust is obviously reduced, and the migratory locust has growth and development resistance and causes 60.3 percent of death.
Wherein, in the synthesis of dsRNA of locusta migratoria V-ATPase-V1 structural domain gene, based on different genes, an upstream primer and a downstream primer are designed as follows:
the upstream primer and the downstream primer of the migratory locust V-ATPase-A gene are respectively as follows: SEQ ID NO: 4 and SEQ ID NO: 5;
the upstream primer and the downstream primer of the migratory locust V-ATPase-B gene are respectively as follows: SEQ ID NO: 9 and SEQ ID NO: 10;
the upstream primer and the downstream primer of the migratory locust V-ATPase-C gene are respectively as follows: SEQ ID NO: 14 and SEQ ID NO: 15;
the upstream primer and the downstream primer of the migratory locust V-ATPase-D gene are respectively as follows: SEQ ID NO: 19 and SEQ ID NO: 20;
the upstream primer and the downstream primer of the migratory locust V-ATPase-E gene are respectively as follows: SEQ ID NO: 24 and SEQ ID NO: 25;
the upstream primer and the downstream primer of the migratory locust V-ATPase-F gene are respectively as follows: SEQ ID NO: 29 and SEQ ID NO: 30, of a nitrogen-containing gas;
the upstream primer and the downstream primer of the migratory locust V-ATPase-G gene are respectively as follows: SEQ ID NO: 34 and SEQ ID NO: 35.
compared with the prior art, the invention has the following beneficial effects:
1. because of the specificity and high-efficiency lethality of dsRNA synthesized by the gene fragment of the V-ATPase-V1 domain of the migratory locust, the dsRNA has important practical significance for pest control and can provide a new way for pest control.
2. The dsRNA of the invention is easy to synthesize, is convenient to prepare into a spray type pesticide or bait, and has better popularization and application values.
Drawings
FIG. 1 shows the effect of dsRNA (dsLmV-ATPase-A) injection of V-ATPase-A gene on mRNA expression of V-ATPase-A gene after 3 rd migratory locust; dsGFP is used as a control, dsLmV-ATPase-A is used as a treatment group, and beta-actin is used as an internal reference gene. Wherein P < 0.001.
FIG. 2 is the effect of dsRNA (dsLmV-ATPase-A) injection of V-ATPase-A gene on growth and development of 3-year migratory locust; controls injected with dsGFP on the left, and controls injected with SEQ ID NO: 3 synthetic dsRNA, i.e., dsLmV-ATPase-A. Wherein, 1 is that the ridge line of the locusta migratoria at 3 th and 4 th instar slough of the treatment group is cracked and the back is arched and dies; 2, the locusta migratoria 3 th instar is dead 1 to 2 days after the locusta migratoria 4 th instar is treated; 3, the locusta migratoria 4 th instar slough dies 1-2 days before 5 th instar; 4, old epidermis can not be sloughed off to die when the migratory locust of 4 ages and 5 ages.
FIG. 3 is a graph showing the effect of dsRNA (dsLmV-ATPase-B) injection of V-ATPase-B gene on mRNA expression of V-ATPase-B gene after 3-year migratory locust. dsGFP is used as a control, dsLmV-ATPase-B is used as a treatment group, and beta-actin is used as an internal reference gene. Wherein P < 0.01.
FIG. 4 shows the effect of dsRNA injection of V-ATPase-B gene (dsLmV-ATPase-B) on growth and development of 3-year migratory locust. Controls injected with dsGFP on the left, and controls injected with SEQ ID NO: 8 synthetic dsRNA, i.e., dsLmV-ATPase-B. Wherein 1 is death of the locusta migratoria at 3 rd and 4 th ages in 1-2 days before; 2, when the locusta migratoria of the treatment group is 3 years old and is 4 years old, the compact inclusion of the old epidermis cannot be sloughed off and die; and 3, the locusta migratoria 3 th instar slough dies 1-2 days after 4 th instar.
FIG. 5 is a graph showing the effect of dsRNA (dsLmV-ATPase-C) injection of V-ATPase-C gene on mRNA expression of V-ATPase-C gene after 3-year migratory locust. dsGFP is used as a control, dsLmV-ATPase-C is used as a treatment group, and beta-actin is used as an internal reference gene. Wherein P < 0.001.
FIG. 6 shows the effect of dsRNA (dsLmV-ATPase-C) injection of V-ATPase-C gene on growth and development of 3-year migratory locust. Controls injected with dsGFP on the left, and controls injected with SEQ ID NO: 13 synthetic dsRNA, i.e., dsLmV-ATPase-C. Wherein, 1 is that the ridge line of the locusta migratoria at 3 th and 4 th instar slough of the treatment group is cracked and the back is arched and dies; 2, the locusta migratoria 3 th instar slough dies 1-2 days after 4 th instar.
FIG. 7 is a graph showing the effect on V-ATPase-D gene mRNA expression after injection of dsRNA of V-ATPase-D gene (dsLmV-ATPase-D) to 3-year migratory locust. dsGFP is used as a control, dsLmV-ATPase-C is used as a treatment group, and beta-actin is used as an internal reference gene. Wherein P < 0.01.
FIG. 8 shows the effect of dsRNA injection of V-ATPase-D gene (dsLmV-ATPase-D) on growth and development of 3-year migratory locust. Controls injected with dsGFP on the left, and controls injected with SEQ ID NO: 18 synthetic dsRNA, i.e., dsLmV-ATPase-D. Wherein 1 is death 1-2 days before 3-year ghost and 4-year ghost of migratory locust of the treatment group. 2, the old epidermis of the migratory locust of the treatment group can not be smoothly sloughed off for death when the migratory locust is 3 years old and is 4 years old. And 3, the locusta migratoria 3 th instar slough dies 1-2 days after 4 th instar.
FIG. 9 is a graph showing the effect of dsRNA (dsLmV-ATPase-E) injection of V-ATPase-E gene on V-ATPase-E gene mRNA expression after 3-year migratory locust. dsGFP is used as a control, dsLmV-ATPase-E is used as a treatment group, and beta-actin is used as an internal reference gene. Wherein P < 0.001.
FIG. 10 shows the effect of dsRNA injection of V-ATPase-E gene (dsLmV-ATPase-E) on growth and development of 3-year migratory locust. Controls injected with dsGFP on the left, and controls injected with SEQ ID NO: 23 synthetic dsRNA, i.e., dsLmV-ATPase-E. Wherein 1 is death of the locusta migratoria at 3 rd stage and 1-2 days before the ghost at 4 th stage; 2, the ridge line of the locusta migratoria 3-year slough of the treatment group at 4-year is cracked and the back is arched and dead.
FIG. 11 is a graph showing the effect of dsRNA (dsLmV-ATPase-F) injection of V-ATPase-F gene on mRNA expression of V-ATPase-F gene after 3-year migratory locust. dsGFP is used as a control, dsLmV-ATPase-F is used as a treatment group, and beta-actin is used as an internal reference gene. Wherein P < 0.01.
FIG. 12 is a graph showing the effect of dsRNA (dsLmV-ATPase-F) injection of V-ATPase-F gene on growth and development of 3-year migratory locust. Controls injected with dsGFP on the left, and controls injected with SEQ ID NO: 28 synthetic dsRNA, i.e., dsLmV-ATPase-F. Wherein 1 is that old epidermis can not be smoothly sloughed off and die when the locusta migratoria 3 th instar is sloughed for 4 th instar; 2, the locusta migratoria 3 th instar slough dies 1-2 days after 4 th instar.
FIG. 13 is a graph showing the effect on V-ATPase-G gene mRNA expression after injection of V-ATPase-G gene dsRNA (dsLmV-ATPase-G) to 3-year migratory locust. dsGFP is used as a control, dsLmV-ATPase-G is used as a treatment group, and beta-actin is used as an internal reference gene. Wherein P < 0.001.
FIG. 14 shows the effect of dsRNA (dsLmV-ATPase-G) injection of V-ATPase-G gene on growth and development of 3-year migratory locust. Controls injected with dsGFP on the left, and controls injected with SEQ ID NO: 33 synthetic dsRNA, i.e., dsLmV-ATPase-G. Wherein 1 is death 1-2 days before 3-year ghost and 4-year ghost of migratory locust of the treatment group. 2, the old epidermis of the migratory locust of the treatment group can not be smoothly sloughed off for death when the migratory locust is 3 years old and is 4 years old.
Detailed Description
The technical scheme of the invention is further explained by the specific embodiment in combination with the attached drawings. It should be understood by those skilled in the art that the specific embodiments are only for the understanding of the present invention and should not be construed as the specific limitations of the present invention.
The locusta migratoria V-ATPase-V1 structural domain gene comprises the following genes:
the nucleotide sequence of the migratory locust V-ATPase-A gene is SEQ ID NO: 1;
the nucleotide sequence of the migratory locust V-ATPase-B gene is SEQ ID NO: 6;
the nucleotide sequence of the migratory locust V-ATPase-C gene is SEQ ID NO: 11;
the nucleotide sequence of the migratory locust V-ATPase-D gene is SEQ ID NO: 16;
the nucleotide sequence of the migratory locust V-ATPase-E gene is SEQ ID NO: 21;
the nucleotide sequence of the migratory locust V-ATPase-F gene is SEQ ID NO: 26;
the nucleotide sequence of the migratory locust V-ATPase-G gene is SEQ ID NO: 31.
example 1: obtaining of each gene and gene fragment in V-ATPase-V1 structural domain of migratory locust
1) Acquisition of each gene in V-ATPase-V1 domain of migratory locust
The locusta migratoria V-ATPase-V1 structural domain genes comprise 7 genes of locusta migratoria V-ATPase-A, locusta migratoria V-ATPase-B, locusta migratoria V-ATPase-C, locusta migratoria V-ATPase-D, locusta migratoria V-ATPase-E, locusta migratoria V-ATPase-F and locusta migratoria V-ATPase-G.
On the basis of a transcriptome database of the migratory locust, searching migratory locust V-ATPase-A, migratory locust V-ATPase-B, migratory locust V-ATPase-C, migratory locust V-ATPase-D, migratory locust V-ATPase-E, migratory locust V-ATPase-F and migratory locust V-ATPase-G genes by adopting a bioinformatics method to obtain a migratory locust V-ATPase-A gene (LmV-ATPase-A) sequence, a migratory locust V-ATPase-B gene (LmV-ATPase-B) sequence, a migratory locust V-ATPase-C gene (LmV-ATPase-C) sequence, a migratory locust V-ATPase-D gene (LmV-ATPase-D) sequence, a migratory locust V-ATPase-E gene (LmV-ATPase-E) sequence and a migratory locust V-ATPase-D gene (LmV-ATPase-F) sequence, the sequence of the migratory locust V-ATPase-G gene (LmV-ATPase-G).
The primer premier 5.0 software was used to design respective upstream and downstream primers for verifying the respective sequences obtained above, the primers were synthesized by Biotechnology engineering (Shanghai) Ltd. Selecting 4 heads of 3-year migratory locust which is healthy in growth and is half male and female, quickly dissecting the body wall of the migratory locust under a body type microscope, and freezing the migratory locust in liquid nitrogen. RNA was extracted according to TaKaRa RNAi RNAioso Plus kit, the RNA was Reverse transcribed into first strand cDNA using Reverse Transcriptase M-MLV (RNase H-) reagent according to the instructions, the cDNA was used as a template in combination with designed upstream and downstream primers of each gene, and LmV-ATPase-A gene cDNA full length sequence, LmV-ATPase-B gene cDNA full length sequence, LmV-ATPase-C gene cDNA full length sequence, LmV-ATPase-D gene cDNA full length sequence, LmV-ATPase-E gene cDNA full length sequence, LmV-ATPase-F gene full length cDNA sequence, LmV-ATPase-G gene cDNA full length sequence were amplified by PCR. The obtained products are respectively purified, cloned and transformed into escherichia coli, and sent to a company Limited in Biotechnology engineering (Shanghai) for sequencing, and the results are as follows:
the V-ATPase-A gene sequence of locusta migratoria is SEQ ID NO: 1, the length of the nucleotide is 1848 bp;
the V-ATPase-B gene sequence of locusta migratoria is SEQ ID NO: 6, the length of the nucleotide is 1503 bp;
the V-ATPase-C gene sequence of locusta migratoria is SEQ ID NO: 11, the length of the nucleotide is 1158 bp;
the V-ATPase-D gene sequence of locusta migratoria is SEQ ID NO: 16, the length of the nucleotide is 753 bp;
the V-ATPase-E gene sequence of locusta migratoria is SEQ ID NO: 21, the length of the nucleotide is 684 bp;
the V-ATPase-F gene sequence of locusta migratoria is SEQ ID NO: 26, the length of the nucleotide is 372 bp;
the V-ATPase-G gene sequence of locusta migratoria is SEQ ID NO: 31, the nucleotide length is 357 bp.
2) Amino acid sequence analysis of each gene in V-ATPase-V1 domain of migratory locust
The nucleotide sequence of the obtained LmV-ATPase-A, LmV-ATPase-B, LmV-ATPase-C, LmV-ATPase-D, LmV-ATPase-E, LmV-ATPase-F, LmV-ATPase-G gene is translated through ExPasy online software, and the open reading frame coding, molecular weight and isoelectric point of each gene are predicted, and the results are as follows:
the open reading frame of the LmV-ATPase-A gene encodes 615 amino acids, the molecular weight is 58KDa, and the isoelectric point is 5.11;
the open reading frame of LmV-ATPase-B gene encodes 500 amino acids, the molecular weight is 55.6KDa, and the isoelectric point is 5.33;
the open reading frame of the LmV-ATPase-C gene codes 385 amino acids, the molecular weight is 44.4KDa, and the isoelectric point is 8.16;
the open reading frame of LmV-ATPase-D gene encodes 250 amino acids, the molecular weight is 28KDa, and the isoelectric point is 9.63;
the open reading frame of the LmV-ATPase-E gene codes 227 amino acids, the molecular weight is 28KDa, and the isoelectric point is 8.51;
the open reading frame of the LmV-ATPase-F gene codes 123 amino acids, the molecular weight is 13.8KDa, and the isoelectric point is 5.92;
the open reading frame of the LmV-ATPase-G gene codes 118 amino acids, the molecular weight is 14KDa, and the isoelectric point is 9.66.
3) Obtaining of each gene fragment in V-ATPase-V1 domain of migratory locust
According to SEQ ID NO: 1, and a primer premier 5.0 software is adopted to design a specific primer, wherein the sequence of an upstream primer is SEQ ID NO: 4, the sequence of the downstream primer is SEQ ID NO: 5, all primers were synthesized by Biotechnology engineering (Shanghai) Inc. The method comprises the following steps of: 1 as a template, carrying out PCR amplification to obtain a migratory locust V-ATPase-A gene fragment, purifying and cloning the obtained product, transforming the purified product into escherichia coli, and sending the escherichia coli to a company Limited in Biotechnology engineering (Shanghai) for sequencing, wherein the sequence of the escherichia coli is SEQ ID NO: 3.
according to SEQ ID NO: 6, designing a specific primer by using primer premier 5.0 software, wherein the sequence of an upstream primer is SEQ ID NO: 9, the sequence of the downstream primer is SEQ ID NO: all primers were synthesized by Biotechnology engineering (Shanghai) Inc. The method comprises the following steps of: 6 as a template, carrying out PCR amplification to obtain a migratory locust V-ATPase-B gene fragment, purifying and cloning the obtained product, transforming the purified product into escherichia coli, and sending the escherichia coli to a company Limited in Biotechnology engineering (Shanghai) for sequencing, wherein the sequence of the migratory locust V-ATPase-B gene fragment is SEQ ID NO: 8.
according to SEQ ID NO: 11, designing a specific primer by using primer premier 5.0 software, wherein the sequence of an upstream primer is SEQ ID NO: 14, the sequence of the downstream primer is SEQ ID NO: all primers were synthesized by Biotechnology engineering (Shanghai) Inc. The method comprises the following steps of: 11 as a template, carrying out PCR amplification to obtain a migratory locust V-ATPase-C gene fragment, purifying and cloning the obtained product, transforming the purified product into escherichia coli, and sending the escherichia coli to a company Limited in Biotechnology engineering (Shanghai) for sequencing, wherein the sequence of the migratory locust V-ATPase-C gene fragment is SEQ ID NO: 13.
according to SEQ ID NO: 16, and designing a specific primer by using primer premier 5.0 software, wherein the sequence of an upstream primer is SEQ ID NO: 19, the sequence of the downstream primer is SEQ ID NO: all primers were synthesized by Biotechnology engineering (Shanghai) Inc. The method comprises the following steps of: 16 as a template, carrying out PCR amplification to obtain a migratory locust V-ATPase-A gene fragment, purifying and cloning the obtained product, transforming the purified product into escherichia coli, and sending the escherichia coli to a company Limited in Biotechnology engineering (Shanghai) for sequencing, wherein the sequence of the escherichia coli is SEQ ID NO: 18.
according to SEQ ID NO: 21, designing a specific primer by using primer premier 5.0 software, wherein the sequence of an upstream primer is SEQ ID NO: 24, the sequence of the downstream primer is SEQ ID NO: 25, all primers were synthesized by Biotechnology engineering (Shanghai) Inc. The method comprises the following steps of: 21 as a template, carrying out PCR amplification to obtain a migratory locust V-ATPase-A gene fragment, purifying and cloning the obtained product, transforming the purified product into escherichia coli, and sending the escherichia coli to a company Limited in Biotechnology engineering (Shanghai) for sequencing, wherein the sequence of the migratory locust V-ATPase-A gene fragment is SEQ ID NO: 23.
according to SEQ ID NO: 26, designing a specific primer by using primer premier 5.0 software, wherein the sequence of an upstream primer is SEQ ID NO: 29, the sequence of the downstream primer is SEQ ID NO: 30, all primers were synthesized by Biotechnology engineering (Shanghai) Inc. The method comprises the following steps of: 26 as a template, carrying out PCR amplification to obtain a migratory locust V-ATPase-A gene fragment, purifying and cloning the obtained product, transforming the purified product into escherichia coli, and sending the escherichia coli to a company Limited in Biotechnology engineering (Shanghai) for sequencing, wherein the sequence of the migratory locust V-ATPase-A gene fragment is SEQ ID NO: 28.
according to SEQ ID NO: 31, and designing a specific primer by using primer premier 5.0 software, wherein the sequence of an upstream primer is SEQ ID NO: 34, the sequence of the downstream primer is SEQ ID NO: 35, all primers were synthesized by Biotechnology engineering (Shanghai) Inc. The method comprises the following steps of: 31 as a template, carrying out PCR amplification to obtain a migratory locust V-ATPase-A gene fragment, purifying and cloning the obtained product, transforming the purified product into escherichia coli, and sending the escherichia coli to a company Limited in Biotechnology engineering (Shanghai) for sequencing, wherein the sequence of the migratory locust V-ATPase-A gene fragment is SEQ ID NO: 33.
example 2: synthesis of dsRNA (double-stranded ribonucleic acid) specific to each gene in V-ATPase-V1 domain of migratory locust
The sequences were determined using the sequences of SEQ ID NOs: 3. SEQ ID NO: 8. SEQ ID NO: 13. SEQ ID NO: 18. SEQ ID NO: 23. SEQ ID NO: 28. SEQ ID NO: 33 as a template, purified with Gel Extraction Kit (OMEGA) Kit, and then HiScribeTM T7 High Yield RNA Synthesis Kit(NEW ENGLANDInc.) kit demonstrates in vitro transcription synthesis of the corresponding dsRNA. Quantification was performed using NANODROP 2000(Thermo scientific) to achieve a final concentration of 2. mu.g/. mu.L. Storing in a super low-temperature refrigerator at-80 deg.C for use.
Example 3: experiments on lethal locusts migratoria through dsRNA of each gene in V-ATPase-V1 domain
1) Injection of dsRNA of each gene of V-ATPase-V1 structural domain of migratory locust
And selecting 72 th day-1 nymphs with healthy growth and consistent size for injection of LmV-ATPase-A gene dsRNA (dsLmV-ATPase-A). Synthetic dsLmV-ATPase-A3. mu.L (6. mu.g dsLmV-ATPase-A) was gently injected between the two and three abdominal segments of the nymph flank using a microsyringe. The same amount of dsGFP was injected into the control group at the same time. And (3) feeding the migratory locusts injected with the dsRNA in an artificial climate box (the illumination time is 14h:10h, the temperature is 30 +/-2 ℃, the humidity is 60 percent), and feeding fresh wheat seedlings and wheat bran every day.
The injection method and the injection amount of V-ATPase-B gene dsRNA (dsLmV-ATPase-B) are the same as those of V-ATPase-A gene dsRNA. The control group was injected with the same amount of dsGFP.
The injection method and the injection amount of V-ATPase-C gene dsRNA (dsLmV-ATPase-C) are the same as those of V-ATPase-A gene dsRNA. The control group was injected with the same amount of dsGFP.
The injection method and the injection amount of V-ATPase-D gene dsRNA (dsLmV-ATPase-D) are the same as those of V-ATPase-A gene dsRNA. The control group was injected with the same amount of dsGFP.
The injection method and the injection amount of V-ATPase-E gene dsRNA (dsLmV-ATPase-E) are the same as those of V-ATPase-A gene dsRNA. The control group was injected with the same amount of dsGFP.
The injection method and the injection amount of V-ATPase-F gene dsRNA (dsLmV-ATPase-F) are the same as those of V-ATPase-A gene dsRNA. The control group was injected with the same amount of dsGFP.
The injection method and the injection amount of V-ATPase-G gene dsRNA (dsLmV-ATPase-G) are the same as those of V-ATPase-A gene dsRNA. The control group was injected with the same amount of dsGFP.
2) Detection of silencing efficiency of each gene in V-ATPase-V1 structural domain of migratory locust
Collecting the nymphs at the time point of 24h from a control group injected with dsGFP and a treatment group injected with dsLmV-ATPase-A, dsLmV-ATPase-B, dsLmV-ATPase-C, dsLmV-ATPase-D, dsLmV-ATPase-E, dsLmV-ATPase-F and dsLmV-ATPase-G respectively to perform total RNA extraction, wherein each gene dsRNA group of the control and the V-ATPase-V1 domain is 3 biological repeats, each biological repeat is 3 worms tested and is reversely transcribed into first strand cDNA, and each target gene is detected by an RT-qPCR method (LmV-ATPase-A, LmV-ATPase-B, dsLmV-ATPase-C, ATPase-C,LmV-ATPase-D, LmV-ATPase-E, LmV-ATPase-F and LmV-ATPase-G) and an internal reference gene (beta-actin) to calculate the silencing efficiency. RT-qPCR reaction system and program referenceGreen Realtime PCR Master Mix (TOYOBO) instructions. The results showed that the dsLmV-ATPase-A group injected test insect LmV-ATPase-A gene expression was significantly reduced compared to the control group<0.001 (FIG. 1), the dsLmV-ATPase-B group test insects LmV-ATPase-B gene expression was significantly reduced<0.01 (FIG. 3), the dsLmV-ATPase-C group injected test insects LmV-ATPase-C gene expression was significantly reduced<0.001 (FIG. 5), the dsLmV-ATPase-D group test insects LmV-ATPase-D gene expression was significantly reduced<0.001 (FIG. 7), the dsLmV-ATPase-E group injected test insects LmV-ATPase-E gene expression was significantly reduced<0.001 (FIG. 9), the dsLmV-ATPase-F group injected test insects LmV-ATPase-F gene expression was significantly reduced<0.001 (FIG. 11), dsLmV-ATPase-G group injected test insect LmV-ATPase-G gene expression was significantly reduced<0.001 (fig. 13).
3) Phenotypic observation of 3-year-old nymphs after injection of V-ATPase-V1 domain gene dsRNA
After 3-year nymphs inject dsLmV-ATPase-A, the control group insects successfully molt to 4 years on day 5, and the development state of the molted insects is good. Compared with a control group, the locusta migratoria after dsLmV-ATPase-A injection has the death rate of 79.7 percent and the phenotype is as follows: 1, treating group locusts of 3-year slough of 4-year old to cause ridge line cracking and back bowing and death; 2, the locusta migratoria 3 th instar slough dies 1-2 days after 4 th instar. 3, the locusta migratoria 4 th instar slough dies 1-2 days before 5 th instar; the old epidermis of the locusta migratoria 4 th instar can not be sloughed off and die at 5 th instar, and the result is shown in fig. 2.
After 3-year nymphs inject dsLmV-ATPase-B, the control group insects successfully molt to 4 years on day 5, and the development state of the molted insects is good. Compared with a control group, the locusta migratoria after dsLmV-ATPase-B injection has the mortality rate of 85.7 percent and the phenotype is as follows: 1 is death 1-2 days before 3-year ghost of locusta migratoria of the treatment group and 4-year ghost. 2, when the locusta migratoria 3 th instar is sloughed for 4 th instar, the old epidermic compact inclusion body can not be sloughed off and die. The result of death 1-2 days after the 3 rd ghost of locusta migratoria of the treatment group was shown in fig. 4.
After 3-year nymphs inject dsLmV-ATPase-C, the control group insects successfully molt to 4 years on day 5, and the development state of the molted insects is good. Compared with a control group, the locusta migratoria after dsLmV-ATPase-C injection has the death rate of 69.8 percent and the phenotype is as follows: 1, the ridge line is cracked and can not successfully molt and die when the locusta migratoria 3 th instar molting is 4 th instar; 2, the locusta migratoria 3-year ghost died 1-2 days after 4-year, and the results are shown in FIG. 6.
After 3-year nymphs inject dsLmV-ATPase-D, the control group insects successfully molt to 4 years on day 5, and the development state of the molted insects is good. Compared with a control group, the locusta migratoria after dsLmV-ATPase-D injection has the death rate of 90.4 percent and the phenotype is as follows: 1 is death 1-2 days before 3-year ghost of migratory locust and 4-year ghost. 2, the old epidermis of the migratory locust of the treatment group can not be smoothly sloughed off for death when the migratory locust is 3 years old and is 4 years old. The result of death 1-2 days after the 3 rd ghost of locusta migratoria of the treatment group was shown in fig. 8.
After 3-year nymphs inject dsLmV-ATPase-E, the control group insects successfully molt to 4 years on day 5, and the development state of the molted insects is good. Compared with a control group, the locusta migratoria after dsLmV-ATPase-E injection has the mortality rate of 93.5 percent and the phenotype is as follows: 1 is death 1-2 days before 3-year ghost of migratory locust and 4-year ghost. Fig. 2 shows the results of the treatment group locusta migratoria 3-year slough at 4-year old with dorsal fissure and dorsal arch and death.
After 3-year nymphs inject dsLmV-ATPase-F, the control group insects successfully molt to 4 years on day 5, and the development state of the molted insects is good. Compared with a control group, the locusta migratoria after dsLmV-ATPase-F injection has the mortality rate of 77.8 percent and the phenotype is as follows: 1, old epidermis can not be smoothly sloughed off and die when the locusta migratoria 3 th instar is sloughed for 4 th instar; 2, the locusta migratoria 3-year ghost died 1-2 days after 4-year, and the results are shown in FIG. 12.
After 3-year nymphs inject dsLmV-ATPase-G, the control group insects successfully molt to 4 years on day 5, and the development state of the molted insects is good. Compared with a control group, the locusta migratoria after dsLmV-ATPase-G injection has the mortality rate of 60.3 percent and the phenotype is as follows: 1 is death 1-2 days before 3-year ghost of migratory locust and 4-year ghost. FIG. 2 shows that the old epidermis of the locusta migratoria at 3 rd stage and 4 th stage did not smoothly slough off, and the results are shown in FIG. 14.
In conclusion, the V-ATPase-V1 structural domain gene fragments of the migratory locust comprise the gene fragments of V-ATPase-A, V-ATPase-B, V-ATPase-C, V-ATPase-D, V-ATPase-E, V-ATPase-F and V-ATPase-G, and the dsRNA synthesized by each gene fragment can silence target genes specifically after being injected into the body cavity of the migratory locust, so that the migratory locust is prevented from growing and developing and causes death, and the death rate reaches 60.3% -93.7%. Therefore, the dsRNA of the V-ATPase-V1 structural domain gene of the migratory locust is applied to the control of the migratory locust, and the specific implementation method is as follows: the dsRNA is prepared into a spraying pesticide, or the dsRNA is prepared into a bait, or the dsRNA is transferred into a migratory locust feeding plant body. Optionally, one or more dsRNA is/are prepared into a spraying pesticide or a bait, or the dsRNA is transferred into a feeding plant body of the migratory locust and is applied to the control of the migratory locust.
The above description is only for the specific embodiments of the present invention, but the scope of the present invention is not limited thereto, and any changes or substitutions that can be easily conceived by those skilled in the art within the technical scope of the present invention are included in the scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the appended claims.
LmV-ATPase-A SEQ ID NO:1
atgacgagcacattgataaagacgtccgatgaggaccgggagtccaaattcggctttgtttttgccgtatctggacctgtggtgacagctgaacgaatggccggttctgctatgtacgaactggtgcgtgtcggttattatgaactggtcggagagatcatccggttggagggtgacatggcaacaatccaagtatacgaagacacctcaggtgtgacagtaggcgatcccgtgctgcgcacaggcaagccgctgtccgtggaactgggacccggaatcatgggcagcatcttcgacggtatccagcgaccgctgaaggatatcaatgaactgtcaaatagtatctacatcccgaaaggtgtcaatgtgcctgccctgagtcgcactgcacagtgggacttcagtcccgtcagtgtcaaggttggaagccacattactggtggtgacctgtacggtttggtccacgaaaatactctggtgaaacacaagttgctgctgccgccccgtgccaagggaactgtcacgtacattgcagaacctggaaactacacagttgatgatgttgtcctggagacagaatttgacggcgagcgatcaaagttcaccatgctgcaagtgtggcctgtacgtcagcccaggcctgttacagaaaagttgccagctaactaccccctccttactggccagcgtgtgctcgactccctattcccgtgtgtccagggtggaacaacagctattcctggggccttcggatgtggcaagactgtaatatcacagtctttgtcaaaatactcaaactccgatgtaattatctatgtaggttgtggtgagcgaggtaatgaaatgtcagaagtactcagggatttccccgagttgtcggtggagattgatggtgtgactgaatcaatcatgaagagaacagccctggtcgcaaacacatcaaacatgcctgtggctgctcgagaagcatctatctacacaggtattacactgtcagaatacttcagggacatgggttacaatgtatccatgatggctgactcaacttcacgatgggccgaagctcttcgagaaatctcaggtcgattggctgaaatgcctgccgacagcggttatcccgcctacctaggtgcacgacttgccagtttctacgagcgtgccggccgtgtgaagtgcttgggtaacccagacagggagggctccgtgagtatagtgggcgccgtgtcgccgcccggtggagacttctcagatcccgtgacgacggccacactaggtatcgtccaggtgttctggggtctcgacaagaaacttgcccagcgaaagcacttcccatccatcaactggctcatctcgtacagtaaatacatgcgtgctctggatgacttctacgacaagaatttcccagagtttgtcccactgcgtacaaaggtgaaggagattttgcaggaggaagaagacctgtctgaaattgtgcagttggtcggtaaagcttcattggcagaaactgacaagatcacacttgaggttgccaaactattaaaggatgatttcctgcaacagaacagctattcaccatatgaccgtttctgcccattctacaagacagtaggaatgctgaaaaatatgattgctttctacgatatgtctcggcatgcagttgaatctactgctcagagcgagaacaagatcacttggaatgttattagagattctatgggcaatattctgtatcagctttcctccatgaaattcaaggatccagtcaaggatggagaagcgaagatcaaggcagactttgagcagcttcatgaagacattcagcaagccttcaggaacctggaggattaa
LmV-ATPase-A SEQ ID NO:2
MTSTLIKTSDEDRESKFGFVFAVSGPVVTAERMAGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEDTSGVTVGDPVLRTGKPLSVELGPGIMGSIFDGIQRPLKDINELSNSIYIPKGVNVPALSRTAQWDFSPVSVKVGSHITGGDLYGLVHENTLVKHKLLLPPRAKGTVTYIAEPGNYTVDDVVLETEFDGERSKFTMLQVWPVRQPRPVTEKLPANYPLLTGQRVLDSLFPCVQGGTTAIPGAFGCGKTVISQSLSKYSNSDVIIYVGCGERGNEMSEVLRDFPELSVEIDGVTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMADSTSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPDREGSVSIVGAVSPPGGDFSDPVTTATLGIVQVFWGLDKKLAQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSYSPYDRFCPFYKTVGMLKNMIAFYDMSRHAVESTAQSENKITWNVIRDSMGNILYQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLED
LmV-ATPase-A SEQ ID NO:3
gcaaacacatcaaacatgcctgtggctgctcgagaagcatctatctacacaggtattacactgtcagaatacttcagggacatgggttacaatgtatccatgatggctgactcaacttcacgatgggccgaagctcttcgagaaatctcaggtcgattggctgaaatgcctgccgacagcggttatcccgcctacctaggtgcacgacttgccagtttctacgagcgtgccggccgtgtgaagtgcttgggtaacccagacagggagggctccgtgagtatagtgggcgccgtgtcgccgcccggtggagacttctcagatcccgtgacgacggccacactaggtatcgtccaggtgttctggggtctcgacaagaaacttgcccagcgaaagcacttcccatccatcaactggctcatctcgtacagtaaatacatgcgtgctctggatgacttctacgacaagaatttcccagagtttgtcccactgcgtacaaaggt
LmV-ATPase-A SEQ ID NO:4
taatacgactcactataggggcaaacacatcaaacatgcc
LmV-ATPase-A SEQ ID NO:5
taatacgactcactatagggacctttgtacgcagtgggac
LmV-ATPase-B SEQ ID NO:6
atgtcgtacaacaaagttataagtccaaatcaggcgaataaagaacatgttttggcagtttcaagagattttatatcccagcctcgtctaacatataaaactgtatctggtgtcaatggaccactagttattctcgacgaagttaagttcccaaagttcgctgaaattgttcagttgaaacttgcagatggaactatcagatcgggccaggtcttggaagtcagtggatctaaagctgttgtccaagtttttgaaggtacatcaggtatagacgccaaaaatacactatgtgaattcacaggagatattctgcggacaccagtgtcagaggatatgttgggcagagtattcaatgggagtgggaaacccattgacaaaggcccacctattttggctgaagattatcttgatattcagggtcaacctattaacccatggtctcgtatatatccggaagaaatgatccagacaggtatatctgccattgatgtgatgaattccattgcccgtgggcaaaagattccaatcttctctgctgctggcttgccacacaatgaaattgctgctcagatctgccgtcaagcaggacttgttaagcttccaggaaagtcagttttggatgatcatgaggataattttgctatcgtatttgcagctatgggtgttaacatggagacagctcgtttcttcaagcaggactttgaggaaaatggttctatggaaaacgtgtgtctgttcttgaacttggccaatgatccaaccattgaacgtatcatcacaccccggcttgcattgacagctgctgaattcctggcatatcaatgtgagaaacacgtattagtcattctcacagacatgagttcatatgctgaggctttgcgagaggtttcagctgctagggaggaagtaccagggcgaagaggattccctggttacatgtacacagatcttgccaccatctatgaaagagctgggagagtggaaggtcgaagtggttccattacacagattcccattctgactatgcccaatgatgacattacacatcctatcccagatctgacaggatacatcacagaaggtcaaatatatgtagaccgtcagttgcacaacaggcaaatatatcctccagtcaatgtattgccatcactcagtcgtctcatgaagtcggccattggtgaaaacatgactcgtaaggaccatgctgatgtatcaaaccagctgtacgcttgttacgctattgggaaagatgtgcaggccatgaaggctgttgttggtgaggaagctcttaccccagatgaccttctgtatctcgaattcctcacaaaatttgagaagaatttcatatctcaaggtaactatgagaaccgtaccgtatttgaatcattggatattggttggcaactgcttcgaattttcccgaaggagatgttgaagaggatcccagcatcaatacttgcagaattctatccacgtgactcaagacaccctcaaactaaatag
LmV-ATPase-B SEQ ID NO:7
MSYNKVISPNQANKEHVLAVSRDFISQPRLTYKTVSGVNGPLVILDEVKFPKFAEIVQLKLADGTIRSGQVLEVSGSKAVVQVFEGTSGIDAKNTLCEFTGDILRTPVSEDMLGRVFNGSGKPIDKGPPILAEDYLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAAGLPHNEIAAQICRQAGLVKLPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLALTAAEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRSGSITQIPILTMPNDDITHPIPDLTGYITEGQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGENMTRKDHADVSNQLYACYAIGKDVQAMKAVVGEEALTPDDLLYLEFLTKFEKNFISQGNYENRTVFESLDIGWQLLRIFPKEMLKRIPASILAEFYPRDSRHPQTK
LmV-ATPase-B SEQ ID NO:8
tgacagctgctgaattcctggcatatcaatgtgagaaacacgtattagtcattctcacagacatgagttcatatgctgaggctttgcgagaggtttcagctgctagggaggaagtaccagggcgaagaggattccctggttacatgtacacagatcttgccaccatctatgaaagagctgggagagtggaaggtcgaagtggttccattacacagattcccattctgactatgcccaatgatgacattacacatcctatcccagatctgacaggatacatcacagaaggtcaaatatatgtagaccgtcagttgcacaacaggcaaatatatcctccagtcaatgtattgccatcactcagtcgtctcatgaagtcggccattggtgaaaacatgactcgtaaggaccatgctgatgtatcaaaccagctgtacgcttgttacgctattgggaaagatgtgcaggccatgaaggctgttgttggtgag
LmV-ATPase-B SEQ ID NO:9
taatacgactcactatagggtgacagctgctgaattcctg
LmV-ATPase-B SEQ ID NO:10
taatacgactcactatagggctcaccaacaacagccttca
LmV-ATPase-C SEQ ID NO:11
atgacggaatactggctaatatcggctccaggagacaaaacttgccagcaaacatgggaaactttgaataatctgacgagtaaacagaacaatgtatcagtaaactacaaattccatattccagacctaaaggttggtacactggatcagctggttggtttatcagatgatttagggaagctagacagctatgttgaacaagtgaccaggaaggttgcagcctatcttggtgaagtactcgaagaccaaagagacaaactccatgaaaaccttttggcaaacaatagtgatcttcctgggtacatcacacgttttcagtgggatatggcaaaatatcccatcaaacaatctttgcggaacatagctgacattatcagtaaacaagtaggtcagatagatgctgatttaaaaacaaaatctactgcttataataatttgaaaggcaacctgcaaaatctggagaagaagcaaactgggagtctactaacgagaaatctcgctgatttagtgaagaaagagcacttcatattggattctgaataccttactacactattggttattgtaccaaaaatactattcaatgaatggaatcagaactatgagaaaattacagatatgattgtacctcgatcaagccaattgatttaccaggattcggactttggcttgtacactgtgactttgttcaagaaagttgttgatgaatttaaactccatgctcgagagagaaagtttgttgtaagagatttcacttacaatgaggaagaattgttggctgggaaaaatgaaatgacaaaactggttacggacaagaagaaacaatttggcccattagtacgctggctcaaagtcaacttcagtgaatgtttctgtgcatggatacatgttaaagcactgagagtgtttgtggaatctgttctgaggtatggactgcccgtgaacttccaagctatgctgcttcacccacacaaaaaaagtacgaagaggttacgagacctcctgaaccaattatatggtcatctagacagcagtgcctcacaagggctgggtgcacatgatagtgtggagataccaggacttgggtttggccatgctgagtattacccatatgtttattacaaaattaatgttgatatggttgatactaaagtgtaa
LmV-ATPase-C SEQ ID NO:12
MTEYWLISAPGDKTCQQTWETLNNLTSKQNNVSVNYKFHIPDLKVGTLDQLVGLSDDLGKLDSYVEQVTRKVAAYLGEVLEDQRDKLHENLLANNSDLPGYITRFQWDMAKYPIKQSLRNIADIISKQVGQIDADLKTKSTAYNNLKGNLQNLEKKQTGSLLTRNLADLVKKEHFILDSEYLTTLLVIVPKILFNEWNQNYEKITDMIVPRSSQLIYQDSDFGLYTVTLFKKVVDEFKLHARERKFVVRDFTYNEEELLAGKNEMTKLVTDKKKQFGPLVRWLKVNFSECFCAWIHVKALRVFVESVLRYGLPVNFQAMLLHPHKKSTKRLRDLLNQLYGHLDSSASQGLGAHDSVEIPGLGFGHAEYYPYVYYKINVDMVDTKV
LmV-ATPase-C SEQ ID NO:13
aaggcaacctgcaaaatctggagaagaagcaaactgggagtctactaacgagaaatctcgctgatttagtgaagaaagagcacttcatattggattctgaataccttactacactattggttattgtaccaaaaatactattcaatgaatggaatcagaactatgagaaaattacagatatgattgtacctcgatcaagccaattgatttaccaggattcggactttggcttgtacactgtgactttgttcaagaaagttgttgatgaatttaaactccatgctcgagagagaaagtttgttgtaagagatttcacttacaatgaggaagaattgttggctgggaaaaatgaaatgacaaaactggttacggacaagaagaaacaatttggcccattagtacgctggctcaaagtcaacttcagtgaatgtttctgtgcatggatacatgttaaagcactgagagtgtttgtggaatctgttctgaggtatggactgccc
LmV-ATPase-C SEQ ID NO:14
taatacgactcactatagggaaggcaacctgcaaaatctg
LmV-ATPase-C SEQ ID NO:15
taatacgactcactataggggggcagtccatacctcagaa
LmV-ATPase-D SEQ ID NO:16
atgtcgggaaaagacagaattcaaatatttccctcgcgaggtgcgcagatgttaatgaaagctagactaaaaggagcacaaaaaggtcacagtttactgaagaaaaaggcagatgctttgcaaatgcgatttcggcagatactgggcaaaatcatagagactaagacgctcatgggagaagtaatgaaagaagctgctttctcattagctgaagcaaaatttactaccggagatttcaaccaagttgttctgcagaacgtaaatagggcacaagtgaagattcgcacaaagaaggacaatgttgcaggtgttatgttaccagtatttgaaagttatcaagatggttcagacacatatgaactggcaggtttggcaagaggaggacagcagcttgccaaactaaaaaagaactaccagagtgcagtaaagttgttagttgaattagcttctctacagacatcttttgttactcttgacgaggtcatcaaaattaccaatagaagagttaatgcaattgaacatgtaattattccacgcattgaacgtactcttgcctacattatatctgaattggatgaattggagagagaagagttttaccggttgaagaaaattcaagacaagaaacgcatagccagagccaaagccgaggcgaaagcagaagcccagaagcaggccctcctgaaggcgggccaagacgtcacctacaccccgagcctgctcgacgaaggggacgaagacatcttgttctag
LmV-ATPase-D SEQ ID NO:17
MSGKDRIQIFPSRGAQMLMKARLKGAQKGHSLLKKKADALQMRFRQILGKIIETKTLMGEVMKEAAFSLAEAKFTTGDFNQVVLQNVNRAQVKIRTKKDNVAGVMLPVFESYQDGSDTYELAGLARGGQQLAKLKKNYQSAVKLLVELASLQTSFVTLDEVIKITNRRVNAIEHVIIPRIERTLAYIISELDELEREEFYRLKKIQDKKRIARAKAEAKAEAQKQALLKAGQDVTYTPSLLDEGDEDILF
LmV-ATPase-D SEQ ID NO:18
gcgcagatgttaatgaaagctagactaaaaggagcacaaaaaggtcacagtttactgaagaaaaaggcagatgctttgcaaatgcgatttcggcagatactgggcaaaatcatagagactaagacgctcatgggagaagtaatgaaagaagctgctttctcattagctgaagcaaaatttactaccggagatttcaaccaagttgttctgcagaacgtaaatagggcacaagtgaagattcgcacaaagaaggacaatgttgcaggtgttatgttaccagtatttgaaagttatcaagatggttcagacacatatgaactggcaggtttggcaagaggaggacagcagcttgccaaactaaaaaagaactaccagagtgcagtaaagttgttagttgaattagcttctctacagacatcttttgttactcttgacgaggtcatcaaaattaccaatagaagagttaatgcaattgaacatgtaattattccacgcattgaacgtactcttgcctac
LmV-ATPase-D SEQ ID NO:19
taatacgactcactataggggcgcagatgttaatgaaagc
LmV-ATPase-D SEQ ID NO:20
taatacgactcactataggggtaggcaagagtacgttca
LmV-ATPase-E SEQ ID NO:21
atggctctaagcgatgctgatgtccaaaaacagattaagcatatgatggcctttatagatcaagaggcaaatgaaaaggccgaagaaatagatgcaaaagctgaagaagaattcaatattgagaaaggccgattggtgcaacagcaacgtttaaaaataatggaatattatgaaagaaaggaaaaacaagtggaactccagaagaaaattcagtcttcaaacatgctaaaccaagcacgcttaaaagctctgaaagttcgtgaggatcatgtgcgtggtgtacttgaagaggcaagaaagagattgggggagatcacaaaggatcagtctcgatacagccatgttctccatcagttaataatgcaggggctgctgcagctcttggagccgaatgtcactgtaaggacacgtgaagttgaccagcgcattgttgatagcatcttgccagctattacacaaaagtacaaagaaattactggtgggaaggatatctcgctaaaagtggatactgaagccttcttgaacccagaagttactggtggaatagagttgctagcacaaaagggcagaattaaaattgttaatactttggaagcacggctggagctcattgcccagcaacttattcctgagatacgatgtgcattgtttggtcgtaacccaaatcgcaagttcgctgactaa
LmV-ATPase-E SEQ ID NO:22
MALSDADVQKQIKHMMAFIDQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYERKEKQVELQKKIQSSNMLNQARLKALKVREDHVRGVLEEARKRLGEITKDQSRYSHVLHQLIMQGLLQLLEPNVTVRTREVDQRIVDSILPAITQKYKEITGGKDISLKVDTEAFLNPEVTGGIELLAQKGRIKIVNTLEARLELIAQQLIPEIRCALFGRNPNRKFAD
LmV-ATPase-E SEQ ID NO:23
ctaagcgatgctgatgtccaaaaacagattaagcatatgatggcctttatagatcaagaggcaaatgaaaaggccgaagaaatagatgcaaaagctgaagaagaattcaatattgagaaaggccgattggtgcaacagcaacgtttaaaaataatggaatattatgaaagaaaggaaaaacaagtggaactccagaagaaaattcagtcttcaaacatgctaaaccaagcacgcttaaaagctctgaaagttcgtgaggatcatgtgcgtggtgtacttgaagaggcaagaaagagattgggggagatcacaaaggatcagtctcgatacagccatgttctccatcagttaataatgcaggggctgctgcagctcttggagccgaatgtcactgta
LmV-ATPase-E SEQ ID NO:24
taatacgactcactatagggctaagcgatgctgatgtcca
LmV-ATPase-E SEQ ID NO:25
taatacgactcactatagggtacagtgacattcggctcca
LmV-ATPase-F SEQ ID NO:26
atggcattacattcggcttacaaagggaaactcgtctctgtcatcggagatgaggacacctgcgttggctttcttcttggaggagttggagaagtcaataaaagcagacatcccaatttcatggtggtggacaaaaacaccagtgttggtgagatagaagagtgcttcaaaagatttgtgaagagagatgatattgacatcatactgattaaccagaatattgctgagatgattcgacacgtaatcgacagccactcgcagcccgttccgtctgtcctcgagataccgtcaaaggaccatccttatgatgccaccaaagattcgatattacgtagggcaaagggaatgttcaacccagatgacttcaagtaa
LmV-ATPase-F SEQ ID NO:27
MALHSAYKGKLVSVIGDEDTCVGFLLGGVGEVNKSRHPNFMVVDKNTSVGEIEECFKRFVKRDDIDIILINQNIAEMIRHVIDSHSQPVPSVLEIPSKDHPYDATKDSILRRAKGMFNPDDFK
LmV-ATPase-F SEQ ID NO:28
acattcggcttacaaagggaaactcgtctctgtcatcggagatgaggacacctgcgttggctttcttcttggaggagttggagaagtcaataaaagcagacatcccaatttcatggtggtggacaaaaacaccagtgttggtgagatagaagagtgcttcaaaagatttgtgaagagagatgatattgacatcatactgattaaccagaatattgctgagatgattcgacacgtaatcgacagccactcgcagcccgttccgtctgtcctcgagataccgtcaaaggaccatcctta
LmV-ATPase-F SEQ ID NO:29
taatacgactcactatagggacattcggcttacaaaggga
LmV-ATPase-F SEQ ID NO:30
taatacgactcactatagggtaaggatggtcctttgacgg
LmV-ATPase-G SEQ ID NO:31
atggctagccagactcagggaattcaacagcttctagcagctgaaaaaagggcagcagagaaggtttcagaagcaagaaagcgaaaagcacgcaggttgaaacaggccaaagaagaagcccaggaagaaattgaaaaatacagacaagaaagagagaggcagtttaaagagtttgaagcaaagcacatgggctcacgagaggatagggctgcacagattgaagcagaaacaaaagtaaagattgcagaaatggagaaatctgtaaatcagcggaaggaaaagttgatagaaaggattttggaattggtgtacgatatcaagcccgaactccataagaacttcagagctgcaaagtag
LmV-ATPase-G SEQ ID NO:32
MASQTQGIQQLLAAEKRAAEKVSEARKRKARRLKQAKEEAQEEIEKYRQERERQFKEFEAKHMGSREDRAAQIEAETKVKIAEMEKSVNQRKEKLIERILELVYDIKPELHKNFRAAK
LmV-ATPase-G SEQ ID NO:33
aagggcagcagagaaggtttcagaagcaagaaagcgaaaagcacgcaggttgaaacaggccaaagaagaagcccaggaagaaattgaaaaatacagacaagaaagagagaggcagtttaaagagtttgaagcaaagcacatgggctcacgagaggatagggctgcacagattgaagcagaaacaaaagtaaagattgcagaaatggagaaatctgtaaatcagcggaaggaaaagttgat
LmV-ATPase-G SEQ ID NO:34
taatacgactcactatagggaagggcagcagagaaggttt
LmV-ATPase-G SEQ ID NO:35
taatacgactcactatagggatcaacttttccttccgctg
Sequence listing
<110> university of Shanxi
V-ATPase-V1 structural domain gene of <120> migratory locust and application of dsRNA thereof in pest control
<160> 35
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1848
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 1
atgacgagca cattgataaa gacgtccgat gaggaccggg agtccaaatt cggctttgtt 60
tttgccgtat ctggacctgt ggtgacagct gaacgaatgg ccggttctgc tatgtacgaa 120
ctggtgcgtg tcggttatta tgaactggtc ggagagatca tccggttgga gggtgacatg 180
gcaacaatcc aagtatacga agacacctca ggtgtgacag taggcgatcc cgtgctgcgc 240
acaggcaagc cgctgtccgt ggaactggga cccggaatca tgggcagcat cttcgacggt 300
atccagcgac cgctgaagga tatcaatgaa ctgtcaaata gtatctacat cccgaaaggt 360
gtcaatgtgc ctgccctgag tcgcactgca cagtgggact tcagtcccgt cagtgtcaag 420
gttggaagcc acattactgg tggtgacctg tacggtttgg tccacgaaaa tactctggtg 480
aaacacaagt tgctgctgcc gccccgtgcc aagggaactg tcacgtacat tgcagaacct 540
ggaaactaca cagttgatga tgttgtcctg gagacagaat ttgacggcga gcgatcaaag 600
ttcaccatgc tgcaagtgtg gcctgtacgt cagcccaggc ctgttacaga aaagttgcca 660
gctaactacc ccctccttac tggccagcgt gtgctcgact ccctattccc gtgtgtccag 720
ggtggaacaa cagctattcc tggggccttc ggatgtggca agactgtaat atcacagtct 780
ttgtcaaaat actcaaactc cgatgtaatt atctatgtag gttgtggtga gcgaggtaat 840
gaaatgtcag aagtactcag ggatttcccc gagttgtcgg tggagattga tggtgtgact 900
gaatcaatca tgaagagaac agccctggtc gcaaacacat caaacatgcc tgtggctgct 960
cgagaagcat ctatctacac aggtattaca ctgtcagaat acttcaggga catgggttac 1020
aatgtatcca tgatggctga ctcaacttca cgatgggccg aagctcttcg agaaatctca 1080
ggtcgattgg ctgaaatgcc tgccgacagc ggttatcccg cctacctagg tgcacgactt 1140
gccagtttct acgagcgtgc cggccgtgtg aagtgcttgg gtaacccaga cagggagggc 1200
tccgtgagta tagtgggcgc cgtgtcgccg cccggtggag acttctcaga tcccgtgacg 1260
acggccacac taggtatcgt ccaggtgttc tggggtctcg acaagaaact tgcccagcga 1320
aagcacttcc catccatcaa ctggctcatc tcgtacagta aatacatgcg tgctctggat 1380
gacttctacg acaagaattt cccagagttt gtcccactgc gtacaaaggt gaaggagatt 1440
ttgcaggagg aagaagacct gtctgaaatt gtgcagttgg tcggtaaagc ttcattggca 1500
gaaactgaca agatcacact tgaggttgcc aaactattaa aggatgattt cctgcaacag 1560
aacagctatt caccatatga ccgtttctgc ccattctaca agacagtagg aatgctgaaa 1620
aatatgattg ctttctacga tatgtctcgg catgcagttg aatctactgc tcagagcgag 1680
aacaagatca cttggaatgt tattagagat tctatgggca atattctgta tcagctttcc 1740
tccatgaaat tcaaggatcc agtcaaggat ggagaagcga agatcaaggc agactttgag 1800
cagcttcatg aagacattca gcaagccttc aggaacctgg aggattaa 1848
<210> 2
<211> 615
<212> PRT
<213> migratory locust (Locusa migratoria)
<400> 2
Met Thr Ser Thr Leu Ile Lys Thr Ser Asp Glu Asp Arg Glu Ser Lys
1 5 10 15
Phe Gly Phe Val Phe Ala Val Ser Gly Pro Val Val Thr Ala Glu Arg
20 25 30
Met Ala Gly Ser Ala Met Tyr Glu Leu Val Arg Val Gly Tyr Tyr Glu
35 40 45
Leu Val Gly Glu Ile Ile Arg Leu Glu Gly Asp Met Ala Thr Ile Gln
50 55 60
Val Tyr Glu Asp Thr Ser Gly Val Thr Val Gly Asp Pro Val Leu Arg
65 70 75 80
Thr Gly Lys Pro Leu Ser Val Glu Leu Gly Pro Gly Ile Met Gly Ser
85 90 95
Ile Phe Asp Gly Ile Gln Arg Pro Leu Lys Asp Ile Asn Glu Leu Ser
100 105 110
Asn Ser Ile Tyr Ile Pro Lys Gly Val Asn Val Pro Ala Leu Ser Arg
115 120 125
Thr Ala Gln Trp Asp Phe Ser Pro Val Ser Val Lys Val Gly Ser His
130 135 140
Ile Thr Gly Gly Asp Leu Tyr Gly Leu Val His Glu Asn Thr Leu Val
145 150 155 160
Lys His Lys Leu Leu Leu Pro Pro Arg Ala Lys Gly Thr Val Thr Tyr
165 170 175
Ile Ala Glu Pro Gly Asn Tyr Thr Val Asp Asp Val Val Leu Glu Thr
180 185 190
Glu Phe Asp Gly Glu Arg Ser Lys Phe Thr Met Leu Gln Val Trp Pro
195 200 205
Val Arg Gln Pro Arg Pro Val Thr Glu Lys Leu Pro Ala Asn Tyr Pro
210 215 220
Leu Leu Thr Gly Gln Arg Val Leu Asp Ser Leu Phe Pro Cys Val Gln
225 230 235 240
Gly Gly Thr Thr Ala Ile Pro Gly Ala Phe Gly Cys Gly Lys Thr Val
245 250 255
Ile Ser Gln Ser Leu Ser Lys Tyr Ser Asn Ser Asp Val Ile Ile Tyr
260 265 270
Val Gly Cys Gly Glu Arg Gly Asn Glu Met Ser Glu Val Leu Arg Asp
275 280 285
Phe Pro Glu Leu Ser Val Glu Ile Asp Gly Val Thr Glu Ser Ile Met
290 295 300
Lys Arg Thr Ala Leu Val Ala Asn Thr Ser Asn Met Pro Val Ala Ala
305 310 315 320
Arg Glu Ala Ser Ile Tyr Thr Gly Ile Thr Leu Ser Glu Tyr Phe Arg
325 330 335
Asp Met Gly Tyr Asn Val Ser Met Met Ala Asp Ser Thr Ser Arg Trp
340 345 350
Ala Glu Ala Leu Arg Glu Ile Ser Gly Arg Leu Ala Glu Met Pro Ala
355 360 365
Asp Ser Gly Tyr Pro Ala Tyr Leu Gly Ala Arg Leu Ala Ser Phe Tyr
370 375 380
Glu Arg Ala Gly Arg Val Lys Cys Leu Gly Asn Pro Asp Arg Glu Gly
385 390 395 400
Ser Val Ser Ile Val Gly Ala Val Ser Pro Pro Gly Gly Asp Phe Ser
405 410 415
Asp Pro Val Thr Thr Ala Thr Leu Gly Ile Val Gln Val Phe Trp Gly
420 425 430
Leu Asp Lys Lys Leu Ala Gln Arg Lys His Phe Pro Ser Ile Asn Trp
435 440 445
Leu Ile Ser Tyr Ser Lys Tyr Met Arg Ala Leu Asp Asp Phe Tyr Asp
450 455 460
Lys Asn Phe Pro Glu Phe Val Pro Leu Arg Thr Lys Val Lys Glu Ile
465 470 475 480
Leu Gln Glu Glu Glu Asp Leu Ser Glu Ile Val Gln Leu Val Gly Lys
485 490 495
Ala Ser Leu Ala Glu Thr Asp Lys Ile Thr Leu Glu Val Ala Lys Leu
500 505 510
Leu Lys Asp Asp Phe Leu Gln Gln Asn Ser Tyr Ser Pro Tyr Asp Arg
515 520 525
Phe Cys Pro Phe Tyr Lys Thr Val Gly Met Leu Lys Asn Met Ile Ala
530 535 540
Phe Tyr Asp Met Ser Arg His Ala Val Glu Ser Thr Ala Gln Ser Glu
545 550 555 560
Asn Lys Ile Thr Trp Asn Val Ile Arg Asp Ser Met Gly Asn Ile Leu
565 570 575
Tyr Gln Leu Ser Ser Met Lys Phe Lys Asp Pro Val Lys Asp Gly Glu
580 585 590
Ala Lys Ile Lys Ala Asp Phe Glu Gln Leu His Glu Asp Ile Gln Gln
595 600 605
Ala Phe Arg Asn Leu Glu Asp
610 615
<210> 3
<211> 500
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 3
gcaaacacat caaacatgcc tgtggctgct cgagaagcat ctatctacac aggtattaca 60
ctgtcagaat acttcaggga catgggttac aatgtatcca tgatggctga ctcaacttca 120
cgatgggccg aagctcttcg agaaatctca ggtcgattgg ctgaaatgcc tgccgacagc 180
ggttatcccg cctacctagg tgcacgactt gccagtttct acgagcgtgc cggccgtgtg 240
aagtgcttgg gtaacccaga cagggagggc tccgtgagta tagtgggcgc cgtgtcgccg 300
cccggtggag acttctcaga tcccgtgacg acggccacac taggtatcgt ccaggtgttc 360
tggggtctcg acaagaaact tgcccagcga aagcacttcc catccatcaa ctggctcatc 420
tcgtacagta aatacatgcg tgctctggat gacttctacg acaagaattt cccagagttt 480
gtcccactgc gtacaaaggt 500
<210> 4
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 4
taatacgact cactataggg gcaaacacat caaacatgcc 40
<210> 5
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 5
taatacgact cactataggg acctttgtac gcagtgggac 40
<210> 6
<211> 1503
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 6
atgtcgtaca acaaagttat aagtccaaat caggcgaata aagaacatgt tttggcagtt 60
tcaagagatt ttatatccca gcctcgtcta acatataaaa ctgtatctgg tgtcaatgga 120
ccactagtta ttctcgacga agttaagttc ccaaagttcg ctgaaattgt tcagttgaaa 180
cttgcagatg gaactatcag atcgggccag gtcttggaag tcagtggatc taaagctgtt 240
gtccaagttt ttgaaggtac atcaggtata gacgccaaaa atacactatg tgaattcaca 300
ggagatattc tgcggacacc agtgtcagag gatatgttgg gcagagtatt caatgggagt 360
gggaaaccca ttgacaaagg cccacctatt ttggctgaag attatcttga tattcagggt 420
caacctatta acccatggtc tcgtatatat ccggaagaaa tgatccagac aggtatatct 480
gccattgatg tgatgaattc cattgcccgt gggcaaaaga ttccaatctt ctctgctgct 540
ggcttgccac acaatgaaat tgctgctcag atctgccgtc aagcaggact tgttaagctt 600
ccaggaaagt cagttttgga tgatcatgag gataattttg ctatcgtatt tgcagctatg 660
ggtgttaaca tggagacagc tcgtttcttc aagcaggact ttgaggaaaa tggttctatg 720
gaaaacgtgt gtctgttctt gaacttggcc aatgatccaa ccattgaacg tatcatcaca 780
ccccggcttg cattgacagc tgctgaattc ctggcatatc aatgtgagaa acacgtatta 840
gtcattctca cagacatgag ttcatatgct gaggctttgc gagaggtttc agctgctagg 900
gaggaagtac cagggcgaag aggattccct ggttacatgt acacagatct tgccaccatc 960
tatgaaagag ctgggagagt ggaaggtcga agtggttcca ttacacagat tcccattctg 1020
actatgccca atgatgacat tacacatcct atcccagatc tgacaggata catcacagaa 1080
ggtcaaatat atgtagaccg tcagttgcac aacaggcaaa tatatcctcc agtcaatgta 1140
ttgccatcac tcagtcgtct catgaagtcg gccattggtg aaaacatgac tcgtaaggac 1200
catgctgatg tatcaaacca gctgtacgct tgttacgcta ttgggaaaga tgtgcaggcc 1260
atgaaggctg ttgttggtga ggaagctctt accccagatg accttctgta tctcgaattc 1320
ctcacaaaat ttgagaagaa tttcatatct caaggtaact atgagaaccg taccgtattt 1380
gaatcattgg atattggttg gcaactgctt cgaattttcc cgaaggagat gttgaagagg 1440
atcccagcat caatacttgc agaattctat ccacgtgact caagacaccc tcaaactaaa 1500
tag 1503
<210> 7
<211> 500
<212> PRT
<213> migratory locust (Locusa migratoria)
<400> 7
Met Ser Tyr Asn Lys Val Ile Ser Pro Asn Gln Ala Asn Lys Glu His
1 5 10 15
Val Leu Ala Val Ser Arg Asp Phe Ile Ser Gln Pro Arg Leu Thr Tyr
20 25 30
Lys Thr Val Ser Gly Val Asn Gly Pro Leu Val Ile Leu Asp Glu Val
35 40 45
Lys Phe Pro Lys Phe Ala Glu Ile Val Gln Leu Lys Leu Ala Asp Gly
50 55 60
Thr Ile Arg Ser Gly Gln Val Leu Glu Val Ser Gly Ser Lys Ala Val
65 70 75 80
Val Gln Val Phe Glu Gly Thr Ser Gly Ile Asp Ala Lys Asn Thr Leu
85 90 95
Cys Glu Phe Thr Gly Asp Ile Leu Arg Thr Pro Val Ser Glu Asp Met
100 105 110
Leu Gly Arg Val Phe Asn Gly Ser Gly Lys Pro Ile Asp Lys Gly Pro
115 120 125
Pro Ile Leu Ala Glu Asp Tyr Leu Asp Ile Gln Gly Gln Pro Ile Asn
130 135 140
Pro Trp Ser Arg Ile Tyr Pro Glu Glu Met Ile Gln Thr Gly Ile Ser
145 150 155 160
Ala Ile Asp Val Met Asn Ser Ile Ala Arg Gly Gln Lys Ile Pro Ile
165 170 175
Phe Ser Ala Ala Gly Leu Pro His Asn Glu Ile Ala Ala Gln Ile Cys
180 185 190
Arg Gln Ala Gly Leu Val Lys Leu Pro Gly Lys Ser Val Leu Asp Asp
195 200 205
His Glu Asp Asn Phe Ala Ile Val Phe Ala Ala Met Gly Val Asn Met
210 215 220
Glu Thr Ala Arg Phe Phe Lys Gln Asp Phe Glu Glu Asn Gly Ser Met
225 230 235 240
Glu Asn Val Cys Leu Phe Leu Asn Leu Ala Asn Asp Pro Thr Ile Glu
245 250 255
Arg Ile Ile Thr Pro Arg Leu Ala Leu Thr Ala Ala Glu Phe Leu Ala
260 265 270
Tyr Gln Cys Glu Lys His Val Leu Val Ile Leu Thr Asp Met Ser Ser
275 280 285
Tyr Ala Glu Ala Leu Arg Glu Val Ser Ala Ala Arg Glu Glu Val Pro
290 295 300
Gly Arg Arg Gly Phe Pro Gly Tyr Met Tyr Thr Asp Leu Ala Thr Ile
305 310 315 320
Tyr Glu Arg Ala Gly Arg Val Glu Gly Arg Ser Gly Ser Ile Thr Gln
325 330 335
Ile Pro Ile Leu Thr Met Pro Asn Asp Asp Ile Thr His Pro Ile Pro
340 345 350
Asp Leu Thr Gly Tyr Ile Thr Glu Gly Gln Ile Tyr Val Asp Arg Gln
355 360 365
Leu His Asn Arg Gln Ile Tyr Pro Pro Val Asn Val Leu Pro Ser Leu
370 375 380
Ser Arg Leu Met Lys Ser Ala Ile Gly Glu Asn Met Thr Arg Lys Asp
385 390 395 400
His Ala Asp Val Ser Asn Gln Leu Tyr Ala Cys Tyr Ala Ile Gly Lys
405 410 415
Asp Val Gln Ala Met Lys Ala Val Val Gly Glu Glu Ala Leu Thr Pro
420 425 430
Asp Asp Leu Leu Tyr Leu Glu Phe Leu Thr Lys Phe Glu Lys Asn Phe
435 440 445
Ile Ser Gln Gly Asn Tyr Glu Asn Arg Thr Val Phe Glu Ser Leu Asp
450 455 460
Ile Gly Trp Gln Leu Leu Arg Ile Phe Pro Lys Glu Met Leu Lys Arg
465 470 475 480
Ile Pro Ala Ser Ile Leu Ala Glu Phe Tyr Pro Arg Asp Ser Arg His
485 490 495
Pro Gln Thr Lys
500
<210> 8
<211> 488
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 8
tgacagctgc tgaattcctg gcatatcaat gtgagaaaca cgtattagtc attctcacag 60
acatgagttc atatgctgag gctttgcgag aggtttcagc tgctagggag gaagtaccag 120
ggcgaagagg attccctggt tacatgtaca cagatcttgc caccatctat gaaagagctg 180
ggagagtgga aggtcgaagt ggttccatta cacagattcc cattctgact atgcccaatg 240
atgacattac acatcctatc ccagatctga caggatacat cacagaaggt caaatatatg 300
tagaccgtca gttgcacaac aggcaaatat atcctccagt caatgtattg ccatcactca 360
gtcgtctcat gaagtcggcc attggtgaaa acatgactcg taaggaccat gctgatgtat 420
caaaccagct gtacgcttgt tacgctattg ggaaagatgt gcaggccatg aaggctgttg 480
ttggtgag 488
<210> 9
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 9
taatacgact cactataggg tgacagctgc tgaattcctg 40
<210> 10
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 10
taatacgact cactataggg ctcaccaaca acagccttca 40
<210> 11
<211> 1158
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 11
atgacggaat actggctaat atcggctcca ggagacaaaa cttgccagca aacatgggaa 60
actttgaata atctgacgag taaacagaac aatgtatcag taaactacaa attccatatt 120
ccagacctaa aggttggtac actggatcag ctggttggtt tatcagatga tttagggaag 180
ctagacagct atgttgaaca agtgaccagg aaggttgcag cctatcttgg tgaagtactc 240
gaagaccaaa gagacaaact ccatgaaaac cttttggcaa acaatagtga tcttcctggg 300
tacatcacac gttttcagtg ggatatggca aaatatccca tcaaacaatc tttgcggaac 360
atagctgaca ttatcagtaa acaagtaggt cagatagatg ctgatttaaa aacaaaatct 420
actgcttata ataatttgaa aggcaacctg caaaatctgg agaagaagca aactgggagt 480
ctactaacga gaaatctcgc tgatttagtg aagaaagagc acttcatatt ggattctgaa 540
taccttacta cactattggt tattgtacca aaaatactat tcaatgaatg gaatcagaac 600
tatgagaaaa ttacagatat gattgtacct cgatcaagcc aattgattta ccaggattcg 660
gactttggct tgtacactgt gactttgttc aagaaagttg ttgatgaatt taaactccat 720
gctcgagaga gaaagtttgt tgtaagagat ttcacttaca atgaggaaga attgttggct 780
gggaaaaatg aaatgacaaa actggttacg gacaagaaga aacaatttgg cccattagta 840
cgctggctca aagtcaactt cagtgaatgt ttctgtgcat ggatacatgt taaagcactg 900
agagtgtttg tggaatctgt tctgaggtat ggactgcccg tgaacttcca agctatgctg 960
cttcacccac acaaaaaaag tacgaagagg ttacgagacc tcctgaacca attatatggt 1020
catctagaca gcagtgcctc acaagggctg ggtgcacatg atagtgtgga gataccagga 1080
cttgggtttg gccatgctga gtattaccca tatgtttatt acaaaattaa tgttgatatg 1140
gttgatacta aagtgtaa 1158
<210> 12
<211> 385
<212> PRT
<213> migratory locust (Locusa migratoria)
<400> 12
Met Thr Glu Tyr Trp Leu Ile Ser Ala Pro Gly Asp Lys Thr Cys Gln
1 5 10 15
Gln Thr Trp Glu Thr Leu Asn Asn Leu Thr Ser Lys Gln Asn Asn Val
20 25 30
Ser Val Asn Tyr Lys Phe His Ile Pro Asp Leu Lys Val Gly Thr Leu
35 40 45
Asp Gln Leu Val Gly Leu Ser Asp Asp Leu Gly Lys Leu Asp Ser Tyr
50 55 60
Val Glu Gln Val Thr Arg Lys Val Ala Ala Tyr Leu Gly Glu Val Leu
65 70 75 80
Glu Asp Gln Arg Asp Lys Leu His Glu Asn Leu Leu Ala Asn Asn Ser
85 90 95
Asp Leu Pro Gly Tyr Ile Thr Arg Phe Gln Trp Asp Met Ala Lys Tyr
100 105 110
Pro Ile Lys Gln Ser Leu Arg Asn Ile Ala Asp Ile Ile Ser Lys Gln
115 120 125
Val Gly Gln Ile Asp Ala Asp Leu Lys Thr Lys Ser Thr Ala Tyr Asn
130 135 140
Asn Leu Lys Gly Asn Leu Gln Asn Leu Glu Lys Lys Gln Thr Gly Ser
145 150 155 160
Leu Leu Thr Arg Asn Leu Ala Asp Leu Val Lys Lys Glu His Phe Ile
165 170 175
Leu Asp Ser Glu Tyr Leu Thr Thr Leu Leu Val Ile Val Pro Lys Ile
180 185 190
Leu Phe Asn Glu Trp Asn Gln Asn Tyr Glu Lys Ile Thr Asp Met Ile
195 200 205
Val Pro Arg Ser Ser Gln Leu Ile Tyr Gln Asp Ser Asp Phe Gly Leu
210 215 220
Tyr Thr Val Thr Leu Phe Lys Lys Val Val Asp Glu Phe Lys Leu His
225 230 235 240
Ala Arg Glu Arg Lys Phe Val Val Arg Asp Phe Thr Tyr Asn Glu Glu
245 250 255
Glu Leu Leu Ala Gly Lys Asn Glu Met Thr Lys Leu Val Thr Asp Lys
260 265 270
Lys Lys Gln Phe Gly Pro Leu Val Arg Trp Leu Lys Val Asn Phe Ser
275 280 285
Glu Cys Phe Cys Ala Trp Ile His Val Lys Ala Leu Arg Val Phe Val
290 295 300
Glu Ser Val Leu Arg Tyr Gly Leu Pro Val Asn Phe Gln Ala Met Leu
305 310 315 320
Leu His Pro His Lys Lys Ser Thr Lys Arg Leu Arg Asp Leu Leu Asn
325 330 335
Gln Leu Tyr Gly His Leu Asp Ser Ser Ala Ser Gln Gly Leu Gly Ala
340 345 350
His Asp Ser Val Glu Ile Pro Gly Leu Gly Phe Gly His Ala Glu Tyr
355 360 365
Tyr Pro Tyr Val Tyr Tyr Lys Ile Asn Val Asp Met Val Asp Thr Lys
370 375 380
Val
385
<210> 13
<211> 500
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 13
aaggcaacct gcaaaatctg gagaagaagc aaactgggag tctactaacg agaaatctcg 60
ctgatttagt gaagaaagag cacttcatat tggattctga ataccttact acactattgg 120
ttattgtacc aaaaatacta ttcaatgaat ggaatcagaa ctatgagaaa attacagata 180
tgattgtacc tcgatcaagc caattgattt accaggattc ggactttggc ttgtacactg 240
tgactttgtt caagaaagtt gttgatgaat ttaaactcca tgctcgagag agaaagtttg 300
ttgtaagaga tttcacttac aatgaggaag aattgttggc tgggaaaaat gaaatgacaa 360
aactggttac ggacaagaag aaacaatttg gcccattagt acgctggctc aaagtcaact 420
tcagtgaatg tttctgtgca tggatacatg ttaaagcact gagagtgttt gtggaatctg 480
ttctgaggta tggactgccc 500
<210> 14
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 14
taatacgact cactataggg aaggcaacct gcaaaatctg 40
<210> 15
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 15
taatacgact cactataggg gggcagtcca tacctcagaa 40
<210> 16
<211> 753
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 16
atgtcgggaa aagacagaat tcaaatattt ccctcgcgag gtgcgcagat gttaatgaaa 60
gctagactaa aaggagcaca aaaaggtcac agtttactga agaaaaaggc agatgctttg 120
caaatgcgat ttcggcagat actgggcaaa atcatagaga ctaagacgct catgggagaa 180
gtaatgaaag aagctgcttt ctcattagct gaagcaaaat ttactaccgg agatttcaac 240
caagttgttc tgcagaacgt aaatagggca caagtgaaga ttcgcacaaa gaaggacaat 300
gttgcaggtg ttatgttacc agtatttgaa agttatcaag atggttcaga cacatatgaa 360
ctggcaggtt tggcaagagg aggacagcag cttgccaaac taaaaaagaa ctaccagagt 420
gcagtaaagt tgttagttga attagcttct ctacagacat cttttgttac tcttgacgag 480
gtcatcaaaa ttaccaatag aagagttaat gcaattgaac atgtaattat tccacgcatt 540
gaacgtactc ttgcctacat tatatctgaa ttggatgaat tggagagaga agagttttac 600
cggttgaaga aaattcaaga caagaaacgc atagccagag ccaaagccga ggcgaaagca 660
gaagcccaga agcaggccct cctgaaggcg ggccaagacg tcacctacac cccgagcctg 720
ctcgacgaag gggacgaaga catcttgttc tag 753
<210> 17
<211> 250
<212> PRT
<213> migratory locust (Locusa migratoria)
<400> 17
Met Ser Gly Lys Asp Arg Ile Gln Ile Phe Pro Ser Arg Gly Ala Gln
1 5 10 15
Met Leu Met Lys Ala Arg Leu Lys Gly Ala Gln Lys Gly His Ser Leu
20 25 30
Leu Lys Lys Lys Ala Asp Ala Leu Gln Met Arg Phe Arg Gln Ile Leu
35 40 45
Gly Lys Ile Ile Glu Thr Lys Thr Leu Met Gly Glu Val Met Lys Glu
50 55 60
Ala Ala Phe Ser Leu Ala Glu Ala Lys Phe Thr Thr Gly Asp Phe Asn
65 70 75 80
Gln Val Val Leu Gln Asn Val Asn Arg Ala Gln Val Lys Ile Arg Thr
85 90 95
Lys Lys Asp Asn Val Ala Gly Val Met Leu Pro Val Phe Glu Ser Tyr
100 105 110
Gln Asp Gly Ser Asp Thr Tyr Glu Leu Ala Gly Leu Ala Arg Gly Gly
115 120 125
Gln Gln Leu Ala Lys Leu Lys Lys Asn Tyr Gln Ser Ala Val Lys Leu
130 135 140
Leu Val Glu Leu Ala Ser Leu Gln Thr Ser Phe Val Thr Leu Asp Glu
145 150 155 160
Val Ile Lys Ile Thr Asn Arg Arg Val Asn Ala Ile Glu His Val Ile
165 170 175
Ile Pro Arg Ile Glu Arg Thr Leu Ala Tyr Ile Ile Ser Glu Leu Asp
180 185 190
Glu Leu Glu Arg Glu Glu Phe Tyr Arg Leu Lys Lys Ile Gln Asp Lys
195 200 205
Lys Arg Ile Ala Arg Ala Lys Ala Glu Ala Lys Ala Glu Ala Gln Lys
210 215 220
Gln Ala Leu Leu Lys Ala Gly Gln Asp Val Thr Tyr Thr Pro Ser Leu
225 230 235 240
Leu Asp Glu Gly Asp Glu Asp Ile Leu Phe
245 250
<210> 18
<211> 516
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 18
gcgcagatgt taatgaaagc tagactaaaa ggagcacaaa aaggtcacag tttactgaag 60
aaaaaggcag atgctttgca aatgcgattt cggcagatac tgggcaaaat catagagact 120
aagacgctca tgggagaagt aatgaaagaa gctgctttct cattagctga agcaaaattt 180
actaccggag atttcaacca agttgttctg cagaacgtaa atagggcaca agtgaagatt 240
cgcacaaaga aggacaatgt tgcaggtgtt atgttaccag tatttgaaag ttatcaagat 300
ggttcagaca catatgaact ggcaggtttg gcaagaggag gacagcagct tgccaaacta 360
aaaaagaact accagagtgc agtaaagttg ttagttgaat tagcttctct acagacatct 420
tttgttactc ttgacgaggt catcaaaatt accaatagaa gagttaatgc aattgaacat 480
gtaattattc cacgcattga acgtactctt gcctac 516
<210> 19
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 19
taatacgact cactataggg gcgcagatgt taatgaaagc 40
<210> 20
<211> 39
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 20
taatacgact cactataggg gtaggcaaga gtacgttca 39
<210> 21
<211> 684
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 21
atggctctaa gcgatgctga tgtccaaaaa cagattaagc atatgatggc ctttatagat 60
caagaggcaa atgaaaaggc cgaagaaata gatgcaaaag ctgaagaaga attcaatatt 120
gagaaaggcc gattggtgca acagcaacgt ttaaaaataa tggaatatta tgaaagaaag 180
gaaaaacaag tggaactcca gaagaaaatt cagtcttcaa acatgctaaa ccaagcacgc 240
ttaaaagctc tgaaagttcg tgaggatcat gtgcgtggtg tacttgaaga ggcaagaaag 300
agattggggg agatcacaaa ggatcagtct cgatacagcc atgttctcca tcagttaata 360
atgcaggggc tgctgcagct cttggagccg aatgtcactg taaggacacg tgaagttgac 420
cagcgcattg ttgatagcat cttgccagct attacacaaa agtacaaaga aattactggt 480
gggaaggata tctcgctaaa agtggatact gaagccttct tgaacccaga agttactggt 540
ggaatagagt tgctagcaca aaagggcaga attaaaattg ttaatacttt ggaagcacgg 600
ctggagctca ttgcccagca acttattcct gagatacgat gtgcattgtt tggtcgtaac 660
ccaaatcgca agttcgctga ctaa 684
<210> 22
<211> 227
<212> PRT
<213> migratory locust (Locusa migratoria)
<400> 22
Met Ala Leu Ser Asp Ala Asp Val Gln Lys Gln Ile Lys His Met Met
1 5 10 15
Ala Phe Ile Asp Gln Glu Ala Asn Glu Lys Ala Glu Glu Ile Asp Ala
20 25 30
Lys Ala Glu Glu Glu Phe Asn Ile Glu Lys Gly Arg Leu Val Gln Gln
35 40 45
Gln Arg Leu Lys Ile Met Glu Tyr Tyr Glu Arg Lys Glu Lys Gln Val
50 55 60
Glu Leu Gln Lys Lys Ile Gln Ser Ser Asn Met Leu Asn Gln Ala Arg
65 70 75 80
Leu Lys Ala Leu Lys Val Arg Glu Asp His Val Arg Gly Val Leu Glu
85 90 95
Glu Ala Arg Lys Arg Leu Gly Glu Ile Thr Lys Asp Gln Ser Arg Tyr
100 105 110
Ser His Val Leu His Gln Leu Ile Met Gln Gly Leu Leu Gln Leu Leu
115 120 125
Glu Pro Asn Val Thr Val Arg Thr Arg Glu Val Asp Gln Arg Ile Val
130 135 140
Asp Ser Ile Leu Pro Ala Ile Thr Gln Lys Tyr Lys Glu Ile Thr Gly
145 150 155 160
Gly Lys Asp Ile Ser Leu Lys Val Asp Thr Glu Ala Phe Leu Asn Pro
165 170 175
Glu Val Thr Gly Gly Ile Glu Leu Leu Ala Gln Lys Gly Arg Ile Lys
180 185 190
Ile Val Asn Thr Leu Glu Ala Arg Leu Glu Leu Ile Ala Gln Gln Leu
195 200 205
Ile Pro Glu Ile Arg Cys Ala Leu Phe Gly Arg Asn Pro Asn Arg Lys
210 215 220
Phe Ala Asp
225
<210> 23
<211> 396
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 23
ctaagcgatg ctgatgtcca aaaacagatt aagcatatga tggcctttat agatcaagag 60
gcaaatgaaa aggccgaaga aatagatgca aaagctgaag aagaattcaa tattgagaaa 120
ggccgattgg tgcaacagca acgtttaaaa ataatggaat attatgaaag aaaggaaaaa 180
caagtggaac tccagaagaa aattcagtct tcaaacatgc taaaccaagc acgcttaaaa 240
gctctgaaag ttcgtgagga tcatgtgcgt ggtgtacttg aagaggcaag aaagagattg 300
ggggagatca caaaggatca gtctcgatac agccatgttc tccatcagtt aataatgcag 360
gggctgctgc agctcttgga gccgaatgtc actgta 396
<210> 24
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 24
taatacgact cactataggg ctaagcgatg ctgatgtcca 40
<210> 25
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 25
taatacgact cactataggg tacagtgaca ttcggctcca 40
<210> 26
<211> 372
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 26
atggcattac attcggctta caaagggaaa ctcgtctctg tcatcggaga tgaggacacc 60
tgcgttggct ttcttcttgg aggagttgga gaagtcaata aaagcagaca tcccaatttc 120
atggtggtgg acaaaaacac cagtgttggt gagatagaag agtgcttcaa aagatttgtg 180
aagagagatg atattgacat catactgatt aaccagaata ttgctgagat gattcgacac 240
gtaatcgaca gccactcgca gcccgttccg tctgtcctcg agataccgtc aaaggaccat 300
ccttatgatg ccaccaaaga ttcgatatta cgtagggcaa agggaatgtt caacccagat 360
gacttcaagt aa 372
<210> 27
<211> 123
<212> PRT
<213> migratory locust (Locusa migratoria)
<400> 27
Met Ala Leu His Ser Ala Tyr Lys Gly Lys Leu Val Ser Val Ile Gly
1 5 10 15
Asp Glu Asp Thr Cys Val Gly Phe Leu Leu Gly Gly Val Gly Glu Val
20 25 30
Asn Lys Ser Arg His Pro Asn Phe Met Val Val Asp Lys Asn Thr Ser
35 40 45
Val Gly Glu Ile Glu Glu Cys Phe Lys Arg Phe Val Lys Arg Asp Asp
50 55 60
Ile Asp Ile Ile Leu Ile Asn Gln Asn Ile Ala Glu Met Ile Arg His
65 70 75 80
Val Ile Asp Ser His Ser Gln Pro Val Pro Ser Val Leu Glu Ile Pro
85 90 95
Ser Lys Asp His Pro Tyr Asp Ala Thr Lys Asp Ser Ile Leu Arg Arg
100 105 110
Ala Lys Gly Met Phe Asn Pro Asp Asp Phe Lys
115 120
<210> 28
<211> 297
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 28
acattcggct tacaaaggga aactcgtctc tgtcatcgga gatgaggaca cctgcgttgg 60
ctttcttctt ggaggagttg gagaagtcaa taaaagcaga catcccaatt tcatggtggt 120
ggacaaaaac accagtgttg gtgagataga agagtgcttc aaaagatttg tgaagagaga 180
tgatattgac atcatactga ttaaccagaa tattgctgag atgattcgac acgtaatcga 240
cagccactcg cagcccgttc cgtctgtcct cgagataccg tcaaaggacc atcctta 297
<210> 29
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 29
taatacgact cactataggg acattcggct tacaaaggga 40
<210> 30
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 30
taatacgact cactataggg taaggatggt cctttgacgg 40
<210> 31
<211> 357
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 31
atggctagcc agactcaggg aattcaacag cttctagcag ctgaaaaaag ggcagcagag 60
aaggtttcag aagcaagaaa gcgaaaagca cgcaggttga aacaggccaa agaagaagcc 120
caggaagaaa ttgaaaaata cagacaagaa agagagaggc agtttaaaga gtttgaagca 180
aagcacatgg gctcacgaga ggatagggct gcacagattg aagcagaaac aaaagtaaag 240
attgcagaaa tggagaaatc tgtaaatcag cggaaggaaa agttgataga aaggattttg 300
gaattggtgt acgatatcaa gcccgaactc cataagaact tcagagctgc aaagtag 357
<210> 32
<211> 118
<212> PRT
<213> migratory locust (Locusa migratoria)
<400> 32
Met Ala Ser Gln Thr Gln Gly Ile Gln Gln Leu Leu Ala Ala Glu Lys
1 5 10 15
Arg Ala Ala Glu Lys Val Ser Glu Ala Arg Lys Arg Lys Ala Arg Arg
20 25 30
Leu Lys Gln Ala Lys Glu Glu Ala Gln Glu Glu Ile Glu Lys Tyr Arg
35 40 45
Gln Glu Arg Glu Arg Gln Phe Lys Glu Phe Glu Ala Lys His Met Gly
50 55 60
Ser Arg Glu Asp Arg Ala Ala Gln Ile Glu Ala Glu Thr Lys Val Lys
65 70 75 80
Ile Ala Glu Met Glu Lys Ser Val Asn Gln Arg Lys Glu Lys Leu Ile
85 90 95
Glu Arg Ile Leu Glu Leu Val Tyr Asp Ile Lys Pro Glu Leu His Lys
100 105 110
Asn Phe Arg Ala Ala Lys
115
<210> 33
<211> 240
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 33
aagggcagca gagaaggttt cagaagcaag aaagcgaaaa gcacgcaggt tgaaacaggc 60
caaagaagaa gcccaggaag aaattgaaaa atacagacaa gaaagagaga ggcagtttaa 120
agagtttgaa gcaaagcaca tgggctcacg agaggatagg gctgcacaga ttgaagcaga 180
aacaaaagta aagattgcag aaatggagaa atctgtaaat cagcggaagg aaaagttgat 240
<210> 34
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 34
taatacgact cactataggg aagggcagca gagaaggttt 40
<210> 35
<211> 40
<212> DNA
<213> migratory locust (Locusa migratoria)
<400> 35
taatacgact cactataggg atcaactttt ccttccgctg 40
Claims (5)
1. The locusta migratoria V-ATPase-V1 structural domain gene is characterized in that: the gene comprises the following genes:
the nucleotide sequence of the migratory locust V-ATPase-F gene is SEQ ID NO: 26.
2. the dsRNA of the locusta migratoria V-ATPase-V1 structural domain gene is characterized in that: including the following dsrnas:
the locust migratory V-ATPase-F gene fragment SEQ ID NO: 28 synthetic dsRNA.
3. The synthetic method of dsRNA of locusta migratoria V-ATPase-V1 structural domain gene is characterized in that: the method comprises the following steps of taking the gene SEQ ID NO: 26 as template, upstream primer and downstream primer corresponding to gene, PCR amplifying to obtain DNA template with T7 promoter at two ends, and in vitro transcription synthesizing corresponding dsRNA according to HiScribe ™ T7 High Yield RNA Synthesis Kit.
4. The method for synthesizing dsRNA of locusta migratoria V-ATPase-V1 domain gene according to claim 3, wherein the method comprises the following steps:
the upstream primer and the downstream primer of the migratory locust V-ATPase-F gene are respectively as follows: SEQ ID NO: 29 and SEQ ID NO: 30.
5. the application of dsRNA of locusta migratoria V-ATPase-V1 structural domain gene in pest control is characterized in that: the dsRNA of the V-ATPase-F gene of the migratory locust as the claim 2 is prepared into a spraying pesticide or a bait, or the dsRNA is transferred into a migratory locust feeding plant body to be applied to the control of the migratory locust.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010249056.6A CN111394371B (en) | 2020-03-31 | 2020-03-31 | Migratory locust V-ATPase-V1 structural domain gene and application of dsRNA thereof in pest control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010249056.6A CN111394371B (en) | 2020-03-31 | 2020-03-31 | Migratory locust V-ATPase-V1 structural domain gene and application of dsRNA thereof in pest control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111394371A CN111394371A (en) | 2020-07-10 |
CN111394371B true CN111394371B (en) | 2022-01-28 |
Family
ID=71427732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010249056.6A Active CN111394371B (en) | 2020-03-31 | 2020-03-31 | Migratory locust V-ATPase-V1 structural domain gene and application of dsRNA thereof in pest control |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111394371B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114317568B (en) * | 2021-12-31 | 2023-12-26 | 山西大学 | Method for synthesizing dsRNA of cricket CDA1 and CDA2 genes and application thereof |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101573375A (en) * | 2006-11-17 | 2009-11-04 | 住友化学株式会社 | Agent that modulates physiological condition of pests, involved in insect vesicle-fusing atpase activity |
CN102648283A (en) * | 2009-09-29 | 2012-08-22 | 淡马锡生命科学研究院有限公司 | Control of pests in plants |
CN104312993A (en) * | 2014-10-16 | 2015-01-28 | 西南大学 | Silkworm sodium-potassium ATPase as well as gene and application thereof |
CN104342448A (en) * | 2013-08-08 | 2015-02-11 | 中国农业科学院植物保护研究所 | Helicoverpa armigera V-ATPase A gene cDNA and application thereof |
CN104404042A (en) * | 2014-11-14 | 2015-03-11 | 重庆大学 | Application of Locusta migratoria ATP synthase beta subunit gene and its dsRNA in pest control |
CN104450755A (en) * | 2014-11-14 | 2015-03-25 | 重庆大学 | Oriental migratory locust ATP synthase alpha subunit gene and application of dsRNA of oriental migratory locust ATP synthase alpha subunit gene in pest control |
CN104542694A (en) * | 2010-12-30 | 2015-04-29 | 陶氏益农公司 | Nucleic acid molecules that target the vacuolar atpase c subunit and confer resistance to coleopteran pests |
CN105613568A (en) * | 2014-10-30 | 2016-06-01 | 江苏命码生物科技有限公司 | Biological pesticide using siRNA and taking plant as generator |
CN106318956A (en) * | 2016-09-23 | 2017-01-11 | 中国农业科学院植物保护研究所 | Apolygus lucorum V-ATPase-A gene cDNA (complementary Deoxyribonucleic Acid) and application thereof |
CN106350529A (en) * | 2016-08-31 | 2017-01-25 | 中国农业科学院植物保护研究所 | Apolygus lucorum V-ATPaseE gene and application of apolygus lucorum V-ATPaseE gene to aspect of RNAi (ribonucleic acid interfere)-mediated pest control |
CN106367428A (en) * | 2016-09-23 | 2017-02-01 | 中国农业科学院植物保护研究所 | Lygus lucorum V-ATPase-D gene cDNA and application thereof |
CN109234249A (en) * | 2018-10-11 | 2019-01-18 | 浙江大学 | Small brown rice planthopper lethal gene segment ATPase and its application |
CN109988761A (en) * | 2017-11-07 | 2019-07-09 | 上海交通大学 | A kind of nucleotide sequence and its application in enhancing Genes For Plant Tolerance harmful organism ability |
CN110592117A (en) * | 2019-08-05 | 2019-12-20 | 华南农业大学 | High-lethal gene vATPase B and ladybug-proof application thereof |
-
2020
- 2020-03-31 CN CN202010249056.6A patent/CN111394371B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101573375A (en) * | 2006-11-17 | 2009-11-04 | 住友化学株式会社 | Agent that modulates physiological condition of pests, involved in insect vesicle-fusing atpase activity |
CN102648283A (en) * | 2009-09-29 | 2012-08-22 | 淡马锡生命科学研究院有限公司 | Control of pests in plants |
CN104542694A (en) * | 2010-12-30 | 2015-04-29 | 陶氏益农公司 | Nucleic acid molecules that target the vacuolar atpase c subunit and confer resistance to coleopteran pests |
CN104342448A (en) * | 2013-08-08 | 2015-02-11 | 中国农业科学院植物保护研究所 | Helicoverpa armigera V-ATPase A gene cDNA and application thereof |
CN104312993A (en) * | 2014-10-16 | 2015-01-28 | 西南大学 | Silkworm sodium-potassium ATPase as well as gene and application thereof |
CN105613568A (en) * | 2014-10-30 | 2016-06-01 | 江苏命码生物科技有限公司 | Biological pesticide using siRNA and taking plant as generator |
CN104404042A (en) * | 2014-11-14 | 2015-03-11 | 重庆大学 | Application of Locusta migratoria ATP synthase beta subunit gene and its dsRNA in pest control |
CN104450755A (en) * | 2014-11-14 | 2015-03-25 | 重庆大学 | Oriental migratory locust ATP synthase alpha subunit gene and application of dsRNA of oriental migratory locust ATP synthase alpha subunit gene in pest control |
CN106350529A (en) * | 2016-08-31 | 2017-01-25 | 中国农业科学院植物保护研究所 | Apolygus lucorum V-ATPaseE gene and application of apolygus lucorum V-ATPaseE gene to aspect of RNAi (ribonucleic acid interfere)-mediated pest control |
CN106318956A (en) * | 2016-09-23 | 2017-01-11 | 中国农业科学院植物保护研究所 | Apolygus lucorum V-ATPase-A gene cDNA (complementary Deoxyribonucleic Acid) and application thereof |
CN106367428A (en) * | 2016-09-23 | 2017-02-01 | 中国农业科学院植物保护研究所 | Lygus lucorum V-ATPase-D gene cDNA and application thereof |
CN109988761A (en) * | 2017-11-07 | 2019-07-09 | 上海交通大学 | A kind of nucleotide sequence and its application in enhancing Genes For Plant Tolerance harmful organism ability |
CN109234249A (en) * | 2018-10-11 | 2019-01-18 | 浙江大学 | Small brown rice planthopper lethal gene segment ATPase and its application |
CN110592117A (en) * | 2019-08-05 | 2019-12-20 | 华南农业大学 | High-lethal gene vATPase B and ladybug-proof application thereof |
Non-Patent Citations (7)
Title |
---|
Luo,Y.等.登录号:JN676096.1.《Genbank》.2012, * |
Vacuolar ATPase subunit H is essential for the survival and moulting of Locusta migratoria manilensis;C. Li等;《Insect Molecular Biology》;20121231;第1-9页 * |
V--ATPase H亚基对东亚飞蝗蜕皮和存活的影响;李晨;《中国优秀硕士学位论文全文数据库 农业科技辑》;20130315(第3期);D046-17 * |
东亚飞蝗 Lm-ATP5A 功能分析及其在提高绿僵菌毒力中的作用研究;胡军;《中国博士学位论文全文数据库 农业科技辑》;20160715(第7期);D046-2 * |
李晨.V--ATPase H亚基对东亚飞蝗蜕皮和存活的影响.《中国优秀硕士学位论文全文数据库 农业科技辑》.2013,(第3期), * |
棉铃虫V-ATPase亚基A、B、C和H基因的克隆和表达分析;刘希;《中国优秀硕士学位论文全文数据库 农业科技辑》;20150315(第3期);D046-141 * |
登录号:JN676096.1;Luo,Y.等;《Genbank》;20121231;第1-830位 * |
Also Published As
Publication number | Publication date |
---|---|
CN111394371A (en) | 2020-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3751338T2 (en) | METHOD FOR RENTAL IN PLANTS OF A RESISTANCE TO DISEASES AND PEST AND NEW GENES IN PLANTS THAT ENCODE THEREFOR. | |
CN109504685B (en) | E93 gene and application of dsRNA thereof in pest control | |
CN112662690B (en) | Migratory locust Rab5 gene and application of dsRNA thereof in migratory locust control | |
KR20170002504A (en) | Dre4 nucleic acid molecules that confer resistance to coleopteran pests | |
TW201321511A (en) | Nucleic acid molecules that target RPS6 and confer resistance to coleopteran pests | |
CN114752610B (en) | Application of diaphorina citri ubiquitin conjugated enzyme E2J2 gene in prevention and control of citrus yellow dragon disease | |
CN114957426B (en) | SP6RARS and application thereof in preventing and treating cockroaches | |
TW201321509A (en) | Nucleic acid molecules that target PP1-87B and confer resistance to coleopteran pests | |
CN111944824B (en) | Tachykinin receptor gene of fall webworm, dsRNA and application in preventing and treating fall webworm | |
KR20170101929A (en) | Parental rnai suppression of chromatin remodeling genes to control coleopteran pests | |
TW201321508A (en) | Nucleic acid molecules that target RPA70 and confer resistance to coleopteran pests | |
KR20170013885A (en) | Sec23 nucleic acid molecules that confer resistance to coleopteran and hemipteran pests | |
KR20160093728A (en) | Rnapii-140 nucleic acid molecules that confer resistance to coleopteran pests | |
CN111394371B (en) | Migratory locust V-ATPase-V1 structural domain gene and application of dsRNA thereof in pest control | |
CN114478735A (en) | Aphid high-lethal gene and application thereof in aphid prevention and treatment | |
CN112662689B (en) | Migratory locust Rab11A gene and application of dsRNA thereof in migratory locust control | |
CN111440810B (en) | Migratory locust V-ATPase-V0 structural domain gene and application of dsRNA thereof in pest control | |
KR20170105503A (en) | Parental rnai suppression of kruppel gene to control coleopteran pests | |
CN110184274B (en) | E75 gene and application of dsRNA thereof in pest control | |
CN110172463B (en) | Application of Knickkopf3-5' gene dsRNA of migratory locust in pest control | |
KR20170105504A (en) | Parental rnai suppression of hunchback gene to control coleopteran pests | |
CN110106179B (en) | dsRNA of locusta migratoria fatty acid synthetase gene LmFAS3 as well as preparation method and application thereof | |
CN112695045B (en) | Lepidoptera insect Hpx12 gene and application thereof | |
WO2019001602A1 (en) | Method for the targeted identification of highly-efficient "small interfering rnas" "ernas" for use in plants and other target organisms | |
CN110106177B (en) | dsRNA of locusta migratoria fatty acid elongase gene LmElo as well as preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |