CN111393485B - 一种有机-无机杂化钍多酸盐及其制备方法和应用 - Google Patents

一种有机-无机杂化钍多酸盐及其制备方法和应用 Download PDF

Info

Publication number
CN111393485B
CN111393485B CN202010318434.1A CN202010318434A CN111393485B CN 111393485 B CN111393485 B CN 111393485B CN 202010318434 A CN202010318434 A CN 202010318434A CN 111393485 B CN111393485 B CN 111393485B
Authority
CN
China
Prior art keywords
thorium
organic
inorganic hybrid
polyoxometalate
polyacid salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010318434.1A
Other languages
English (en)
Other versions
CN111393485A (zh
Inventor
蔡斌
孟玉宁
朱蒙恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhoukou Normal University
Original Assignee
Zhoukou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhoukou Normal University filed Critical Zhoukou Normal University
Priority to CN202010318434.1A priority Critical patent/CN111393485B/zh
Publication of CN111393485A publication Critical patent/CN111393485A/zh
Application granted granted Critical
Publication of CN111393485B publication Critical patent/CN111393485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • C07F11/005Compounds containing elements of Groups 6 or 16 of the Periodic Table compounds without a metal-carbon linkage
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/26Organic substances containing nitrogen or phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/39Actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Catalysts (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明公开了一种有机‑无机杂化钍多酸盐,其化学式为{Th(DMSO)6(H2O)[SiW12O40]}·2H2O,其中DMSO为二甲基亚砜,钍多酸盐的分子式为:C12H42O49S6SiThW12,分子量:3629,为单斜晶系,空间群为P21/c,钍多酸盐的晶胞参数为:
Figure DDA0002460414790000011
Figure DDA0002460414790000012
α=90°,β=99.4970(10)°,γ=90°,
Figure DDA0002460414790000013
Z=4。本发明合成的钍多酸盐,具有合成简单、操作方便、催化剂产率高、反应条件温和、降解快速,降解率高等特点,且可以回收,不会造成二次污染。

Description

一种有机-无机杂化钍多酸盐及其制备方法和应用
技术领域
本发明涉及多酸化学新材料技术领域,具体涉及一种有机-无机杂化钍多酸盐及其制备方法和应用。
背景技术
有机磷酸酯(organophosphate,OP)是一类具有磷酸基的一类物质,被广泛用于农药杀虫剂、含磷阻燃剂和化学战剂(chemical-warfare agent,CWA)。因而这些OP有可能由农业或工业废水的排放而释放到环境中,引起土壤和水体的污染。另外,在化学战中的军人,也可能暴露在有机磷神经毒剂的环境中。这些OP在水中的浓度高,毒性大,易致畸和致癌,且对光和热稳定,难降解,这对生态环境和人们的健康都造成强大的威胁。因而,去除有毒的有机磷神经毒剂(这其中包括储备的有机磷神经毒剂毒)和杀虫剂仍然是一个重要和普遍的目标。理想情况下,这可以通过能够将OP物质分离或催化转化为无毒形式的材料来实现。化学战剂分解的主要途径是水解。虽然强碱可以用来水解和破坏这些神经毒剂的大量储存,但是开发绿色、环保、高效的催化剂来降解OP对于治理环境仍然具有重要意义。
传统的OP降解手段主要包括化学方法和生物方法。化学方法处理大量样品时会产生大量废酸、废碱和废水,这有可能造成二次污染。生物酶如细菌的有机磷酸酯二水解酶(organophosphate dihydrolase,OPD)也经常被用来降解OP,但显然,酶的使用条件要严苛得多。近年来也有用金属有机配合物做催化剂的光催化技术来降解OP的,目前只有少量报道(Nat.Mater.2015,14,512-516;Angew.Chem.Inter.Ed.2014,53,497-451)。但这些研究主要的问题是针对OP的水解不彻底,难以实现对底物的深度降解。
多金属氧酸盐简称多酸(POMs),是由前过渡金属离子与氧原子按照一定的结构配位形成的金属-氧簇合物,一般研究的都是它们的盐。因其具有很高的溶解性、热稳定性、酸碱性和氧化还原性等,人们对其产生了浓厚的研究兴趣,花大力气研究其在催化、电化学、光学和药学等方面的应用(Science,2003,300,964-966;Chem.Rev.1998,98,327–358)。近年来,由于其结构可设计、氧化还原电位多样和可调酸碱度等特点,被广泛用做催化材料来降解有机污染物。多酸是一类高度可改性的分子过渡金属氧阴离子,可作为氧化、还原和水解催化剂。它们能够与周期表中的许多元素形成络合物,并且可以作为强路易斯酸性金属离子的配体。一般来说,对于某种金属离子,其半径越小,所带电荷越高,其路易斯酸性越强,因而Zr(IV)和Ce(IV)被认为是对分子金属基路易斯酸催化剂的研究的所有金属离子中最佳的选择。在过去的十年里,不少人研究了POM催化的许多盐的水解,包括多肽和有机磷酸RNA类似物。他们已经证明,路易斯酸性金属中心,包括锆(IV),激活磷氧键和提高磷酸盐水解速度是深度降解OP的关键所在。因此,研究具有高价态的金属离子与多酸形成催化剂就非常有降解OP的潜力(ACSCatal.2018,8,7068-7076)。现有的POM基催化剂仍存在降解速度慢、选择性低、可回收性差等问题。通过共价键将有机配体接枝到POM上,得到新型的有机改性材料,以增强催化剂与底物之间的相互作用,是提高POMs广谱催化剂催化活性和稳定性的一种有前途的方法。
发明内容
本发明的目的是提供一种合成简单、降解率高的有机-无机杂化钍多酸盐。
本发明是通过以下技术方案实现的:
一种有机-无机杂化钍多酸盐,所述钍多酸盐的化学式为{Th(DMSO)6(H2O)[SiW12O40]}·2H2O,其中DMSO为二甲基亚砜,钍多酸盐的分子式为:C12H42O49S6SiThW12,分子量:3629,为单斜晶系,空间群为P21/c,钍多酸盐的晶胞参数为:
Figure BDA0002460414770000031
Figure BDA0002460414770000032
α=90°,β=99.4970(10)°,γ=90°,
Figure BDA0002460414770000033
Z=4。
所述钍多酸盐的结构为:在不对称单元中存在一个晶体学独立的[SiW12O40]4-的多酸阴离子,一个[Th(DMSO)6(H2O)]4+离子和两个结晶水分子,钍离子采用九配位的三帽三棱柱构型,与六个DMSO分子上的六个氧原子以及一个水分子配位,然后通过Th—O—W键与[SiW12O40]4-上的两个端氧成键,形成一维链状结构。
本发明提供了一种有机-无机杂化钍多酸盐的制备方法,是将硝酸钍和12-钨硅酸溶于二甲基亚砜溶剂中,搅拌均匀,静置,直至大量无色块状晶体析出,晶体经过滤,洗涤和自然干燥后,得钍多酸盐。
优选地,所述硝酸钍和12-钨硅酸的摩尔比为1:0.8-1.4。
优选地,每毫摩尔的硝酸钍加入6-8mL的二甲基亚砜溶剂。
优选地,所述晶体洗涤的具体操作为:将晶体采用无水乙醇清洗后,再去离子水清洗,再离心,此过程重复三次。
本发明还提供了一种有机-无机杂化钍多酸盐的应用,所述有机-无机杂化钍多酸盐用于催化降解有机磷酸酯。
由以上的技术方案可知,本发明用常规方法合成了一种有机-无机杂化的钍多酸,为一维结构,存在裸露的Th(IV),在催化降解有机磷酸酯方面,5分钟内即可基本降解有机磷酸酯(乙基对氧磷),降解度达到98.6%(乙基对氧磷),具有合成简单、操作方便、催化剂产率高、反应条件温和、降解快速,降解率高等特点,且可以回收,不会造成二次污染。
附图说明
图1为本发明有机-无机杂化钍多酸盐的不对称单元图,为了便于观察,结构中所有氢原子和游离水分子均省略。
图2为本发明有机-无机杂化钍多酸盐的一维链状结构图。为了便于观察,结构中所有氢原子和游离水分子均省略。
图3为本发明实施例1所得的有机-无机杂化钍多酸盐的红外光谱图。
图4为本发明实施例1所得的有机-无机杂化钍多酸盐的单晶用Mercury4.0理论模拟和新制样品实验测得的X射线粉末衍射(PXRD)谱图。
图5为本发明实施例1所得的有机-无机杂化钍多酸盐的热重分析图。
图6为在有机-无机杂化钍多酸盐催化降解甲基对氧磷模拟物乙基对氧磷中降解率随时间变化的关系图。
图7为在分别进行了1个和5个催化循环后回收的钍多酸盐催化剂与新制催化剂的红外光谱对比图,通过对比发现各红外特征峰位无明显变化,表明有机-无机杂化钍多酸盐催化剂非常稳定,可通过离心回收而不会造成钍泄露而发生二次污染。
图8在分别进行了1个和5个催化循环后回收的钍多酸盐催化剂与新制催化剂的PXRD图,通过对比,发现各主要粉末衍射峰强度虽有所变化,但各峰位置无明显变化,表明有机-无机杂化钍多酸盐催化剂非常稳定,可通过离心回收而不会造成钍泄露而发生二次污染。
图9为乙基对氧磷分子结构图。
图10为乙基对氧化磷在有机-无机杂化钍多酸盐催化作用下催化降解化学反应式。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
实施例1
一种有机-无机杂化钍多酸盐,如图1(有机-无机杂化钍多酸盐的不对称单元图)所示,所述钍多酸盐的化学式为{Th(DMSO)6(H2O)[SiW12O40]}·2H2O,其中DMSO为二甲基亚砜,钍多酸盐的分子式为:C12H42O49S6SiThW12,分子量:3629,为单斜晶系,空间群为P21/c,钍多酸盐的晶胞参数为:
Figure BDA0002460414770000061
Figure BDA0002460414770000062
α=90°,β=99.4970(10)°,γ=90°,
Figure BDA0002460414770000063
Z=4。
所述钍多酸盐的结构为:在不对称单元中存在一个晶体学独立的[SiW12O40]4-的多酸阴离子,一个[Th(DMSO)6(H2O)]4+离子和两个结晶水分子,钍离子采用九配位的三帽三棱柱构型,与六个DMSO分子上的六个氧原子以及一个水分子配位,然后通过Th—O—W键与[SiW12O40]4-上的两个端氧成键,形成一维链状结构,如图2所示,为了便于观察,结晶水分子和所有氢原子省略。
本发明提供了一种有机-无机杂化钍多酸盐的制备方法,是将0.2毫摩尔的硝酸钍和0.2毫摩尔的12-钨硅酸溶于14mL二甲基亚砜溶剂中,搅拌均匀,静置,直至大量无色块状晶体析出,晶体经过滤,洗涤和自然干燥后,得钍多酸盐,其中图3为本实施例1所得的有机-无机杂化钍多酸盐的红外光谱图,图4为本实施例所得的有机-无机杂化钍多酸盐的单晶用Mercury4.0理论模拟和新制样品实验测得的X射线粉末衍射谱图,通过各峰的比较可以得出本实施例所得样品为纯相,纯度非常高,图5为本实施例所得的有机-无机杂化钍多酸盐的热重分析图。
上述晶体洗涤的具体操作为:将晶体采用无水乙醇清洗后,再去离子水清洗,再离心,此过程重复三次。
图7为在分别进行了1个和5个催化循环后回收的钍多酸盐催化剂与新制催化剂的红外光谱对比图,通过对比发现各红外特征峰位无明显变化,表明有机-无机杂化钍多酸盐催化剂非常稳定,可通过离心回收而不会造成钍泄露而发生二次污染。
图8在分别进行了1个和5个催化循环后回收的钍多酸盐催化剂与新制催化剂的PXRD图,通过对比,发现各主要粉末衍射峰强度虽有所变化,但各峰位置无明显变化,表明有机-无机杂化钍多酸盐催化剂非常稳定,可通过离心回收而不会造成钍泄露而发生二次污染。
实施例2
本发明还提供了一种有机-无机杂化钍多酸盐的应用,所述有机-无机杂化钍多酸盐用于催化降解有机磷酸酯,将0.25毫摩尔乙基对氧磷溶于0.5mL无水乙醇中,加入3.75微摩尔有机-无机杂化钍多酸盐催化剂,于室温下搅拌反应5分钟,因硝基化合物有紫外响应,故反应后的试样用紫外分光光度计检测,从而通过测定产物中硝基化合物的浓度来计算降解率,请参阅图6,有机-无机杂化钍多酸盐催化降解乙基对氧磷中降解率随时间变化的关系图,表明该催化剂在5分钟内就能基本降解乙基对氧磷,降解率达到98.6%。而对照组(空白实验,没加有机-无机杂化钍多酸盐催化剂)中乙基对氧磷则基本不分解。其中图9为乙基对氧磷分子结构图,图10为乙基对氧化磷在有机-无机杂化钍多酸盐催化作用下催化降解化学反应式。
以上所描述的实施例是本发明一部分实施例,而不是全部的实施例。本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (5)

1.一种有机-无机杂化钍多酸盐的应用,其特征在于,所述有机-无机杂化钍多酸盐在催化降解有机磷酸酯反应中的应用;所述钍多酸盐的化学式为{Th(DMSO)6(H2O)[SiW12O40]}·2H2O,其中DMSO为二甲基亚砜,钍多酸盐的分子式为:C12H42O49S6SiThW12,分子量:3629,为单斜晶系,空间群为P21/c,钍多酸盐的晶胞参数为:
Figure FDA0003891479570000011
α=90°,β=99.4970(10)°,γ=90°,
Figure FDA0003891479570000012
Z=4;
所述钍多酸盐的结构为:在不对称单元中存在一个晶体学独立的[SiW12O40]4-的多酸阴离子,一个[Th(DMSO)6(H2O)]4+离子和两个结晶水分子,钍离子采用九配位的三帽三棱柱构型,与六个DMSO分子上的六个氧原子以及一个水分子配位,然后通过Th—O—W键与[SiW12O40]4-上的两个端氧成键,形成一维链状结构。
2.如权利要求1所述的一种有机-无机杂化钍多酸盐的应用,其特征在于,有机-无机杂化钍多酸盐的制备方法包括以下步骤:将硝酸钍和12-钨硅酸溶于二甲基亚砜溶剂中,搅拌均匀,静置,直至大量无色块状晶体析出,晶体经过滤,洗涤和自然干燥后,得钍多酸盐。
3.根据权利要求2所述的一种有机-无机杂化钍多酸盐的应用,其特征在于,所述硝酸钍和12-钨硅酸的摩尔比为1:0.8-1.4。
4.根据权利要求2所述的一种有机-无机杂化钍多酸盐的应用,其特征在于,每毫摩尔的硝酸钍加入6-8mL的二甲基亚砜溶剂。
5.根据权利要求2所述的一种有机-无机杂化钍多酸盐的应用,其特征在于,晶体洗涤的具体操作为:将晶体采用无水乙醇清洗后,再去离子水清洗,再离心,此过程重复三次。
CN202010318434.1A 2020-04-21 2020-04-21 一种有机-无机杂化钍多酸盐及其制备方法和应用 Active CN111393485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010318434.1A CN111393485B (zh) 2020-04-21 2020-04-21 一种有机-无机杂化钍多酸盐及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010318434.1A CN111393485B (zh) 2020-04-21 2020-04-21 一种有机-无机杂化钍多酸盐及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111393485A CN111393485A (zh) 2020-07-10
CN111393485B true CN111393485B (zh) 2023-03-14

Family

ID=71425253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010318434.1A Active CN111393485B (zh) 2020-04-21 2020-04-21 一种有机-无机杂化钍多酸盐及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111393485B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501837B (zh) * 2021-06-23 2022-09-20 华南理工大学 一种聚合物锆簇复合的化学战剂催化降解材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108440608A (zh) * 2018-04-03 2018-08-24 黑龙江科技大学 一种有机-无机杂化钼砷酸盐晶体及其制备方法和应用
CN108559100A (zh) * 2018-05-16 2018-09-21 大连理工大学 金属离子引导羧酸配体官能化多酸化合物及其制备方法与催化降解化学战剂模拟物的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108440608A (zh) * 2018-04-03 2018-08-24 黑龙江科技大学 一种有机-无机杂化钼砷酸盐晶体及其制备方法和应用
CN108559100A (zh) * 2018-05-16 2018-09-21 大连理工大学 金属离子引导羧酸配体官能化多酸化合物及其制备方法与催化降解化学战剂模拟物的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IL2 -11 钒功能化多铌氧簇及其催化降解化学战剂类似物;胡长文;《中国晶体学会第六届学术年会暨会员代表大会(功能分子晶体分会)论文摘要集》;20161231;全文 *
Multinuclear Diffusion NMR Spectroscopy and DFT Modeling :A Powerful Combination for Unraveling the Mechanism of Phosphoester Bond Hydrolysis Catalyzed by Metal-Substituted Polyoxometalates;Thi Kim Nga Luong et al;《Chemistry-A European Journal》;20150204;全文 *
一例有机-无机杂化钍多酸的合成与结构;蔡斌 等;《中国化学会第七届全国多酸化学学术研讨会会议论文集》;20181031;第一段、fig 1 *

Also Published As

Publication number Publication date
CN111393485A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
Cowie et al. Thermal and photochemical reduction and functionalization chemistry of the uranyl dication,[UVIO2] 2+
Assi et al. Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks
Tucci et al. Comparative kinetics of oxo transfer to substrate mediated by bis (dithiolene) dioxomolybdenum and-tungsten complexes
Zheng et al. Designed post-self-assembly structural and functional modifications of a truncated tetrahedron
Terfort et al. Self‐replication by condensation of 3‐aminobenzamidines and 2‐formylphenoxyacetic acids
Jimtaisong et al. Synthesis and Catalytic Epoxidation Activity with TBHP and H2O2 of Dioxo-, Oxoperoxo-, and Oxodiperoxo Molybdenum (VI) and Tungsten (VI) Compounds Containing Monodentate or Bidentate Phosphine Oxide Ligands: Crystal Structures of WCl2 (O) 2 (OPMePh2) 2, WCl2 (O)(O2)(OPMePh2) 2, MoCl2 (O) 2dppmO2⊙ C4H10O, WCl2 (O) 2dppmO2, Mo (O)(O2) 2dppmO2, and W (O)(O2) 2dppmO2
Chen et al. Three New Imidazole-Functionalized Hexanuclear Oxidovanadium Clusters with Exceptional Catalytic Oxidation Properties for Alcohols.
Hennig et al. Crystal structure and solution species of Ce (III) and Ce (IV) formates: From mononuclear to hexanuclear complexes
Salignac et al. “Wheeling templates” in molecular oxothiomolybdate rings: syntheses, structures, and dynamics
Crans et al. Synthesis and reactivity of oxovanadium (V) trialkoxides of bulky and chiral alcohols
Zhang et al. Photocatalytic properties and luminescent sensing for Cr3+ cations of polyoxovanadates-based inorganic–organic hybrid compounds with multiple Lewis basic sites
Han et al. Metal–organic frameworks with phosphotungstate incorporated for hydrolytic cleavage of a DNA-model phosphodiester
Shirase et al. Oxidation of alcohols to carbonyl compounds catalyzed by oxo-bridged dinuclear cerium complexes with pentadentate Schiff-base ligands under a dioxygen atmosphere
Liu et al. Trinuclear zinc complexes for biologically relevant μ3-oxoanion binding and carbon dioxide fixation
Menati et al. A new oxovanadium (IV) complex containing an O, N-bidentate Schiff base ligand: Synthesis at ambient temperature, characterization, crystal structure and catalytic performance in selective oxidation of sulfides to sulfones using H2O2 under solvent-free conditions
CN111393485B (zh) 一种有机-无机杂化钍多酸盐及其制备方法和应用
Srivastava et al. Telluroxanes: Synthesis, structure and applications
Kar et al. Synthesis, structure and catalase activity of three new manganese (III) complexes with a N, N, O donor Schiff-base ligand
Lu et al. An isotetramolybdate-supported rhenium carbonyl derivative: synthesis, characterization, and use as a catalyst for sulfoxidation
Hirneise et al. Tuning Organocerium Electrochemical Potentials by Extending Tris (cyclopentadienyl) Scaffolds with Terminal Halogenido, Siloxy, and Alkoxy Ligands
Gaunt et al. A novel zirconium polyoxometalate complex that contains both a coordinated saturated anion,[PMo12O40] 3-, and a coordinated unsaturated anion,[PMo11O39] 7
Shin et al. Synthesis, structure and catalase activity of the [TPA2Mn2 (μ-Cl) 2] 2+ complex
Xie et al. Preparation of a new metallomicelle catalyst for the hydrolysis of bis (4-nitrophenyl) phosphate
Zhang et al. Hydrothermal synthesis and crystal and molecular structure of a binuclear dioxovanadium (V) species exhibiting a bridging HPO42− ligand,[(VO2) 2 (HPO4)(2, 2′-bipy) 2]· H2O
Kou et al. Synthesis, crystal structure, phosphate hydrolysis activity and antibacterial activity of macrocyclic dinuclear Zn (II) complex with benzyl pendant-arms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant